Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C22H23N5O4, the mol­ecules are linked into chains by a three-centre N—H...(N,O) hydrogen bond, reinforced by a two-centre C—H...O hydrogen bond, and the chains are further linked into sheets by a combination of C—H...O and C—H...π(arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009575/na1576sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009575/na1576Isup2.hkl
Contains datablock I

CCDC reference: 192990

Comment top

We report here the molecular and supramolecular structure of the title compound, ethyl N-(2-benzylamino-6-benzyloxy-5-nitrosopyrimidin-4-yl)glycinate, (I) (Fig. 1), which we have studied in order to compare the interplay of the molecular and supramolecular structure in (I) with that in the analogue (II) (Quesada, Marchal et al., 2002; Quesada, Low et al., 2002), which differs from (I) in having an unsubstituted amino N2 atom, with no N2-benzyl group, as is present in (I). In (II), the molecules are linked into chains by a combination of a three-centred N—H···(N,O) hydrogen bond and an N—H···π(arene) interaction, involving different N—H bonds of the 2-amino group in the two types of interaction. In (I), with no NH2 group, a different pattern of supramolecular aggregation must occur.

In (I), the amino N4 forms the intramolecular N—H···O hydrogen bond typical of 4-amino-5-nitrosopyrimidines (Quesada, Marchal et al., 2002; Quesada, Low et al., 2002) and the amino N2 atom acts as hydrogen-bond donor to the nitroso atoms N5i and O5i in an almost planar three-centre interaction (see Table 2 for symmetry code), propagation of this interaction produces a chain running parallel to the [010] direction and generated by the 21-screw axis along (0, y, 1/4) (Fig. 2). This [010] chain is further reinforced by a C—H···O hydrogen bond, with the nitroso O5 atom again acting as the acceptor (Table 2 and Fig. 2), and the chain thus contains three different ring motifs of S(6), R21(3) and R12(11) types (Bernstein et al., 1995).

Two chains of this type, related to one another by centres of inversion and thus antiparallel, run through each unit cell, generated by the screw axes along (0, y, 1/4) and (0, -y, 3/4), and these chains are linked into (100) sheets by a combination of C—H···O and C—H···π(arene) hydrogen bonds (Table 2 and Fig. 3). Atoms C7 (via H7B) and C22, which are part of the chain along (0, y, 1/4), both act as hydrogen-bond donors to carbonyl O81ii which lies in the chain along (0, -y, 3/4) [symmetry code: (ii) x, -y + 1/2, z + 1/2]. Similarly, atoms C7 and C22 in the molecule at (-x, 0.5 + y, 0.5 - z), which also lies in the (0, y, 1/4) chain, act as donors to O81 in the molecule at (-x, 1 - y, -z), which itself lies in the chain along (0, -y, -0.25). In this manner, each [010] chain is linked by C—H···O hydrogen bonds to the two neighbouring chains in the [001] direction, so generating a (100) sheet.

The linking of the [010] chains is further reinforced by two distinct C—H···π(arene) interactions. Atoms C7 (via H7A) and C67 (via H67A) act as hydrogen-bond donors, respectively, to the centroid Cg2ii of the ring (C21–C26)ii and to the centroid Cg3iii of the ring (C61–C66)iii. These two molecules lie in the chains along (0, -y, 3/4) and (0, -y, -0.25), respectively, and hence these interactions (Fig. 3) reinforce the (100) sheet.

All of the C—H···O and C—H···π(arene) interactions have H···A and D···A distances which are reasonably short for their types and all except one have D—H···A angles above 150° (Table 2). However, the co-operative action of the many hydrogen bonds may be more significant than the properties of the individual interactions. It is striking that, in the enforced absence of an N—H···π(arene) hydrogen bond of the type found in (II), the structure of (I) nonetheless has adjusted to maximize the effects of the weaker hydrogen bonds, in particular, by engaging both of the aryl rings in the molecule.

Within the molecule of (I), the C—C, C—N and N—O distances (Table 1) exhibit the usual pattern found (Quesada, Marchal et al., 2002; Quesada, Low et al., 2002) in 2,4-diamino-5-nitrosopyrimidines, consistent with extensive charge delocalization, as in (Ia) (see Scheme). The conformation, as defined by the key torsion angles (Table 1), has atoms C27 and C67 effectively coplanar with the pyrimidine ring, but the phenyl rings are rotated out of this plane. The ester group has an unusual conformation (Fig. 1), as demonstrated by the (-)synclinal torsion angle C8—O82—C9—C10 (Table 1).

Experimental top

A solution of ethyl glycinate hydrochloride (0.51 mmol) in ethanol (5 ml) was neutralized by KOH (0.51 mmol). 2-Benzylamino-4,6-bisbenzyloxy-5-nitosopyrimidine (0.47 mmol) were then added and the mixture was kept at 333 K for 6 h. When the mixture had cooled to room temperature, distilled water (50 ml) was added and ethanol was eliminated by reduced pressure until a solid precipitate appeared. The solid was then filtered off and washed with distilled water (yield 86%, m.p. 396 K). Analysis found: C 62.70, H 5.50, N 16.62%; C22H23N5O4 requires C 62.40, H 5.62, N 16.07%. Crystals suitable for single-crystal X-ray diffraction analysis were grown from a solution in ethanol–water (1:1, v/v).

Refinement top

Compound (I) crystallized in the monoclinic system; the space group P21/c was uniquely assigned from the systematic absences. H atoms were treated as riding, with C—H distances in the range 0.95–0.99 Å and N—H distances of 0.88 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a chain along [010]. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (-x, 0.5 + y, 0.5 - z) and (-x, -0.5 + y, 0.5 - z), respectively.
[Figure 3] Fig. 3. Stereoview of part of the structure of (I), showing the C—H···O and C—H···π(arene) hydrogen bonds which link the [010] chains into a (100) sheet. For the sake of clarity, the unit-cell box has been omitted and only H atoms involved in the motifs shown are included.
Ethyl N-[2-benzylamino-6-benzyloxy-5-nitrosopyrimidin-4-yl]glycinate top
Crystal data top
C22H23N5O4F(000) = 888
Mr = 421.45Dx = 1.363 Mg m3
Monoclinic, P21/cMelting point: 396 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.2278 (8) ÅCell parameters from 4644 reflections
b = 15.8992 (5) Åθ = 3.0–25.0°
c = 8.5558 (3) ŵ = 0.10 mm1
β = 97.5860 (11)°T = 120 K
V = 2053.31 (14) Å3Needle, purple
Z = 40.40 × 0.05 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1861 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.200
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
ϕ scans, and ω scans with κ offsetsh = 1818
24714 measured reflectionsk = 1818
3619 independent reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0658P)2 + 1.1859P]
where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C22H23N5O4V = 2053.31 (14) Å3
Mr = 421.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2278 (8) ŵ = 0.10 mm1
b = 15.8992 (5) ÅT = 120 K
c = 8.5558 (3) Å0.40 × 0.05 × 0.02 mm
β = 97.5860 (11)°
Data collection top
Nonius KappaCCD
diffractometer
1861 reflections with I > 2σ(I)
24714 measured reflectionsRint = 0.200
3619 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3619 reflectionsΔρmin = 0.28 e Å3
281 parameters
Special details top

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0187 (2)0.3075 (2)0.2239 (4)0.0245 (8)
C20.0506 (3)0.3350 (3)0.3311 (4)0.0239 (10)
N20.0590 (2)0.4176 (2)0.3421 (4)0.0253 (8)
C270.1239 (3)0.4596 (3)0.4548 (5)0.0263 (10)
C210.2143 (3)0.4660 (2)0.4009 (5)0.0248 (10)
C220.2867 (3)0.4234 (3)0.4784 (5)0.0269 (10)
C230.3690 (3)0.4312 (3)0.4307 (5)0.0330 (11)
C240.3813 (3)0.4810 (3)0.3038 (5)0.0325 (11)
C250.3102 (3)0.5240 (3)0.2236 (5)0.0324 (11)
C260.2276 (3)0.5166 (3)0.2734 (5)0.0309 (11)
N30.1087 (2)0.2870 (2)0.4246 (4)0.0239 (8)
C40.0945 (2)0.2044 (3)0.4154 (4)0.0214 (9)
N40.1494 (2)0.1539 (2)0.5065 (4)0.0254 (8)
C70.2333 (2)0.1838 (3)0.5859 (4)0.0263 (10)
C80.3013 (3)0.1837 (2)0.4729 (5)0.0251 (10)
O810.28688 (18)0.16395 (18)0.3365 (3)0.0336 (8)
O820.38064 (17)0.20902 (18)0.5446 (3)0.0307 (7)
C90.4508 (3)0.2097 (3)0.4442 (5)0.0356 (12)
C100.4846 (3)0.1237 (3)0.4187 (6)0.0457 (13)
C50.0225 (2)0.1675 (3)0.3114 (4)0.0223 (10)
N50.0049 (2)0.0859 (2)0.2857 (4)0.0284 (9)
O50.05466 (19)0.03165 (18)0.3646 (3)0.0345 (8)
C60.0312 (2)0.2273 (3)0.2183 (4)0.0225 (10)
O60.09866 (17)0.19484 (17)0.1202 (3)0.0285 (7)
C670.1553 (3)0.2533 (3)0.0206 (5)0.0295 (10)
C610.2196 (2)0.2975 (3)0.1104 (4)0.0248 (10)
C620.2114 (3)0.3827 (3)0.1432 (5)0.0298 (11)
C630.2713 (3)0.4233 (3)0.2247 (5)0.0369 (12)
C640.3403 (3)0.3792 (3)0.2756 (5)0.0411 (13)
C650.3501 (3)0.2950 (3)0.2425 (5)0.0387 (12)
C660.2908 (3)0.2541 (3)0.1583 (5)0.0310 (11)
H20.02310.44890.27720.030*
H27A0.12950.42850.55590.032*
H27B0.10240.51690.47430.032*
H220.27930.38830.56560.032*
H230.41800.40200.48590.040*
H240.43840.48580.27140.039*
H250.31800.55820.13540.039*
H260.17890.54680.21930.037*
H40.13420.10110.51860.030*
H7A0.25350.14710.67700.032*
H7B0.22630.24160.62580.032*
H9A0.50020.24530.49330.043*
H9B0.42780.23480.34100.043*
H10A0.53380.12710.35590.055*
H10B0.43690.08950.36270.055*
H10C0.50530.09770.52090.055*
H67A0.18850.22190.06820.035*
H67B0.11780.29550.02400.035*
H620.16390.41350.10920.036*
H630.26510.48190.24580.044*
H640.38090.40710.33340.049*
H650.39760.26460.27740.046*
H660.29900.19620.13320.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (19)0.029 (2)0.0227 (19)0.0002 (17)0.0032 (14)0.0018 (15)
C20.022 (2)0.030 (3)0.021 (2)0.001 (2)0.0071 (18)0.0003 (19)
N20.023 (2)0.024 (2)0.028 (2)0.0002 (17)0.0008 (15)0.0005 (15)
C270.028 (2)0.027 (3)0.025 (2)0.003 (2)0.0075 (18)0.0038 (18)
C210.027 (2)0.021 (3)0.026 (2)0.0053 (19)0.0028 (18)0.0035 (18)
C220.032 (3)0.027 (3)0.020 (2)0.000 (2)0.0008 (18)0.0007 (18)
C230.023 (2)0.041 (3)0.034 (3)0.002 (2)0.0030 (18)0.003 (2)
C240.026 (3)0.037 (3)0.036 (3)0.003 (2)0.008 (2)0.000 (2)
C250.031 (3)0.032 (3)0.035 (3)0.008 (2)0.008 (2)0.003 (2)
C260.027 (3)0.036 (3)0.029 (3)0.003 (2)0.0022 (18)0.001 (2)
N30.025 (2)0.022 (2)0.0243 (19)0.0016 (16)0.0035 (15)0.0020 (15)
C40.023 (2)0.022 (3)0.019 (2)0.000 (2)0.0056 (17)0.0010 (18)
N40.023 (2)0.025 (2)0.027 (2)0.0027 (16)0.0017 (15)0.0026 (16)
C70.025 (2)0.034 (3)0.020 (2)0.000 (2)0.0005 (17)0.0049 (18)
C80.021 (2)0.023 (3)0.031 (3)0.0004 (19)0.0002 (18)0.0069 (19)
O810.0330 (18)0.044 (2)0.0230 (18)0.0003 (15)0.0016 (12)0.0038 (14)
O820.0253 (17)0.0385 (19)0.0286 (17)0.0002 (14)0.0050 (13)0.0020 (13)
C90.023 (2)0.049 (3)0.036 (3)0.000 (2)0.009 (2)0.002 (2)
C100.030 (3)0.049 (3)0.058 (3)0.008 (2)0.006 (2)0.000 (3)
C50.024 (2)0.024 (3)0.019 (2)0.0011 (19)0.0044 (17)0.0007 (18)
N50.029 (2)0.025 (2)0.032 (2)0.0043 (18)0.0085 (16)0.0009 (17)
O50.0328 (17)0.0261 (19)0.0438 (19)0.0006 (15)0.0026 (14)0.0008 (14)
C60.021 (2)0.029 (3)0.018 (2)0.006 (2)0.0043 (17)0.0049 (18)
O60.0265 (16)0.0294 (18)0.0282 (17)0.0015 (14)0.0016 (12)0.0027 (13)
C670.025 (2)0.042 (3)0.021 (2)0.000 (2)0.0022 (17)0.001 (2)
C610.022 (2)0.033 (3)0.018 (2)0.004 (2)0.0008 (17)0.0025 (19)
C620.030 (3)0.037 (3)0.022 (2)0.003 (2)0.0016 (18)0.003 (2)
C630.042 (3)0.038 (3)0.028 (3)0.009 (2)0.006 (2)0.004 (2)
C640.038 (3)0.059 (4)0.026 (3)0.021 (3)0.002 (2)0.003 (2)
C650.031 (3)0.061 (4)0.024 (3)0.000 (3)0.002 (2)0.002 (2)
C660.029 (3)0.038 (3)0.024 (2)0.003 (2)0.0022 (19)0.001 (2)
Geometric parameters (Å, º) top
N1—C21.376 (5)N4—H40.8800
C2—N31.348 (5)C7—C81.507 (6)
N3—C41.330 (5)C7—H7A0.9900
C4—C51.443 (5)C7—H7B0.9900
C5—C61.427 (6)C8—O811.201 (5)
C6—N11.288 (5)C8—O821.343 (5)
C2—N21.321 (5)O82—C91.456 (5)
C4—N41.334 (5)C9—C101.488 (6)
C5—N51.337 (5)C9—H9A0.9900
N5—O51.280 (4)C9—H9B0.9900
C6—O61.342 (5)C10—H10A0.9800
N2—C271.450 (5)C10—H10B0.9800
N2—H20.8800C10—H10C0.9800
C27—C211.512 (6)O6—C671.462 (5)
C27—H27A0.9900C67—C611.497 (6)
C27—H27B0.9900C67—H67A0.9900
C21—C221.386 (6)C67—H67B0.9900
C21—C261.392 (6)C61—C621.386 (6)
C22—C231.375 (6)C61—C661.392 (6)
C22—H220.9500C62—C631.380 (6)
C23—C241.376 (6)C62—H620.9500
C23—H230.9500C63—C641.381 (6)
C24—C251.383 (6)C63—H630.9500
C24—H240.9500C64—C651.373 (6)
C25—C261.386 (6)C64—H640.9500
C25—H250.9500C65—C661.388 (6)
C26—H260.9500C65—H650.9500
N4—C71.447 (5)C66—H660.9500
C6—N1—C2115.8 (3)O82—C8—C7111.1 (3)
N2—C2—N3118.1 (4)C8—O82—C9114.8 (3)
N2—C2—N1115.0 (4)O82—C9—C10112.0 (4)
N3—C2—N1126.9 (4)O82—C9—H9A109.2
C2—N2—C27123.8 (3)C10—C9—H9A109.2
C2—N2—H2118.1O82—C9—H9B109.2
C27—N2—H2118.1C10—C9—H9B109.2
N2—C27—C21113.4 (3)H9A—C9—H9B107.9
N2—C27—H27A108.9C9—C10—H10A109.5
C21—C27—H27A108.9C9—C10—H10B109.5
N2—C27—H27B108.9H10A—C10—H10B109.5
C21—C27—H27B108.9C9—C10—H10C109.5
H27A—C27—H27B107.7H10A—C10—H10C109.5
C22—C21—C26118.0 (4)H10B—C10—H10C109.5
C22—C21—C27121.3 (4)N5—C5—C6117.8 (4)
C26—C21—C27120.7 (4)N5—C5—C4128.0 (4)
C23—C22—C21120.8 (4)C6—C5—C4114.0 (4)
C23—C22—H22119.6O5—N5—C5118.3 (3)
C21—C22—H22119.6N1—C6—O6120.0 (4)
C22—C23—C24120.7 (4)N1—C6—C5124.6 (4)
C22—C23—H23119.7O6—C6—C5115.3 (4)
C24—C23—H23119.7C6—O6—C67117.7 (3)
C23—C24—C25119.8 (4)O6—C67—C61112.0 (3)
C23—C24—H24120.1O6—C67—H67A109.2
C25—C24—H24120.1C61—C67—H67A109.2
C24—C25—C26119.2 (4)O6—C67—H67B109.2
C24—C25—H25120.4C61—C67—H67B109.2
C26—C25—H25120.4H67A—C67—H67B107.9
C25—C26—C21121.4 (4)C62—C61—C66118.5 (4)
C25—C26—H26119.3C62—C61—C67121.0 (4)
C21—C26—H26119.3C66—C61—C67120.4 (4)
C4—N3—C2115.8 (3)C63—C62—C61120.8 (4)
N3—C4—N4118.4 (4)C63—C62—H62119.6
N3—C4—C5122.8 (4)C61—C62—H62119.6
N4—C4—C5118.8 (4)C62—C63—C64120.2 (5)
C4—N4—C7121.5 (3)C62—C63—H63119.9
C4—N4—H4119.3C64—C63—H63119.9
C7—N4—H4119.3C65—C64—C63119.8 (4)
N4—C7—C8109.7 (3)C65—C64—H64120.1
N4—C7—H7A109.7C63—C64—H64120.1
C8—C7—H7A109.7C64—C65—C66120.2 (4)
N4—C7—H7B109.7C64—C65—H65119.9
C8—C7—H7B109.7C66—C65—H65119.9
H7A—C7—H7B108.2C65—C66—C61120.4 (4)
O81—C8—O82124.1 (4)C65—C66—H66119.8
O81—C8—C7124.9 (4)C61—C66—H66119.8
C6—N1—C2—N2176.0 (3)N4—C7—C8—O82178.2 (3)
C6—N1—C2—N33.3 (6)O81—C8—O82—C91.0 (6)
N3—C2—N2—C273.5 (6)C7—C8—O82—C9179.2 (3)
N1—C2—N2—C27175.8 (3)C8—O82—C9—C1076.9 (4)
C2—N2—C27—C2183.1 (5)N3—C4—C5—N5175.8 (4)
N2—C27—C21—C22113.8 (4)N4—C4—C5—N54.2 (6)
N2—C27—C21—C2667.6 (5)N3—C4—C5—C60.7 (5)
C26—C21—C22—C230.2 (6)N4—C4—C5—C6179.3 (3)
C27—C21—C22—C23178.5 (4)C6—C5—N5—O5177.5 (3)
C21—C22—C23—C240.7 (6)C4—C5—N5—O52.6 (6)
C22—C23—C24—C250.3 (7)C2—N1—C6—O6178.3 (3)
C23—C24—C25—C260.5 (6)C2—N1—C6—C51.5 (5)
C24—C25—C26—C210.9 (6)N5—C5—C6—N1175.9 (3)
C22—C21—C26—C250.5 (6)C4—C5—C6—N10.3 (6)
C27—C21—C26—C25179.3 (4)N5—C5—C6—O64.3 (5)
N2—C2—N3—C4176.4 (3)C4—C5—C6—O6179.9 (3)
N1—C2—N3—C42.8 (6)N1—C6—O6—C670.9 (5)
C2—N3—C4—N4179.3 (3)O6—C67—C61—C6671.6 (5)
C2—N3—C4—C50.7 (5)C66—C61—C62—C631.5 (6)
N3—C4—N4—C714.2 (5)C67—C61—C62—C63179.3 (4)
C5—C4—N4—C7165.8 (3)C61—C62—C63—C640.4 (6)
C4—N4—C7—C881.4 (5)C62—C63—C64—C651.2 (6)
N4—C7—C8—O811.9 (6)C63—C64—C65—C660.1 (6)
C5—C6—O6—C67179.3 (3)C64—C65—C66—C611.8 (6)
C6—O6—C67—C6177.5 (4)C62—C61—C66—C652.5 (6)
O6—C67—C61—C62110.6 (4)C67—C61—C66—C65179.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O50.882.002.621 (4)126
N2—H2···O5i0.882.062.933 (4)175
N2—H2···N5i0.882.273.004 (5)141
C62—H62···O5i0.952.503.369 (5)152
C7—H7B···O81ii0.992.433.265 (5)141
C22—H22···O81ii0.952.453.364 (4)161
C7—H7A···Cg2ii0.992.473.439 (4)165
C67—H67A···Cg3iii0.992.523.499 (4)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H23N5O4
Mr421.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)15.2278 (8), 15.8992 (5), 8.5558 (3)
β (°) 97.5860 (11)
V3)2053.31 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.05 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24714, 3619, 1861
Rint0.200
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.176, 1.04
No. of reflections3619
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—C21.376 (5)C2—N21.321 (5)
C2—N31.348 (5)C4—N41.334 (5)
N3—C41.330 (5)C5—N51.337 (5)
C4—C51.443 (5)N5—O51.280 (4)
C5—C61.427 (6)C6—O61.342 (5)
C6—N11.288 (5)
N1—C2—N2—C27175.8 (3)C5—C6—O6—C67179.3 (3)
C2—N2—C27—C2183.1 (5)C6—O6—C67—C6177.5 (4)
N2—C27—C21—C22113.8 (4)O6—C67—C61—C62110.6 (4)
C5—C4—N4—C7165.8 (3)N4—C7—C8—O82178.2 (3)
C4—N4—C7—C881.4 (5)C7—C8—O82—C9179.2 (3)
N4—C7—C8—O811.9 (6)C8—O82—C9—C1076.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O50.882.002.621 (4)126
N2—H2···O5i0.882.062.933 (4)175
N2—H2···N5i0.882.273.004 (5)141
C62—H62···O5i0.952.503.369 (5)152
C7—H7B···O81ii0.992.433.265 (5)141
C22—H22···O81ii0.952.453.364 (4)161
C7—H7A···Cg2ii0.992.473.439 (4)165
C67—H67A···Cg3iii0.992.523.499 (4)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds