Download citation
Download citation
link to html
The six-membered ring of the norbornene moiety in the title compound, C18H18N4O4, is in a slightly distorted boat conformation, and the two five-membered rings within it adopt envelope conformations. The structure is stabilized by inter- and intramolecular N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010200968X/na1574sup1.cif
Contains datablocks III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010200968X/na1574IIIsup2.hkl
Contains datablock III

CCDC reference: 192993

Comment top

It is known that norbornene derivatives, besides being biologically active by themselves, are used in the synthesis of other compounds possessing psychotropic, anticonvulsant and antimicrobial activities (Minoru, Morio & Hiroyuki, 1974; Minoru, Morio, Hiroyuki & Yasuo, 1974; Tasihiko & Syundzi, 1971). Norbornene derivatives are also used as efficient turn elements in the design of simple models of two-stranded parallel β sheets and hairpin cyclic peptides (Ranganathan et al., 1998, 2000). In view of these features associated with the norbornene moiety, the present structure determination of the title compound, (III), was undertaken. \sch

Another reason for undertaking a crystallographic study of (III) was to establish the configuration of the acetaldehyde chain in the rearrangement product, (II) (Scheme), since this was difficult to define from the 1H NMR spectrum. In all the available literature, the γ C atom of the vinyl ether is disubstituted, so that one can easily find out whether the product of the rearrangement of the allyl vinyl ether moiety is due to a formal 1,3 or 3,3 shift of its structure. But in the case of (II) (Palani et al., 1998), since the γ C atom is not disubstituted and the starting material was racemic, it is difficult to find out whether the product is due to a 3,3 or a 1,3 shift. In order to estabilish the configuration of the acetaldehyde chain, the aldehyde was converted into its 2,4-dinitrophenylhydrazone derivative, the title compound, (III) (Fig. 1). The present X-ray crystal structure analysis showed that the acetaldehyde chain is in the α position.

The bond lengths and angles in (III) agree with the normal values (Allen et al., 1987). In particular, the bond lengths and angles of the norbornene moiety agree with the values in the literature (Milovac et al., 2001; Beddoes et al., 1993; Dvorkin et al., 1987). The six-membered ring, C1/C2/C6—C9, is in a slightly distorted boat conformation with two local pseudo mirrors, one along the mid-points of the C2—C6 and C8—C9 bonds, and the other along the C1—C7 direction. The ring puckering (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) for this ring, calculated using PARST97 (Nardelli, 1995), are QT = 0.951 (4) Å, ΔCs(C1) = 0.016 (2)° and ΔCs(C6—C2) = 0.008 (2)°. The C1/C2/C6/C7/C10 and C1/C9/C8/C7/C10 rings are both in an envelope conformation, with a pseudo mirror running through atom C10. The total puckering amplitute and asymmetry parameter for the C1/C2/C6/C7/C10 ring are q2 = 0.602 (4) Å and ΔCs(C10) = 0.012 (2)°, respectively, and the corresponding values for the C1/C9/C8/C7/C10 ring are q2 = 0.554 (4) Å and ΔCs(C10) = 0.008 (2)°, respectively.

The five-membered ring C is planar. The two nitro groups are nearly coplanar with the phenyl, as shown by the C15—C16—N21—O22 [3.9 (4)°] and C17—C18—N24—O25 [2.9 (5)°] torsion angles. The angles between the plane of the three-atom bridge, C1/C10/C7, and the four-atom planes (C1/C9/C8/C7 and C1/C2/C6/C7) of the six-membered ring are 53.6 (2) and 58.1 (2)°, respectively. The dihedral angle between the norbornene ring and ring C is 30.2 (1)°. The C11—C12—N13—N14, C12—N13—N14—C15 and N13—N14—C15—C16 torsion angles are all (-)antiperiplanar [-178.8 (3)°, -178.9 (3)° and -178.5 (3)°, respectively]. The torsion angles C3—C11—C12—N13 and C2—C3—C11—C12, which define the orientation of the tricycle substituent with respect to the central chain, are -111.7 (4) and 64.7 (4)°, respectively.

The packing of the molecules of (III) viewed down the a axis is shown in Fig. 2 and details of the hydrogen bonds are given in Table 1. The weak N14—H14···O22i interaction joins the molecules into centrosymmetric dimers, causing an O22···O22i contact of 2.69 (4) Å, a little shorter than the sum of the van der Waals radii (2.80 Å; Pauling, 1960).

Experimental top

Vinyl ether, (I) (348 mg, 0.2 mmol), was treated with 3M LPDE Please define (10 ml) and stirred at room temperature for 3 h. The reaction mixture was quenched with iced water and extracted with dichloromethane (3 × 10 ml). The combined organic extracts were washed with water, dried over anhydrous sodium sulfate and purified using flash column chromatography, to yield 0.25 g of the aldehyde. A sample of the aldehyde, (II), was treated with 2,4-dinitrophenylhydrazine in methanol, whereby the hydrazine derivative, (III), precipitated out. Crystals of (III) suitable for X-ray diffraction studies were grown by slow evaporation from ethyl acetate-hexane (2:1) solution. Spectroscopic analysis: IR (pure sample, cm-1): 2720 (C—H aldehydic), 1710 (CO); 1H NMR (400 MHz, C6D6, δ, p.p.m.): 9.1 (t, J = 1.46 Hz, 1H), 5.7 (dd, J = 5.87 and 2.93 Hz, 1H), 5.65 (dd, J = 5.87 and 2.93 Hz, 1H), 5.15 (dt, J = 5.85 and 2.92 Hz, 1H), 5.1 (dt, J = 585 and 2.93 Hz, 1H), 2.3 (m, 2H), 2.13 (m, 2H), 1.60 (m, 2H), 1.3 (m, 2H), 1.2–1.0 (m, 1H); 13C NMR (100.5 MHz, C6D6, δ, p.p.m.): 200.43 (d), 137.97 (d), 137.72 (d), 136.53 (d), 133.60 (d), 54.53 (d), 51.03 (t), 50.41 (d), 48.20 (d), 46.11 (d), 44.36 (d), 42.62 (t).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, refined using a riding model, and given an isotropic displacement parameter equal to 1.2 times the equivalent isotropic parameter of the parent C—H groups.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 SDP (Frenz, 1978); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (III) with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (III), viewed down the a axis, showing the N—H···O hydrogen bonds.
2-(exo-Tricyclo[5.2.1.02,6]deca-4,8-dien-3-endo-yl)acetaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C18H18N4O4F(000) = 744
Mr = 354.36Dx = 1.363 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 6.412 (1) ÅCell parameters from 25 reflections
b = 14.569 (2) Åθ = 14–30°
c = 19.144 (3) ŵ = 0.82 mm1
β = 105.02 (1)°T = 293 K
V = 1727.4 (4) Å3Needle, yellow
Z = 40.30 × 0.25 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1973 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 69.9°, θmin = 3.9°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.880, Tmax = 0.899l = 723
3300 measured reflections3 standard reflections every 120 min
3206 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.118P)2 + 0.5657P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3306 reflectionsΔρmax = 0.36 e Å3
236 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (8)
Crystal data top
C18H18N4O4V = 1727.4 (4) Å3
Mr = 354.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.412 (1) ŵ = 0.82 mm1
b = 14.569 (2) ÅT = 293 K
c = 19.144 (3) Å0.30 × 0.25 × 0.13 mm
β = 105.02 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1973 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.880, Tmax = 0.8993 standard reflections every 120 min
3300 measured reflections intensity decay: <1%
3206 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
3306 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6104 (6)0.4045 (2)0.80733 (19)0.0669 (9)
H10.49290.37680.77010.080*
C20.6054 (5)0.5101 (2)0.81235 (15)0.0521 (8)
H20.66440.53780.77490.063*
C30.3893 (6)0.5550 (2)0.81260 (16)0.0593 (8)
H30.27640.50790.80320.071*
C40.4250 (7)0.5889 (3)0.88937 (19)0.0729 (10)
H40.31750.61680.90650.087*
C50.6173 (8)0.5757 (3)0.92880 (19)0.0753 (11)
H50.66300.59410.97690.090*
C60.7626 (6)0.5273 (2)0.88977 (18)0.0619 (9)
H60.88800.56460.88760.074*
C70.8262 (6)0.4296 (2)0.91670 (18)0.0620 (9)
H70.88800.42280.96890.074*
C80.9605 (7)0.3925 (3)0.8689 (2)0.0775 (11)
H81.10840.38150.88300.093*
C90.8331 (7)0.3787 (3)0.8044 (2)0.0728 (10)
H90.87370.35680.76420.087*
C100.6200 (6)0.3770 (2)0.8851 (2)0.0689 (10)
H10A0.49840.39990.90140.083*
H10B0.63600.31140.89320.083*
C110.3191 (6)0.6332 (3)0.75893 (17)0.0676 (10)
H11A0.19020.66120.76710.081*
H11B0.43170.67950.76830.081*
C120.2736 (6)0.6049 (2)0.68187 (16)0.0600 (8)
H120.15490.56800.66170.072*
N130.3959 (4)0.63098 (18)0.64402 (13)0.0557 (7)
N140.3403 (4)0.60320 (17)0.57229 (13)0.0533 (6)
H140.22640.57070.55540.064*
C150.4681 (5)0.62800 (19)0.52941 (16)0.0489 (7)
C160.4255 (5)0.60559 (19)0.45516 (15)0.0463 (7)
C170.5593 (5)0.6339 (2)0.41305 (18)0.0542 (8)
H170.52650.61950.36410.065*
C180.7404 (5)0.6834 (2)0.44444 (19)0.0569 (8)
C190.7918 (5)0.7056 (2)0.5171 (2)0.0622 (9)
H190.91630.73900.53750.075*
C200.6591 (5)0.6784 (2)0.55892 (18)0.0573 (8)
H200.69550.69340.60780.069*
N210.2393 (4)0.55250 (18)0.41859 (13)0.0521 (6)
O220.1074 (4)0.52992 (16)0.45252 (11)0.0609 (6)
O230.2178 (4)0.52949 (19)0.35571 (12)0.0768 (8)
N240.8798 (5)0.7136 (2)0.3998 (2)0.0744 (9)
O250.8277 (5)0.6973 (3)0.33548 (19)0.1089 (11)
O261.0456 (5)0.75424 (19)0.42982 (18)0.0915 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (2)0.060 (2)0.064 (2)0.0031 (17)0.0114 (17)0.0136 (16)
C20.066 (2)0.0511 (17)0.0388 (14)0.0007 (14)0.0125 (13)0.0024 (12)
C30.063 (2)0.0632 (19)0.0512 (17)0.0058 (16)0.0139 (15)0.0014 (15)
C40.084 (3)0.081 (3)0.060 (2)0.013 (2)0.030 (2)0.0063 (18)
C50.113 (3)0.061 (2)0.0479 (18)0.002 (2)0.013 (2)0.0080 (15)
C60.065 (2)0.0561 (19)0.0575 (18)0.0121 (16)0.0042 (15)0.0021 (15)
C70.061 (2)0.067 (2)0.0526 (17)0.0045 (17)0.0065 (15)0.0127 (15)
C80.070 (2)0.076 (2)0.088 (3)0.015 (2)0.023 (2)0.027 (2)
C90.082 (3)0.065 (2)0.077 (2)0.0220 (19)0.030 (2)0.0078 (18)
C100.073 (2)0.0535 (19)0.085 (2)0.0070 (17)0.0287 (19)0.0051 (18)
C110.082 (3)0.065 (2)0.0563 (19)0.0165 (18)0.0192 (17)0.0021 (16)
C120.063 (2)0.061 (2)0.0514 (17)0.0072 (16)0.0075 (15)0.0077 (15)
N130.0627 (17)0.0537 (15)0.0486 (14)0.0048 (12)0.0108 (12)0.0004 (11)
N140.0559 (16)0.0541 (15)0.0485 (13)0.0003 (12)0.0111 (11)0.0005 (11)
C150.0494 (17)0.0391 (15)0.0570 (17)0.0062 (12)0.0120 (13)0.0039 (12)
C160.0442 (16)0.0408 (15)0.0531 (16)0.0007 (12)0.0110 (13)0.0020 (12)
C170.0498 (18)0.0493 (16)0.0653 (19)0.0040 (14)0.0184 (15)0.0037 (14)
C180.0505 (19)0.0454 (16)0.080 (2)0.0013 (13)0.0265 (16)0.0033 (15)
C190.0499 (19)0.0461 (17)0.089 (2)0.0030 (14)0.0158 (17)0.0051 (16)
C200.0563 (19)0.0469 (16)0.0648 (19)0.0013 (14)0.0086 (15)0.0061 (14)
N210.0500 (15)0.0536 (15)0.0516 (14)0.0024 (11)0.0110 (11)0.0038 (11)
O220.0562 (13)0.0673 (14)0.0612 (13)0.0153 (11)0.0188 (10)0.0003 (10)
O230.0778 (17)0.101 (2)0.0517 (13)0.0260 (15)0.0172 (11)0.0112 (13)
N240.0575 (19)0.0648 (18)0.109 (3)0.0027 (15)0.0356 (18)0.0114 (18)
O250.094 (2)0.147 (3)0.099 (2)0.031 (2)0.0501 (19)0.004 (2)
O260.0628 (17)0.0729 (17)0.144 (3)0.0125 (14)0.0364 (17)0.0116 (17)
Geometric parameters (Å, º) top
C1—C91.492 (5)C11—C121.486 (4)
C1—C101.527 (5)C11—H11A0.9700
C1—C21.542 (5)C11—H11B0.9700
C1—H10.9800C12—N131.256 (4)
C2—C31.534 (4)C12—H120.9300
C2—C61.582 (4)N13—N141.387 (3)
C2—H20.9800N14—C151.351 (4)
C3—C41.511 (4)N14—H140.8600
C3—C111.522 (4)C15—C161.414 (4)
C3—H30.9800C15—C201.415 (4)
C4—C51.283 (5)C16—C171.384 (4)
C4—H40.9300C16—N211.442 (4)
C5—C61.511 (5)C17—C181.367 (5)
C5—H50.9300C17—H170.9300
C6—C71.533 (5)C18—C191.382 (5)
C6—H60.9800C18—N241.456 (4)
C7—C81.509 (5)C19—C201.369 (5)
C7—C101.512 (5)C19—H190.9300
C7—H70.9800C20—H200.9300
C8—C91.309 (5)N21—O231.222 (3)
C8—H80.9300N21—O221.237 (3)
C9—H90.9300N24—O251.212 (4)
C10—H10A0.9700N24—O261.223 (4)
C10—H10B0.9700
C9—C1—C10100.0 (3)C7—C10—H10A112.9
C9—C1—C2106.8 (3)C1—C10—H10A112.9
C10—C1—C2101.4 (3)C7—C10—H10B112.9
C9—C1—H1115.6C1—C10—H10B112.9
C10—C1—H1115.6H10A—C10—H10B110.4
C2—C1—H1115.6C12—C11—C3114.2 (3)
C3—C2—C1117.3 (3)C12—C11—H11A108.7
C3—C2—C6106.6 (2)C3—C11—H11A108.7
C1—C2—C6101.5 (3)C12—C11—H11B108.7
C3—C2—H2110.3C3—C11—H11B108.7
C1—C2—H2110.3H11A—C11—H11B107.6
C6—C2—H2110.3N13—C12—C11119.9 (3)
C4—C3—C11110.8 (3)N13—C12—H12120.1
C4—C3—C2103.5 (3)C11—C12—H12120.1
C11—C3—C2115.3 (3)C12—N13—N14116.4 (3)
C4—C3—H3109.0C15—N14—N13118.9 (3)
C11—C3—H3109.0C15—N14—H14120.5
C2—C3—H3109.0N13—N14—H14120.5
C5—C4—C3113.8 (3)N14—C15—C16124.0 (3)
C5—C4—H4123.1N14—C15—C20119.7 (3)
C3—C4—H4123.1C16—C15—C20116.3 (3)
C4—C5—C6113.6 (3)C17—C16—C15122.0 (3)
C4—C5—H5123.2C17—C16—N21115.9 (3)
C6—C5—H5123.2C15—C16—N21122.1 (3)
C5—C6—C7114.3 (3)C18—C17—C16119.0 (3)
C5—C6—C2102.3 (3)C18—C17—H17120.5
C7—C6—C2102.5 (2)C16—C17—H17120.5
C5—C6—H6112.3C17—C18—C19121.3 (3)
C7—C6—H6112.3C17—C18—N24118.8 (3)
C2—C6—H6112.3C19—C18—N24119.9 (3)
C8—C7—C1098.9 (3)C20—C19—C18119.9 (3)
C8—C7—C6105.8 (3)C20—C19—H19120.1
C10—C7—C6101.9 (3)C18—C19—H19120.1
C8—C7—H7116.0C19—C20—C15121.5 (3)
C10—C7—H7116.0C19—C20—H20119.3
C6—C7—H7116.0C15—C20—H20119.3
C9—C8—C7108.2 (3)O23—N21—O22121.7 (3)
C9—C8—H8125.9O23—N21—C16119.5 (3)
C7—C8—H8125.9O22—N21—C16118.7 (2)
C8—C9—C1107.2 (3)O25—N24—O26123.4 (3)
C8—C9—H9126.4O25—N24—C18119.2 (3)
C1—C9—H9126.4O26—N24—C18117.4 (4)
C7—C10—C193.9 (3)
C9—C1—C2—C3177.3 (3)C2—C1—C10—C758.3 (3)
C10—C1—C2—C378.5 (3)C4—C3—C11—C12178.1 (3)
C9—C1—C2—C667.0 (3)C2—C3—C11—C1264.8 (4)
C10—C1—C2—C637.2 (3)C3—C11—C12—N13111.6 (4)
C1—C2—C3—C4108.9 (3)C11—C12—N13—N14178.8 (3)
C6—C2—C3—C43.9 (3)C12—N13—N14—C15178.9 (3)
C1—C2—C3—C11130.0 (3)N13—N14—C15—C16178.5 (3)
C6—C2—C3—C11117.2 (3)N13—N14—C15—C202.4 (4)
C11—C3—C4—C5120.7 (4)N14—C15—C16—C17178.8 (3)
C2—C3—C4—C53.4 (4)C20—C15—C16—C172.1 (4)
C3—C4—C5—C61.2 (5)N14—C15—C16—N210.6 (4)
C4—C5—C6—C7111.3 (4)C20—C15—C16—N21178.4 (3)
C4—C5—C6—C21.4 (4)C15—C16—C17—C181.4 (4)
C3—C2—C6—C53.3 (3)N21—C16—C17—C18179.1 (3)
C1—C2—C6—C5120.0 (3)C16—C17—C18—C190.1 (5)
C3—C2—C6—C7121.9 (3)C16—C17—C18—N24179.6 (3)
C1—C2—C6—C71.4 (3)C17—C18—C19—C200.4 (5)
C5—C6—C7—C8177.4 (3)N24—C18—C19—C20179.1 (3)
C2—C6—C7—C867.6 (3)C18—C19—C20—C150.3 (5)
C5—C6—C7—C1074.5 (3)N14—C15—C20—C19179.3 (3)
C2—C6—C7—C1035.3 (3)C16—C15—C20—C191.5 (4)
C10—C7—C8—C934.7 (4)C17—C16—N21—O235.6 (4)
C6—C7—C8—C970.5 (4)C15—C16—N21—O23174.9 (3)
C7—C8—C9—C10.9 (4)C17—C16—N21—O22175.8 (3)
C10—C1—C9—C833.0 (4)C15—C16—N21—O223.7 (4)
C2—C1—C9—C872.2 (4)C17—C18—N24—O252.9 (5)
C8—C7—C10—C150.9 (3)C19—C18—N24—O25176.7 (4)
C6—C7—C10—C157.5 (3)C17—C18—N24—O26176.8 (3)
C9—C1—C10—C751.2 (3)C19—C18—N24—O263.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O220.862.012.618 (3)127
N14—H14···O22i0.862.573.395 (4)162
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H18N4O4
Mr354.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.412 (1), 14.569 (2), 19.144 (3)
β (°) 105.02 (1)
V3)1727.4 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.30 × 0.25 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.880, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
3300, 3206, 1973
Rint0.044
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.214, 1.02
No. of reflections3306
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.27

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 SDP (Frenz, 1978), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O220.862.012.618 (3)127
N14—H14···O22i0.862.573.395 (4)162
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds