Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Mn(C12H8N2)(H2O)4]SO4·2H2O, was obtained unexpectedly as a by-product from the reaction of sodium maleate, 1,10-phenanthroline (phen) and manganese sulfate tetrahydrate. The Mn atom is coordinated by the two N atoms of the phen ligand and four water O atoms in a highly distorted octahedral geometry, with Mn—O distances in the range 2.155 (2)–2.203 (2) Å and Mn—N distances of 2.254 (2) and 2.272 (3) Å. Extensive hydrogen-bonding interactions involving the water mol­ecules and sulfate anions, and stacking interactions involving the phen rings, are observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009320/na1575sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009320/na1575Isup2.hkl
Contains datablock I

CCDC reference: 192950

Comment top

It has been well established that manganese is one of trace elements in biosystems and plays an important role in the active sites of various redox-based enzymes (Weighardt, 1989). In addition to the best known oxygen-evolving complex (OEC), which is believed to contain a tetranuclear manganese cluster catalysing the oxidation of water to yield dioxygen during the photosynthetic process (Debus, 1992), there are three manganese enzymes containing a mononuclear manganese site, viz. superoxide dismutase, peroxidase and dioxygenase, which participate in redox changes in biological systems (Law et al., 1999). Carboxylato-bridged complexes containing 1,10-phenanthroline (phen) or bipyridine (bpy) are often employed to mimic the function and structure of these active sites built on the knowledge that the Mn centers in these enzymes are predominately coordinated by N,O-donors from available amino acid side chains (Pecoraro et al., 1986). With the initial intention of preparing a maleate-bridged polymanganese complex, we obtained the title compound, (I), unexpectedly. Compound (I) represents a new example of mononuclear manganese, with only one phen ligand and with sulfate as counter-ion, though a similar complex, [Mn(C12H8N2)(H2O)3]SO4 has been reported (Zheng et al., 2000).

The title compound consists of a discrete non-centrosymmetric [Mn(phen)(H2O)4]2+ unit, a sulfate anion and two solvate water molecules. The Mn atom displays a distorted octahedral environment (Table 1). The two phen N atoms and two water O atoms (O1 and O3) define one octahedral equatorial plane, with a maximum deviation of 0.181 (4) Å for atom N1, with the Mn atom lying 0.015 (5) Å out of the plane. The O atoms of the remaining two water molecules complete the octahedron through coordination in the axial positions. The phen rings are nearly planar, with a mean atomic deviation of 0.022 (1) Å. A small dihedral angle of 9.40 (1)° was found between phen and the above-mentioned equatorial planes, indicating that the phen plane can be extended to involve atoms O1 and O3. The mean Mn—N bond length [2.263 (4) Å] is in agreement with that reported in other Mn–phen complexes, e.g. [Mn(phen)2Cl(H2O)]+ [2.270 (1) Å; Ma et al., 2001], but longer than that found in the nickel analogue [2.069 (2) Å; Cherni et al., 1999], due to the larger radius of the MnII ion. The angle that is most distorted from the ideal value of 180° is O3—Mn—N2 of 161.8 (1)°, and the phen N1—Mn—N2 chelate angle of 73.3 (1)° is expected for manganese complexes (Drew et al., 1989; McCann et al., 1997; Ramalakshmi et al., 1999; Wang et al., 2000; Deng et al., 2000). The bond distances and angles in the phen ligand are consistent with those in the free base (Nishigaki et al., 1978), and the S—O bond distances [1.464 (2)–1.478 (2) Å] and O—S—O angles [109.0 (1)–109.8 (1)°] approximate to the respective values of an ideal tetrahedral S-atom environment.

As shown in Fig. 2, extensive intermolecular hydrogen bonds link [Mn(phen)(H2O)4]2+ cations to uncoordinated water molecules and sulfate anions (Table 2), creating a three-dimensional suspended ladder-like framework. Additionally, there is a ππ-stacking interaction between phen ligands, which are arranged in an alternate head-tail mode, resulting in a ring separation of 3.561 (1) Å, which is close to the sum of the van der Waals radii of two C atoms (Bondi, 1964). The two types of interaction produce the special solid-state crystal structure seen in (I) and promote the stabilization of the structure.

Experimental top

To an aqueous ethanol solution (30 ml, v/v, ca 1:1) containing MnSO4·4H2O (2 mmol) and sodium maleate (2 mmol), 1,10-phenanthroline (4 mmol) was added slowly with continuous stirring. The resulting suspension was refluxed for 8 h and then filtered. The red filtrate was maintained at room temperature for 25 d, after which time colorless crystals of the title compound suitable for X-ray diffraction analysis were obtained.

Refinement top

H atoms bonded to C atoms were placed in calculated positions, with C—H distances of 0.93 Å, and treated as riding atoms. Water H atoms associated were located from difference maps and refined anisotropically (see Table 2 for O—H distances).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Displacement-ellipsoid drawing of the title compound with the atomic labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the complex hydrogen-bonding and ππ-stacking interactions. Hydrogen bonds are depicted by broken lines.
Tetraaqua(1,10-phenanthroline-κ2N,N')manganese(II) sulfate dihydrate top
Crystal data top
[Mn(C12H8N2)(H2O)4]SO4·2H2ODx = 1.608 Mg m3
Mr = 439.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5079 reflections
a = 8.8713 (2) Åθ = 1.8–25.1°
b = 18.5116 (1) ŵ = 0.90 mm1
c = 22.1042 (5) ÅT = 293 K
V = 3630.00 (12) Å3Prism, colorless
Z = 80.57 × 0.44 × 0.37 mm
F(000) = 1816
Data collection top
Siemens CCD area-detector
diffractometer
3190 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.526, Tmax = 0.718k = 2220
11327 measured reflectionsl = 1926
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0421P)2 + 1.5395P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3190 reflectionsΔρmax = 0.26 e Å3
284 parametersΔρmin = 0.30 e Å3
11 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (3)
Crystal data top
[Mn(C12H8N2)(H2O)4]SO4·2H2OV = 3630.00 (12) Å3
Mr = 439.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.8713 (2) ŵ = 0.90 mm1
b = 18.5116 (1) ÅT = 293 K
c = 22.1042 (5) Å0.57 × 0.44 × 0.37 mm
Data collection top
Siemens CCD area-detector
diffractometer
3190 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2293 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.718Rint = 0.045
11327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03811 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
3190 reflectionsΔρmin = 0.30 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.36570 (5)0.08805 (2)0.41472 (2)0.03364 (17)
S0.08896 (9)0.15599 (4)0.53212 (4)0.0362 (2)
O10.2360 (3)0.03679 (12)0.48810 (11)0.0446 (6)
H1B0.169 (3)0.0592 (16)0.5080 (14)0.049 (11)*
H1C0.211 (4)0.010 (2)0.4900 (16)0.065 (12)*
O20.5138 (3)0.00549 (12)0.42446 (11)0.0434 (6)
H2B0.580 (3)0.0148 (18)0.4495 (12)0.045 (11)*
H2C0.488 (5)0.0445 (14)0.4087 (17)0.084 (15)*
O30.5251 (3)0.14582 (12)0.47018 (12)0.0485 (6)
H3B0.510 (4)0.1880 (12)0.4819 (16)0.065 (12)*
H3C0.617 (2)0.1366 (18)0.4763 (16)0.053 (12)*
O40.2152 (3)0.17896 (11)0.42469 (11)0.0418 (6)
H4A0.255 (5)0.2189 (14)0.4215 (18)0.083 (15)*
H4B0.138 (3)0.186 (2)0.4457 (15)0.064 (13)*
O50.1870 (3)0.10564 (11)0.49917 (11)0.0507 (6)
O60.0406 (3)0.21407 (10)0.49052 (10)0.0477 (6)
O70.0444 (2)0.11723 (11)0.55429 (11)0.0489 (6)
O80.1713 (3)0.18740 (11)0.58315 (10)0.0462 (6)
O90.2042 (4)0.29638 (17)0.59680 (14)0.0622 (7)
H9B0.181 (5)0.266 (2)0.5709 (17)0.098 (19)*
H9C0.276 (4)0.322 (2)0.585 (2)0.11 (2)*
O100.4462 (3)0.13067 (13)0.37012 (12)0.0526 (7)
H10B0.364 (3)0.1478 (18)0.3807 (17)0.058 (12)*
H10C0.517 (3)0.1578 (17)0.3807 (17)0.064 (13)*
N10.4532 (3)0.14220 (13)0.32942 (12)0.0395 (6)
N20.2607 (3)0.02928 (13)0.33596 (11)0.0393 (6)
C10.5427 (4)0.19903 (18)0.32636 (17)0.0527 (9)
H1A0.57660.21920.36240.063*
C20.5894 (5)0.2305 (2)0.2722 (2)0.0665 (11)
H2A0.65240.27060.27230.080*
C30.5416 (5)0.2017 (2)0.21981 (19)0.0653 (12)
H3A0.57170.22220.18340.078*
C40.4469 (4)0.1412 (2)0.21946 (16)0.0544 (10)
C50.3928 (5)0.1063 (3)0.16657 (18)0.0749 (13)
H5A0.42020.12430.12880.090*
C60.3043 (5)0.0490 (3)0.16963 (18)0.0757 (13)
H6A0.27280.02710.13390.091*
C70.2553 (4)0.0194 (2)0.22651 (17)0.0560 (10)
C80.1618 (5)0.0402 (2)0.2323 (2)0.0747 (14)
H8A0.12900.06440.19780.090*
C90.1174 (5)0.0639 (2)0.2878 (2)0.0704 (13)
H9A0.05420.10370.29170.085*
C100.1696 (4)0.02653 (17)0.33916 (17)0.0529 (10)
H10A0.13810.04210.37710.063*
C110.3055 (4)0.05242 (17)0.28009 (14)0.0412 (8)
C120.4046 (4)0.11317 (17)0.27664 (14)0.0397 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0394 (3)0.0282 (2)0.0333 (3)0.0010 (2)0.0008 (2)0.00077 (19)
S0.0338 (5)0.0247 (4)0.0502 (5)0.0001 (3)0.0057 (4)0.0004 (3)
O10.0486 (16)0.0272 (12)0.0579 (15)0.0001 (11)0.0168 (12)0.0019 (11)
O20.0438 (16)0.0355 (13)0.0507 (16)0.0067 (11)0.0067 (12)0.0005 (11)
O30.0449 (16)0.0363 (13)0.0643 (16)0.0044 (12)0.0165 (13)0.0145 (12)
O40.0381 (15)0.0295 (12)0.0578 (15)0.0012 (11)0.0081 (12)0.0005 (11)
O50.0485 (15)0.0319 (11)0.0716 (17)0.0051 (10)0.0082 (13)0.0050 (11)
O60.0542 (15)0.0315 (11)0.0574 (14)0.0043 (11)0.0150 (12)0.0018 (10)
O70.0370 (14)0.0446 (12)0.0651 (16)0.0083 (11)0.0001 (12)0.0003 (11)
O80.0491 (15)0.0337 (11)0.0558 (14)0.0064 (10)0.0200 (12)0.0001 (10)
O90.0520 (19)0.0641 (18)0.070 (2)0.0025 (15)0.0018 (16)0.0003 (16)
O100.0516 (19)0.0411 (14)0.0651 (17)0.0010 (14)0.0095 (15)0.0047 (12)
N10.0389 (17)0.0377 (14)0.0419 (15)0.0013 (12)0.0030 (13)0.0022 (12)
N20.0408 (17)0.0333 (13)0.0436 (16)0.0029 (12)0.0068 (13)0.0017 (12)
C10.052 (2)0.0440 (19)0.062 (2)0.0037 (18)0.0074 (19)0.0029 (18)
C20.065 (3)0.058 (2)0.077 (3)0.002 (2)0.019 (2)0.019 (2)
C30.058 (3)0.075 (3)0.063 (3)0.014 (2)0.021 (2)0.029 (2)
C40.048 (2)0.073 (3)0.042 (2)0.019 (2)0.0055 (18)0.0073 (19)
C50.069 (3)0.117 (4)0.039 (2)0.024 (3)0.002 (2)0.006 (2)
C60.076 (3)0.113 (4)0.039 (2)0.023 (3)0.016 (2)0.014 (2)
C70.047 (2)0.067 (2)0.054 (2)0.014 (2)0.0168 (19)0.013 (2)
C80.072 (3)0.081 (3)0.071 (3)0.014 (3)0.031 (2)0.032 (2)
C90.064 (3)0.050 (2)0.098 (4)0.011 (2)0.029 (3)0.013 (2)
C100.054 (2)0.0397 (18)0.065 (3)0.0021 (18)0.0127 (19)0.0000 (17)
C110.039 (2)0.0482 (18)0.0364 (18)0.0144 (16)0.0076 (15)0.0089 (15)
C120.036 (2)0.0463 (18)0.0371 (18)0.0121 (16)0.0000 (15)0.0022 (15)
Geometric parameters (Å, º) top
Mn—O32.155 (2)O10—O9vi2.757 (4)
Mn—O42.159 (2)O10—O8i2.849 (3)
Mn—O22.184 (2)O10—H10B0.830 (18)
Mn—O12.203 (2)O10—H10C0.839 (18)
Mn—N22.254 (2)N1—C11.320 (4)
Mn—N12.272 (3)N1—C121.355 (4)
S—O81.464 (2)N2—C101.313 (4)
S—O71.468 (2)N2—C111.366 (4)
S—O51.468 (2)C1—C21.394 (5)
S—O61.478 (2)C1—H1A0.9300
O1—O5i2.687 (3)C2—C31.343 (6)
O1—Si3.826 (2)C2—H2A0.9300
O1—H1B0.846 (18)C3—C41.400 (5)
O1—H1C0.89 (4)C3—H3A0.9300
O2—O1ii3.000 (4)C4—C121.417 (5)
O2—H2B0.825 (18)C4—C51.419 (6)
O2—H2C0.835 (19)C5—C61.322 (6)
O3—O5iii2.736 (3)C5—H5A0.9300
O3—O6iv2.797 (3)C6—C71.438 (6)
O3—H3B0.832 (18)C6—H6A0.9300
O3—H3C0.842 (18)C7—C81.387 (6)
O4—O8iv2.676 (3)C7—C111.405 (4)
O4—Siv3.642 (2)C8—C91.362 (6)
O4—H4A0.823 (19)C8—H8A0.9300
O4—H4B0.835 (18)C9—C101.407 (5)
O9—O6i2.855 (4)C9—H9A0.9300
O9—O7v2.900 (4)C10—H10A0.9300
O9—H9B0.831 (19)C11—C121.429 (5)
O9—H9C0.831 (19)
O3—Mn—O487.74 (9)H4A—O4—H4B105 (4)
O3—Mn—O286.73 (10)O6i—O9—O7v117.77 (12)
O4—Mn—O2168.42 (9)O6i—O9—H9B17 (3)
O3—Mn—O197.90 (10)O7v—O9—H9B110 (3)
O4—Mn—O186.43 (9)O6i—O9—H9C119 (3)
O2—Mn—O184.26 (9)O7v—O9—H9C1 (4)
O3—Mn—N2161.76 (10)H9B—O9—H9C111 (5)
O4—Mn—N2101.51 (9)O9vi—O10—O8i115.73 (12)
O2—Mn—N286.68 (9)O9vi—O10—H10B118 (3)
O1—Mn—N298.33 (9)O8i—O10—H10B5 (3)
O3—Mn—N191.67 (10)O9vi—O10—H10C8 (3)
O4—Mn—N187.24 (9)O8i—O10—H10C109 (3)
O2—Mn—N1103.08 (9)H10B—O10—H10C111 (4)
O1—Mn—N1168.30 (10)C1—N1—C12117.6 (3)
N2—Mn—N173.33 (10)C1—N1—Mn126.8 (2)
O8—S—O7109.81 (14)C12—N1—Mn115.5 (2)
O8—S—O5109.78 (14)C10—N2—C11118.3 (3)
O7—S—O5109.45 (13)C10—N2—Mn126.3 (2)
O8—S—O6109.57 (12)C11—N2—Mn115.2 (2)
O7—S—O6109.24 (14)N1—C1—C2123.8 (4)
O5—S—O6108.97 (14)N1—C1—H1A118.1
Mn—O1—O5i125.74 (11)C2—C1—H1A118.1
Mn—O1—Si119.59 (9)C3—C2—C1118.7 (4)
O5i—O1—Si16.62 (6)C3—C2—H2A120.6
Mn—O1—H1B123 (2)C1—C2—H2A120.6
O5i—O1—H1B108 (2)C2—C3—C4120.8 (3)
Si—O1—H1B106 (2)C2—C3—H3A119.6
Mn—O1—H1C126 (2)C4—C3—H3A119.6
O5i—O1—H1C6 (2)C3—C4—C12116.6 (3)
Si—O1—H1C11 (2)C3—C4—C5124.9 (4)
H1B—O1—H1C106 (3)C12—C4—C5118.6 (4)
Mn—O2—O1ii131.43 (11)C6—C5—C4121.6 (4)
Mn—O2—H2B131 (2)C6—C5—H5A119.2
O1ii—O2—H2B2 (2)C4—C5—H5A119.2
Mn—O2—H2C119 (3)C5—C6—C7122.0 (4)
O1ii—O2—H2C108 (3)C5—C6—H6A119.0
H2B—O2—H2C107 (4)C7—C6—H6A119.0
Mn—O3—O5iii127.63 (11)C8—C7—C11117.3 (4)
Mn—O3—O6iv120.01 (12)C8—C7—C6124.3 (4)
O5iii—O3—O6iv111.96 (10)C11—C7—C6118.4 (4)
Mn—O3—H3B123 (3)C9—C8—C7120.8 (4)
O5iii—O3—H3B109 (3)C9—C8—H8A119.6
O6iv—O3—H3B3 (3)C7—C8—H8A119.6
Mn—O3—H3C129 (2)C8—C9—C10118.3 (4)
O5iii—O3—H3C6 (2)C8—C9—H9A120.8
O6iv—O3—H3C110 (2)C10—C9—H9A120.8
H3B—O3—H3C107 (4)N2—C10—C9123.1 (4)
Mn—O4—O8iv118.78 (11)N2—C10—H10A118.5
Mn—O4—Siv112.70 (9)C9—C10—H10A118.5
O8iv—O4—Siv20.31 (5)N2—C11—C7122.2 (3)
Mn—O4—H4A115 (3)N2—C11—C12118.3 (3)
O8iv—O4—H4A4 (3)C7—C11—C12119.5 (3)
Siv—O4—H4A21 (3)N1—C12—C4122.6 (3)
Mn—O4—H4B133 (3)N1—C12—C11117.5 (3)
O8iv—O4—H4B101 (3)C4—C12—C11119.9 (3)
Siv—O4—H4B96 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O70.85 (3)1.85 (3)2.692 (3)172 (3)
O2—H2C···O100.83 (3)1.85 (3)2.678 (3)175 (3)
O4—H4B···O60.84 (3)1.94 (3)2.773 (4)173 (3)
O1—H1C···O5i0.90 (4)1.80 (4)2.687 (3)171 (4)
O2—H2B···O1ii0.82 (3)2.18 (3)3.000 (4)177 (3)
O3—H3C···O5iii0.84 (2)1.90 (2)2.736 (4)171 (2)
O3—H3B···O6iv0.83 (2)1.96 (2)2.797 (3)176 (2)
O4—H4A···O8iv0.82 (3)1.86 (3)2.677 (3)175 (3)
O9—H9B···O6i0.83 (4)2.08 (4)2.855 (4)156 (4)
O9—H9C···O7v0.84 (4)2.06 (4)2.901 (4)178 (4)
O10—H10B···O8i0.83 (3)2.02 (3)2.849 (4)173 (3)
O10—H10C···O9vi0.84 (3)1.93 (3)2.756 (4)169 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C12H8N2)(H2O)4]SO4·2H2O
Mr439.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.8713 (2), 18.5116 (1), 22.1042 (5)
V3)3630.00 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.57 × 0.44 × 0.37
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.526, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
11327, 3190, 2293
Rint0.045
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.04
No. of reflections3190
No. of parameters284
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Mn—O32.155 (2)Mn—O12.203 (2)
Mn—O42.159 (2)Mn—N22.254 (2)
Mn—O22.184 (2)Mn—N12.272 (3)
O3—Mn—O487.74 (9)O2—Mn—N286.68 (9)
O3—Mn—O286.73 (10)O1—Mn—N298.33 (9)
O4—Mn—O2168.42 (9)O3—Mn—N191.67 (10)
O3—Mn—O197.90 (10)O4—Mn—N187.24 (9)
O4—Mn—O186.43 (9)O2—Mn—N1103.08 (9)
O2—Mn—O184.26 (9)O1—Mn—N1168.30 (10)
O3—Mn—N2161.76 (10)N2—Mn—N173.33 (10)
O4—Mn—N2101.51 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O70.85 (3)1.85 (3)2.692 (3)172 (3)
O2—H2C···O100.83 (3)1.85 (3)2.678 (3)175 (3)
O4—H4B···O60.84 (3)1.94 (3)2.773 (4)173 (3)
O1—H1C···O5i0.90 (4)1.80 (4)2.687 (3)171 (4)
O2—H2B···O1ii0.82 (3)2.18 (3)3.000 (4)177 (3)
O3—H3C···O5iii0.84 (2)1.90 (2)2.736 (4)171 (2)
O3—H3B···O6iv0.83 (2)1.96 (2)2.797 (3)176 (2)
O4—H4A···O8iv0.82 (3)1.86 (3)2.677 (3)175 (3)
O9—H9B···O6i0.83 (4)2.08 (4)2.855 (4)156 (4)
O9—H9C···O7v0.84 (4)2.06 (4)2.901 (4)178 (4)
O10—H10B···O8i0.83 (3)2.02 (3)2.849 (4)173 (3)
O10—H10C···O9vi0.84 (3)1.93 (3)2.756 (4)169 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds