Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C36H49NO5·H2O, has the outer two six-membered rings of the steroid nucleus in chair conformations. The central ring B of the steroid nucleus is in an 8β,9α-half-chair conformation, while ring D of the steroid adopts a slightly distorted 13β,14α-half-chair conformation. The piperidine ring is in a chair conformation. The methoxy­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position 17. Intermolecular O—H...O and O—H...N hydrogen bonds link the steroid and water mol­ecules into chains which run parallel to the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010202005X/na1582sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010202005X/na1582Isup2.hkl
Contains datablock I

CCDC reference: 201282

Comment top

The present study of the title compound, (I), is the 11t h in our series of X-ray crystal structure analyses of new synthetic androstene derivatives (Vasuki et al., 2001; Hema et al., 2002; Vasuki, Parthasarathi, Ramamurthi, Jindal & Dubey, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002a; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Jindal & Dubey, 2002; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002c; Vasuki, Parthasarathi, Ramamurthi, Piplani & Jindal, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002b). In our studies, we are particularly interested in the conformational flexibilities of the steroids resulting from variations in the substituents at the C3, C16 and C17 positions.

The crystals of (I) are enantiomerically pure. However, due to the absence of significant anomalous scatterers in the compound, the absolute configuration of the molecule has not been determined by the X-ray diffraction experiment. The enantiomer used in the refinement was assigned to correspond with the configuration of a known chiral centre in a precursor molecule which remained unchanged during the synthesis of (I).

Fig. 1 shows the asymmetric unit of (I) with the steroid numbering scheme and ring labels. Among the few conformational options, both methyl groups of the steroid nucleus adopt the expected staggered arrangements. The geometry of the rings is trans at the B/C and C/D ring junctions. The distance between the terminal C atoms, C39 and C34, is 20.213 (3) Å. The C5—C6 distance of 1.332 (3) Å confirms the presence of a localized double bond at this position (Kalman et al., 1992; Vasuki et al., 2001; Hema et al., 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002a; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002b). Rings A and C are slightly flattened, the mean values of their ring torsion angles being 53.68 (8) and 54.53 (8)°, respectively. Both ring conformations are close to that of a chair, as shown by the values of the Cremer & Pople (1975) puckering parameters [ring A: Q = 0.548 (2) Å, θ = 5.7 (2)° and ϕ = 85 (2)° for the atom sequence C1—C2—C3—C4—C5—C10; ring C: Q = 0.568 (2) Å, θ = 11.9 (2)° and ϕ = 266.4 (10)° for the atom sequence C8—C9—C11—C12—C13—C14]. Thus, the presence of the acetoxy group bonded to atom C3 does not disturb the usual chair conformation of ring A of the steroid nucleus. The 3β-acetoxy group bonded to ring A is planar. The C3—O37 bond is oriented equatorially and (-)antiperiplanar to the C3—C4 bond. The dihedral angle between the plane of the acetoxy group and the steroid nucleus plane is 83.45 (12)°.

Due to the C5C6 double bond, the environment of atom C5 is planar, and hence ring B adopts the 8β,9α-half-chair conformation generally found in steroids with a C5C6 double bond (Caira et al., 1995; Andrade et al., 2001; Vasuki et al., 2001; Hema et al., 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002a; Vasuki, Thamotharan, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002b), with puckering parameters Q = 0.494 (2) Å, θ = 51.7 (2)° and ϕ = 209.2 (3)° for the atom sequence C5—C6—C7—C8—C9—C10. The five-membered ring D exhibits a distorted 13β,14α-half-chair conformation [Δ = 3.9° and ϕm = 38.8 (1)° for the atom sequence C13—C14—C15—C16—C17; Altona et al., 1968]. The piperidine ring adopts a chair conformation, as is evident from the puckering parameters [Q = 0.576 (2) Å, θ = 4.6 (2)° and ϕ = 345 (3)°] for the atom sequence N31—C32—C33—C34—C35—C36. Atoms N31 and C34 are on opposite sides of the C32/C33/C35/C36 plane and displaced from it by 0.691 (2) and 0.649 (3) Å, respectively.

The C17—C16—C20—C21 torsion angle of 172.55 (17)° indicates that the methoxybenzylidene moiety has an E configuration with respect to the carbonyl group at position 17. The C15—C16—C20 exocyclic angle of 130.56 (18)° is significantly larger than the normal value of 120°, and this may be due to the steric repulsion between atoms H15A and H22 (2.31 Å) and that between atoms H15B and H22 (2.12 Å).

The pseudo-torsion angle C19—C10···C13—C18 has a value of 12.53 (15)°. The steroid nucleus and the average plane of the piperidine ring are oriented at angles of 6.38 (4) and 68.93 (8)°, respectively, with respect to the 3-methoxybenzylidene ring. In (I), the angles C8—C14—C15 of 118.63 (15)° and C14—C13—C17 of 100.81 (15)° are close to the expected values of 119.3 and 99.2°, respectively (Duax et al., 1976). [In Hema et al. (2002), we inadvertently gave the upper limit for these angles, instead of expected values.]

The water molecule forms an intermolecular hydrogen bond with the N atom of the piperidine ring of a neighbouring steroid molecule, as well as with the carbonyl O atom of the ester group of a different neighbouring steroid molecule (Table 1). These interactions link the steroid and water molecules alternately into chains, which run parallel to the y axis and have a binary graph-set motif (Bernstein et al., 1995) of C22(24).

Experimental top

A mixture of 16-[3-methoxy-4-(2-piperidin-1-ylethoxy)benzylidene]-17-oxo-5-androsten-3β-ol (0.5 g, 0.868 mmol), acetic anhydride (1.0 ml) and dry pyridine (2.0 ml) was heated on steam bath for 2 h. The contents of the reaction were then poured into ice-cold water and basicified with liquid ammonia. The precipitate obtained was filtered, washed with water, dried and crystallized in hexane (333–353 K) to afford crystals of the title compound (code: DPJ-RG-1111) (yield: 0.38 g, 70.5%; m.p. 399–401 K).

Refinement top

The asymmetric unit of (I) contains one molecule of the steroid plus one water molecule. The positions of the water H atoms were determined from a difference Fourier map and refined freely along with their isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) and were constrained to ride on their parent non-H atoms, with Uiso(H) = 1.2Ueq(C). Due to the absence of any significant anomalous scatterers in the compound, attempts to confirm the absolute structure by refinement of the Flack (1983) parameter, in the presence of 4331 sets of Friedel equivalents, led to an inconclusive value (Flack & Bernardinelli, 2000) of -0.5 (7). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of a known chiral centre in a precursor molecule which remained unchanged during the synthesis of the title compound. Reflection 002 was partially obscured by the beam stop and was omitted.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64.02; Farrugia, 1999); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing in (I), projected down the a axis, showing the hydrogen-bonding scheme. H atoms bonded to C atoms have been omitted for clarity.
16-[3-Methoxy-4-(2-piperidin-1-ylethoxy)benzylidene]-17-oxoandrost-5-en-3β-yl acetate monohydrate top
Crystal data top
C36H49NO5·H2OF(000) = 644
Mr = 593.78Dx = 1.226 Mg m3
Monoclinic, P21Melting point: 399 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.1726 (1) ÅCell parameters from 4884 reflections
b = 14.9068 (2) Åθ = 2.0–30.0°
c = 17.6465 (3) ŵ = 0.08 mm1
β = 97.724 (1)°T = 160 K
V = 1608.99 (4) Å3Tablet, colourless
Z = 20.25 × 0.25 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3793 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.062
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.7°
Detector resolution: 9 pixels mm-1h = 08
ϕ and ω scans with κ offsetsk = 2020
42238 measured reflectionsl = 2424
4878 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.0106P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4878 reflectionsΔρmax = 0.24 e Å3
401 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C36H49NO5·H2OV = 1608.99 (4) Å3
Mr = 593.78Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1726 (1) ŵ = 0.08 mm1
b = 14.9068 (2) ÅT = 160 K
c = 17.6465 (3) Å0.25 × 0.25 × 0.15 mm
β = 97.724 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3793 reflections with I > 2σ(I)
42238 measured reflectionsRint = 0.062
4878 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4878 reflectionsΔρmin = 0.18 e Å3
401 parameters
Special details top

Experimental. Solvent used: hexane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.442 (1) Frames collected: 340 Seconds exposure per frame: 47 Degrees rotation per frame: 1.9 Crystal-Detector distance (mm): 28.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O170.3416 (2)0.55301 (10)0.00199 (8)0.0328 (3)
O231.2293 (2)0.21799 (10)0.09286 (9)0.0329 (3)
O281.3920 (2)0.30874 (10)0.19793 (8)0.0294 (3)
O370.1940 (3)0.04190 (12)0.44042 (8)0.0374 (4)
O380.1043 (3)0.03766 (14)0.39813 (10)0.0537 (5)
N311.6421 (3)0.24250 (12)0.33543 (9)0.0259 (4)
C10.0745 (3)0.24554 (16)0.31322 (12)0.0320 (5)
H1A0.01230.30470.32380.038*
H1B0.02220.21830.27000.038*
C20.0736 (4)0.18556 (17)0.38408 (12)0.0344 (5)
H2A0.15800.21480.42900.041*
H2B0.07840.17720.39490.041*
C30.1737 (4)0.09540 (16)0.37048 (12)0.0325 (5)
H30.08150.06310.32820.039*
C40.4041 (3)0.10637 (15)0.35139 (12)0.0303 (5)
H4A0.46290.04690.33970.036*
H4B0.49850.13110.39630.036*
C50.4103 (3)0.16825 (14)0.28354 (11)0.0255 (4)
C60.5053 (3)0.14215 (14)0.22381 (12)0.0291 (4)
H60.56160.08280.22450.035*
C70.5303 (3)0.19890 (14)0.15585 (12)0.0285 (4)
H7A0.42780.17770.11150.034*
H7B0.68080.19240.14300.034*
C80.4855 (3)0.29752 (13)0.17028 (10)0.0218 (4)
H80.61250.32290.20480.026*
C90.2777 (3)0.30771 (14)0.20928 (10)0.0223 (4)
H90.15880.27500.17630.027*
C100.3041 (3)0.26008 (13)0.28861 (11)0.0234 (4)
C110.2008 (3)0.40607 (15)0.21296 (12)0.0274 (4)
H11A0.05190.40630.22800.033*
H11B0.29840.43720.25380.033*
C120.1962 (3)0.46024 (14)0.13827 (11)0.0254 (4)
H12A0.07680.43800.09980.031*
H12B0.16820.52430.14820.031*
C130.4150 (3)0.45051 (13)0.10766 (10)0.0214 (4)
C140.4561 (3)0.35054 (13)0.09595 (10)0.0215 (4)
H140.32020.32680.06530.026*
C150.6347 (3)0.34502 (13)0.04372 (11)0.0228 (4)
H15A0.78210.34500.07380.027*
H15B0.61770.29050.01150.027*
C160.5971 (3)0.42947 (14)0.00463 (10)0.0230 (4)
C170.4330 (3)0.48700 (14)0.02766 (11)0.0240 (4)
C180.6004 (3)0.49816 (14)0.15987 (11)0.0263 (4)
H18A0.60770.47470.21200.039*
H18B0.57150.56280.16000.039*
H18C0.73990.48720.14070.039*
C190.4460 (3)0.31588 (15)0.35007 (12)0.0298 (4)
H19A0.48130.27980.39650.045*
H19B0.36530.36960.36190.045*
H19C0.58140.33370.33090.045*
C200.6988 (3)0.45957 (14)0.06290 (10)0.0240 (4)
H200.64520.51480.08480.029*
C210.8783 (3)0.42009 (14)0.09725 (10)0.0234 (4)
C220.9681 (3)0.33564 (14)0.07625 (11)0.0240 (4)
H220.91040.30210.03780.029*
C231.1383 (3)0.30006 (14)0.11007 (11)0.0244 (4)
C241.2245 (3)0.34927 (14)0.16744 (10)0.0242 (4)
C251.1363 (3)0.43208 (14)0.18900 (11)0.0255 (4)
H251.19240.46520.22800.031*
C260.9664 (3)0.46735 (14)0.15418 (11)0.0256 (4)
H260.90900.52470.16940.031*
C271.1221 (4)0.16307 (15)0.04338 (12)0.0335 (5)
H27A1.12940.19190.00680.050*
H27B1.19420.10440.03770.050*
H27C0.96870.15510.06520.050*
C291.4865 (3)0.35858 (15)0.25493 (11)0.0279 (4)
H29A1.52850.41910.23510.034*
H29B1.37750.36560.30110.034*
C301.6859 (3)0.31049 (16)0.27581 (12)0.0299 (4)
H30A1.78670.35560.29280.036*
H30B1.76220.28150.22920.036*
C321.5352 (3)0.16249 (16)0.30828 (12)0.0324 (5)
H32A1.39890.18050.28860.039*
H32B1.63310.13440.26580.039*
C331.4824 (4)0.09524 (18)0.37238 (14)0.0403 (5)
H33A1.37340.12160.41250.048*
H33B1.41660.04110.35230.048*
C341.6855 (4)0.06811 (17)0.40772 (14)0.0429 (6)
H34A1.78470.03260.37040.051*
H34B1.64250.03040.45340.051*
C351.8034 (4)0.15204 (17)0.43027 (13)0.0384 (5)
H35A1.94360.13460.44760.046*
H35B1.71270.18220.47340.046*
C361.8475 (3)0.21648 (16)0.36355 (12)0.0320 (5)
H36A1.94610.18770.32170.038*
H36B1.92130.27070.37990.038*
C380.0522 (3)0.02392 (15)0.44607 (12)0.0294 (4)
C390.1087 (4)0.07710 (17)0.51726 (12)0.0379 (5)
H39A0.00480.12230.52090.057*
H39B0.11840.03710.56170.057*
H39C0.24960.10700.51610.057*
O1W0.4014 (4)0.33450 (18)0.53911 (10)0.0666 (7)
H1W0.476 (7)0.300 (3)0.582 (2)0.108 (14)*
H2W0.302 (8)0.374 (4)0.569 (3)0.133 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O170.0354 (8)0.0297 (9)0.0344 (8)0.0091 (7)0.0082 (6)0.0082 (7)
O230.0374 (8)0.0256 (8)0.0383 (8)0.0082 (6)0.0149 (6)0.0061 (7)
O280.0309 (7)0.0305 (8)0.0294 (7)0.0034 (6)0.0136 (5)0.0004 (6)
O370.0453 (9)0.0381 (9)0.0274 (8)0.0150 (7)0.0009 (6)0.0109 (7)
O380.0557 (10)0.0598 (12)0.0418 (10)0.0296 (9)0.0078 (8)0.0173 (9)
N310.0248 (8)0.0291 (9)0.0248 (8)0.0017 (7)0.0073 (6)0.0024 (7)
C10.0264 (10)0.0376 (13)0.0334 (11)0.0010 (9)0.0096 (8)0.0103 (10)
C20.0312 (10)0.0412 (13)0.0321 (11)0.0003 (9)0.0088 (8)0.0122 (10)
C30.0395 (11)0.0337 (12)0.0231 (10)0.0097 (10)0.0002 (8)0.0083 (9)
C40.0363 (11)0.0260 (11)0.0294 (11)0.0010 (9)0.0074 (9)0.0058 (9)
C50.0253 (9)0.0230 (10)0.0283 (10)0.0004 (8)0.0037 (7)0.0038 (8)
C60.0356 (10)0.0198 (10)0.0327 (11)0.0014 (8)0.0074 (8)0.0013 (8)
C70.0353 (11)0.0237 (11)0.0276 (10)0.0017 (8)0.0087 (8)0.0003 (8)
C80.0221 (8)0.0213 (9)0.0225 (9)0.0009 (7)0.0042 (6)0.0001 (8)
C90.0207 (8)0.0231 (10)0.0237 (9)0.0003 (7)0.0050 (7)0.0013 (8)
C100.0238 (9)0.0224 (10)0.0244 (9)0.0009 (7)0.0043 (7)0.0026 (8)
C110.0262 (9)0.0276 (11)0.0302 (10)0.0032 (8)0.0103 (7)0.0035 (9)
C120.0234 (9)0.0249 (10)0.0293 (10)0.0021 (8)0.0084 (7)0.0041 (8)
C130.0208 (8)0.0215 (10)0.0224 (9)0.0000 (7)0.0054 (7)0.0007 (7)
C140.0220 (8)0.0215 (9)0.0217 (9)0.0006 (7)0.0053 (7)0.0003 (8)
C150.0248 (9)0.0208 (10)0.0235 (9)0.0007 (8)0.0053 (7)0.0008 (8)
C160.0238 (9)0.0228 (10)0.0225 (9)0.0003 (8)0.0033 (7)0.0011 (8)
C170.0218 (9)0.0246 (10)0.0263 (9)0.0017 (8)0.0054 (7)0.0015 (8)
C180.0262 (9)0.0256 (10)0.0282 (10)0.0016 (8)0.0076 (8)0.0020 (8)
C190.0354 (10)0.0280 (11)0.0261 (10)0.0020 (9)0.0040 (8)0.0013 (8)
C200.0275 (9)0.0218 (10)0.0226 (9)0.0015 (8)0.0033 (7)0.0002 (8)
C210.0261 (9)0.0222 (10)0.0224 (9)0.0005 (8)0.0048 (7)0.0019 (8)
C220.0269 (9)0.0245 (10)0.0217 (9)0.0005 (8)0.0077 (7)0.0010 (8)
C230.0260 (9)0.0237 (10)0.0234 (9)0.0023 (8)0.0038 (7)0.0008 (8)
C240.0228 (9)0.0284 (10)0.0223 (9)0.0017 (8)0.0064 (7)0.0040 (8)
C250.0269 (9)0.0246 (10)0.0258 (9)0.0034 (8)0.0065 (7)0.0016 (8)
C260.0282 (9)0.0221 (10)0.0270 (9)0.0010 (8)0.0054 (7)0.0013 (8)
C270.0435 (12)0.0242 (11)0.0349 (11)0.0060 (9)0.0130 (9)0.0050 (9)
C290.0298 (10)0.0297 (11)0.0256 (10)0.0025 (8)0.0088 (8)0.0011 (8)
C300.0246 (9)0.0358 (12)0.0301 (10)0.0019 (9)0.0069 (7)0.0057 (9)
C320.0333 (11)0.0336 (12)0.0319 (11)0.0041 (9)0.0100 (8)0.0012 (9)
C330.0442 (13)0.0350 (13)0.0430 (13)0.0067 (10)0.0103 (10)0.0061 (11)
C340.0552 (15)0.0359 (14)0.0393 (13)0.0034 (11)0.0126 (10)0.0048 (11)
C350.0453 (13)0.0391 (13)0.0334 (12)0.0069 (10)0.0151 (10)0.0012 (10)
C360.0281 (10)0.0359 (12)0.0341 (11)0.0020 (9)0.0118 (8)0.0003 (10)
C380.0330 (10)0.0266 (11)0.0293 (10)0.0037 (9)0.0069 (8)0.0010 (8)
C390.0472 (12)0.0332 (12)0.0335 (11)0.0032 (11)0.0060 (9)0.0077 (10)
O1W0.0801 (14)0.0879 (17)0.0315 (9)0.0451 (13)0.0060 (9)0.0021 (10)
Geometric parameters (Å, º) top
O17—C171.217 (2)C15—H15A0.9900
O23—C231.363 (3)C15—H15B0.9900
O23—C271.423 (3)C16—C201.351 (3)
O28—C241.368 (2)C16—C171.497 (3)
O28—C291.436 (2)C18—H18A0.9800
O37—C381.328 (3)C18—H18B0.9800
O37—C31.461 (2)C18—H18C0.9800
O38—C381.213 (3)C19—H19A0.9800
N31—C301.460 (3)C19—H19B0.9800
N31—C321.474 (3)C19—H19C0.9800
N31—C361.474 (2)C20—C211.457 (3)
C1—C21.538 (3)C20—H200.9500
C1—C101.553 (3)C21—C261.396 (3)
C1—H1A0.9900C21—C221.405 (3)
C1—H1B0.9900C22—C231.382 (3)
C2—C31.512 (3)C22—H220.9500
C2—H2A0.9900C23—C241.411 (3)
C2—H2B0.9900C24—C251.382 (3)
C3—C41.514 (3)C25—C261.388 (3)
C3—H31.0000C25—H250.9500
C4—C51.516 (3)C26—H260.9500
C4—H4A0.9900C27—H27A0.9800
C4—H4B0.9900C27—H27B0.9800
C5—C61.332 (3)C27—H27C0.9800
C5—C101.525 (3)C29—C301.512 (3)
C6—C71.492 (3)C29—H29A0.9900
C6—H60.9500C29—H29B0.9900
C7—C81.524 (3)C30—H30A0.9900
C7—H7A0.9900C30—H30B0.9900
C7—H7B0.9900C32—C331.514 (3)
C8—C141.521 (3)C32—H32A0.9900
C8—C91.543 (2)C32—H32B0.9900
C8—H81.0000C33—C341.528 (3)
C9—C111.545 (3)C33—H33A0.9900
C9—C101.559 (3)C33—H33B0.9900
C9—H91.0000C34—C351.527 (4)
C10—C191.542 (3)C34—H34A0.9900
C11—C121.543 (3)C34—H34B0.9900
C11—H11A0.9900C35—C361.516 (3)
C11—H11B0.9900C35—H35A0.9900
C12—C131.527 (2)C35—H35B0.9900
C12—H12A0.9900C36—H36A0.9900
C12—H12B0.9900C36—H36B0.9900
C13—C141.530 (3)C38—C391.487 (3)
C13—C171.531 (3)C39—H39A0.9800
C13—C181.543 (3)C39—H39B0.9800
C14—C151.531 (3)C39—H39C0.9800
C14—H141.0000O1W—H1W0.97 (5)
C15—C161.521 (3)O1W—H2W1.04 (5)
C23—O23—C27116.17 (16)O17—C17—C13126.66 (18)
C24—O28—C29116.52 (16)C16—C17—C13106.51 (15)
C38—O37—C3118.97 (16)C13—C18—H18A109.5
C30—N31—C32112.03 (16)C13—C18—H18B109.5
C30—N31—C36109.94 (15)H18A—C18—H18B109.5
C32—N31—C36109.83 (17)C13—C18—H18C109.5
C2—C1—C10114.32 (17)H18A—C18—H18C109.5
C2—C1—H1A108.7H18B—C18—H18C109.5
C10—C1—H1A108.7C10—C19—H19A109.5
C2—C1—H1B108.7C10—C19—H19B109.5
C10—C1—H1B108.7H19A—C19—H19B109.5
H1A—C1—H1B107.6C10—C19—H19C109.5
C3—C2—C1109.97 (17)H19A—C19—H19C109.5
C3—C2—H2A109.7H19B—C19—H19C109.5
C1—C2—H2A109.7C16—C20—C21129.76 (19)
C3—C2—H2B109.7C16—C20—H20115.1
C1—C2—H2B109.7C21—C20—H20115.1
H2A—C2—H2B108.2C26—C21—C22117.65 (18)
O37—C3—C2109.98 (17)C26—C21—C20119.16 (18)
O37—C3—C4105.69 (16)C22—C21—C20123.20 (18)
C2—C3—C4110.83 (18)C23—C22—C21121.73 (18)
O37—C3—H3110.1C23—C22—H22119.1
C2—C3—H3110.1C21—C22—H22119.1
C4—C3—H3110.1O23—C23—C22124.24 (18)
C3—C4—C5111.44 (16)O23—C23—C24116.25 (17)
C3—C4—H4A109.3C22—C23—C24119.50 (18)
C5—C4—H4A109.3O28—C24—C25125.23 (18)
C3—C4—H4B109.3O28—C24—C23115.50 (18)
C5—C4—H4B109.3C25—C24—C23119.27 (17)
H4A—C4—H4B108.0C24—C25—C26120.65 (18)
C6—C5—C4120.53 (19)C24—C25—H25119.7
C6—C5—C10123.17 (18)C26—C25—H25119.7
C4—C5—C10116.30 (17)C25—C26—C21121.19 (19)
C5—C6—C7125.07 (19)C25—C26—H26119.4
C5—C6—H6117.5C21—C26—H26119.4
C7—C6—H6117.5O23—C27—H27A109.5
C6—C7—C8111.84 (17)O23—C27—H27B109.5
C6—C7—H7A109.2H27A—C27—H27B109.5
C8—C7—H7A109.2O23—C27—H27C109.5
C6—C7—H7B109.2H27A—C27—H27C109.5
C8—C7—H7B109.2H27B—C27—H27C109.5
H7A—C7—H7B107.9O28—C29—C30110.24 (18)
C14—C8—C7111.13 (16)O28—C29—H29A109.6
C14—C8—C9108.88 (14)C30—C29—H29A109.6
C7—C8—C9110.49 (16)O28—C29—H29B109.6
C14—C8—H8108.8C30—C29—H29B109.6
C7—C8—H8108.8H29A—C29—H29B108.1
C9—C8—H8108.8N31—C30—C29115.28 (16)
C8—C9—C11112.99 (16)N31—C30—H30A108.5
C8—C9—C10111.27 (14)C29—C30—H30A108.5
C11—C9—C10112.97 (15)N31—C30—H30B108.5
C8—C9—H9106.3C29—C30—H30B108.5
C11—C9—H9106.3H30A—C30—H30B107.5
C10—C9—H9106.3N31—C32—C33110.72 (18)
C5—C10—C19108.51 (16)N31—C32—H32A109.5
C5—C10—C1107.86 (16)C33—C32—H32A109.5
C19—C10—C1109.39 (17)N31—C32—H32B109.5
C5—C10—C9110.49 (15)C33—C32—H32B109.5
C19—C10—C9111.53 (16)H32A—C32—H32B108.1
C1—C10—C9108.99 (15)C32—C33—C34111.97 (19)
C12—C11—C9115.56 (16)C32—C33—H33A109.2
C12—C11—H11A108.4C34—C33—H33A109.2
C9—C11—H11A108.4C32—C33—H33B109.2
C12—C11—H11B108.4C34—C33—H33B109.2
C9—C11—H11B108.4H33A—C33—H33B107.9
H11A—C11—H11B107.5C35—C34—C33109.6 (2)
C13—C12—C11109.67 (15)C35—C34—H34A109.8
C13—C12—H12A109.7C33—C34—H34A109.8
C11—C12—H12A109.7C35—C34—H34B109.8
C13—C12—H12B109.7C33—C34—H34B109.8
C11—C12—H12B109.7H34A—C34—H34B108.2
H12A—C12—H12B108.2C36—C35—C34111.04 (18)
C12—C13—C14108.12 (15)C36—C35—H35A109.4
C12—C13—C17118.01 (15)C34—C35—H35A109.4
C14—C13—C17100.81 (15)C36—C35—H35B109.4
C12—C13—C18111.44 (15)C34—C35—H35B109.4
C14—C13—C18113.93 (15)H35A—C35—H35B108.0
C17—C13—C18104.30 (15)N31—C36—C35110.83 (17)
C8—C14—C13113.09 (15)N31—C36—H36A109.5
C8—C14—C15118.63 (15)C35—C36—H36A109.5
C13—C14—C15106.24 (15)N31—C36—H36B109.5
C8—C14—H14106.0C35—C36—H36B109.5
C13—C14—H14106.0H36A—C36—H36B108.1
C15—C14—H14106.0O38—C38—O37122.95 (19)
C16—C15—C14103.03 (15)O38—C38—C39125.0 (2)
C16—C15—H15A111.2O37—C38—C39112.05 (18)
C14—C15—H15A111.2C38—C39—H39A109.5
C16—C15—H15B111.2C38—C39—H39B109.5
C14—C15—H15B111.2H39A—C39—H39B109.5
H15A—C15—H15B109.1C38—C39—H39C109.5
C20—C16—C17120.45 (18)H39A—C39—H39C109.5
C20—C16—C15130.56 (18)H39B—C39—H39C109.5
C17—C16—C15108.70 (15)H1W—O1W—H2W99 (3)
O17—C17—C16126.70 (18)
C10—C1—C2—C356.8 (2)C13—C14—C15—C1630.15 (18)
C38—O37—C3—C2103.5 (2)C14—C15—C16—C20177.2 (2)
C38—O37—C3—C4136.8 (2)C14—C15—C16—C179.26 (19)
C1—C2—C3—O37174.05 (16)C20—C16—C17—O1716.5 (3)
C1—C2—C3—C457.5 (2)C15—C16—C17—O17169.15 (19)
O37—C3—C4—C5174.74 (18)C20—C16—C17—C13159.53 (17)
C2—C3—C4—C555.6 (2)C15—C16—C17—C1314.81 (19)
C3—C4—C5—C6127.3 (2)C12—C13—C17—O1734.2 (3)
C3—C4—C5—C1053.0 (2)C14—C13—C17—O17151.60 (19)
C4—C5—C6—C7176.92 (19)C18—C13—C17—O1790.1 (2)
C10—C5—C6—C72.7 (3)C12—C13—C17—C16149.76 (17)
C5—C6—C7—C814.0 (3)C14—C13—C17—C1632.36 (18)
C6—C7—C8—C14165.99 (16)C18—C13—C17—C1685.99 (18)
C6—C7—C8—C945.0 (2)C17—C16—C20—C21172.55 (17)
C14—C8—C9—C1147.8 (2)C15—C16—C20—C210.4 (3)
C7—C8—C9—C11170.13 (17)C16—C20—C21—C26175.67 (19)
C14—C8—C9—C10176.14 (16)C16—C20—C21—C224.7 (3)
C7—C8—C9—C1061.5 (2)C26—C21—C22—C230.3 (3)
C6—C5—C10—C19110.0 (2)C20—C21—C22—C23179.91 (17)
C4—C5—C10—C1969.6 (2)C27—O23—C23—C227.6 (3)
C6—C5—C10—C1131.6 (2)C27—O23—C23—C24171.17 (17)
C4—C5—C10—C148.8 (2)C21—C22—C23—O23178.90 (17)
C6—C5—C10—C912.6 (3)C21—C22—C23—C240.2 (3)
C4—C5—C10—C9167.80 (16)C29—O28—C24—C252.3 (3)
C2—C1—C10—C550.5 (2)C29—O28—C24—C23178.35 (16)
C2—C1—C10—C1967.3 (2)O23—C23—C24—O281.0 (2)
C2—C1—C10—C9170.48 (18)C22—C23—C24—O28179.76 (16)
C8—C9—C10—C543.7 (2)O23—C23—C24—C25178.46 (16)
C11—C9—C10—C5172.04 (15)C22—C23—C24—C250.3 (3)
C8—C9—C10—C1977.1 (2)O28—C24—C25—C26179.84 (17)
C11—C9—C10—C1951.3 (2)C23—C24—C25—C260.8 (3)
C8—C9—C10—C1162.05 (17)C24—C25—C26—C210.7 (3)
C11—C9—C10—C169.6 (2)C22—C21—C26—C250.2 (3)
C8—C9—C11—C1246.0 (2)C20—C21—C26—C25179.46 (16)
C10—C9—C11—C12173.43 (15)C24—O28—C29—C30173.01 (15)
C9—C11—C12—C1350.4 (2)C32—N31—C30—C2971.2 (2)
C11—C12—C13—C1457.3 (2)C36—N31—C30—C29166.39 (18)
C11—C12—C13—C17170.73 (17)O28—C29—C30—N3186.3 (2)
C11—C12—C13—C1868.6 (2)C30—N31—C32—C33177.31 (18)
C7—C8—C14—C13178.91 (16)C36—N31—C32—C3360.2 (2)
C9—C8—C14—C1359.16 (19)N31—C32—C33—C3456.5 (3)
C7—C8—C14—C1553.5 (2)C32—C33—C34—C3552.2 (3)
C9—C8—C14—C15175.45 (16)C33—C34—C35—C3652.6 (3)
C12—C13—C14—C865.04 (19)C30—N31—C36—C35175.00 (18)
C17—C13—C14—C8170.53 (14)C32—N31—C36—C3561.3 (2)
C18—C13—C14—C859.4 (2)C34—C35—C36—N3158.1 (2)
C12—C13—C14—C15163.14 (14)C3—O37—C38—O385.7 (3)
C17—C13—C14—C1538.71 (17)C3—O37—C38—C39174.4 (2)
C18—C13—C14—C1572.39 (19)C19—C10—C13—C1812.53 (15)
C8—C14—C15—C16158.80 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N31i0.97 (5)1.88 (5)2.847 (3)174 (4)
O1W—H2W···O38ii1.04 (5)1.94 (5)2.961 (3)167 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC36H49NO5·H2O
Mr593.78
Crystal system, space groupMonoclinic, P21
Temperature (K)160
a, b, c (Å)6.1726 (1), 14.9068 (2), 17.6465 (3)
β (°) 97.724 (1)
V3)1608.99 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.25 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
42238, 4878, 3793
Rint0.062
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.03
No. of reflections4878
No. of parameters401
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), WinGX (Version 1.64.02; Farrugia, 1999), SHELXL97 and PLATON (Spek, 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N31i0.97 (5)1.88 (5)2.847 (3)174 (4)
O1W—H2W···O38ii1.04 (5)1.94 (5)2.961 (3)167 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds