Download citation
Download citation
link to html
The title compounds, C27H26Cl2NO5PS, (I), and C27H27BrNO5PS, (II), respectively, crystallize in the centrosymmetric space group P21/n with one mol­ecule in the asymmetric unit in each case. The dihedral angle between the benzene and pyrrole rings is 2.1 (1)° in (I) and 0.9 (2)° in (II). The phenyl­sulfonyl group is orthogonal to the halophenyl moiety, with a dihedral angle of 82.0 (1)° in (I) and 78.7 (2)° in (II). In both compounds, the molecular structures and packing are stabilized by C—H...O and C—H...halogen interactions. The intermolecular hydrogen bonds in (I) form cyclic dimers with graph-set descriptors R{_2^1}(10) and R{_2^2}(8) about a 21 axis, and those in (II) form a C{_2^2}(20) chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009587/na1565sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009587/na1565Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009587/na1565IIsup3.hkl
Contains datablock II

CCDC references: 193415; 193416

Comment top

Organophosphorus compounds have attracted considerable interest because of their applications as insecticides, bactericides, flame retardants, lubricants, etc. (Ismail, 1975). Phosphate esters are present in many enzymes, nucleic acids, bacteria, vitamin and viruses. Organophosphorous compounds are also reported as effective antitumour compounds.

The indole ring system is present in a number of natural products, many of which are found to possess antibacterial (Okabe & Adachi, 1998), antitumour (Schollmeyer et al., 1995), antidepressant (Papenstasion & Newmeyer, 1972), psychotropic (Grinev et al., 1978), hypertensive (Merk, 1971), antimicrobial (El-Sayed et al., 1986; Gadaginamath & Patil, 1999) and antiinflammatory activities (Rodriguez et al., 1985; Polletto et al., 1974). Indoles also intercalate with DNA (Sivaraman et al., 1996), and this intercalation between the base pairs in DNA has been implicated for their medicinal properties. The indole ring system occurs in plants (Nigovic et al., 2000), for example, indole-3-acetic acid is a naturally occurring plant-growth hormone that controls several growth activities of plants (Moore, 1989; Fargasova, 1994). Indoles have also been proven to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999).

Sulfonamide-containing drugs acts as diuretics and sulthiame, as a carbonic anhydrase inhibitor, has been shown to possess anticonvulsant activity (Crawford & Kennedy, 1959; Camerman & Camerman, 1975; Tanimukai et al., 1965). Sulfonamides inhibit the growth of bacterial organisms and are also useful for treating urinary and gastrointestinal infections.

Both title compounds are excellent intermediates for elaborating the substituent at the 2-position of the indole ring. Compounds (I) and (II) could be converted into a 2-vinyl derivative by the Wittig reaction. These compounds have been converted into analogues of the anticancer alkaloid ellipticine (Srinivasan & Mohanakrishnan, 1995). Similarly, compounds of this type have been shown to undergo a Diels-Alder reaction to give 2-(quinolin-2-yl) indoles (Srinivasan & Elango, 1999). Against this background, and in order to obtain detailed information on their molecular conformation in the solid state, X-ray studies of the title compounds, (I) and (II), have been carried out and the results are presented here. \sch

Figs. 1 and 2 show the molecular structures of (I) and (II), respectively, with the atom-numbering schemes. The mean P—O (P1—O4 and P1—O5) single-bond distance of 1.565 (3) Å for (I) and (II) is in agreement with the reported value of 1.564 (5) Å for the structure of diethyl (1-hydroxy-2-butynyl)phosphonate (Sanders et al., 1996). The P1O1 double-bond distances in (I) and (II) are comparable with the reported values of 1.464 (2), 1.459 (3) and 1.454 (4) Å [Naidu et al. (1992), Boehlow et al. (1997) and Yokota et al. (1990), respectively Rephrasing OK?]. The P1—C15 single-bond lengths in both compounds are in good agreement with the reported values of 1.791 (2) and 1.806 (6) Å (Weichsel & Lis, 1996; Liu et al., 1995; Perales & García-Blanco, 1977; Howells et al., 1973).

In (I) and (II), the average values of the S1O2 and S1O3 distances [1.417 (3) and 1.426 (3) Å, respectively] are comparable with the literature value of 1.427 (4) Å (Datta et al., 1993; Ghosh et al., 1989; Seetharaman & Rajan, 1995). The S1—N1 and S1—C9 bond distances in (I) and (II) compare well with the literature values of 1.642 (24) and 1.758 (18) Å, respectively (Allen et al., 1987).

The relatively large values of the C—N distances in the indole moiety (N1—C1 and N1—C4) are due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1997, 1998). As in similar structures (Hazel & Collin, 1972; Ezra & Collin, 1973; Sanders et al., 1996), short C—C bond distances [C18—C19 in (I) and (II)], along with high thermal motion, are observed for the ethyl C atoms. The Csp2X bond distances [X is Cl in (I) and Br in (II)] are comparable with the reported values of 1.734 (19) and 1.883 (15) Å (Allen et al., 1987). Selected geometric parameters for (I) and (II) are given in Tables 1 and 3, respectively.

Atom P1 adopts a distorted tetrahedral configuration in both compounds, and the widening of the O1—P1—O4 angles, and the resultant narrowing of the O5—P1—C15 angles, from the ideal tetrahedral value are attributed to Thorpe-Ingold effect (Bassindale, 1984). The P1—C15 bond is (-) synclinal to the C1—C2 bond in (I), whereas it is (+) synclinal to C1—C2 in (II). The conformation about P1—C15 is, as expected, staggered in (I) and (II).

In both compounds, the indole system is not strictly planar, and the dihedral angle formed by the pyrrole and benzo planes is 2.1 (1)° in (I) and 0.9 (2)° in (II). The O2—S1—N1—C4 and O2—S1—C9—C14 torsion angles in both compounds describe the conformation of the phenylsulfonyl with respect to the indole system, which causes the best planes of the indole and phenyl rings to form a dihedral angle of 77.3 (1)° in (I) and 71.6 (2)° in (II), as observed in similar structures (Yokum & Fronzeck, 1997; Sankaranarayanan et al., 2000).

The phenyl rings of the dichlorophenyl in (I) and the bromophenyl in (II) are orthogonal to the phenyl ring of the sulfonyl substituent in each, forming dihedral angles of 82.0 (1)° in (I) and 78.7 (2)° in (II). The dihedral angle formed by the weighted least-squares planes through the pyrrole ring and the halophenyl group is 12.0 (1)° in (I) and 11.4° in (II). Atoms C15 and C20 are out of the indole plane by 0.205 (4) and 0.057 (4) Å, respectively, in (I) and by 0.097 (4) and 0.038 (4) Å, respectively, in (II), both on one side, while atom S1 is out of the plane on the other side, by 0.730 (1) Å in (I) and 0.812 Å in (II).

In the benzene ring of the indole system, the endocyclic angles at C3 and C5 are contracted to 118.7 (4) and 116.9 (5)°, respectively, in (I), and 118.9 (4) and 117.5 (5)°, respectively, in (II), while those at C4, C6 and C7 are expanded to 122.2 (4), 121.9 (4) and 120.7 (3)°, respectively, in (I), and 122.3 (4), 121.3 (5) and 121.1 (5)°, respectively, in (II). This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring, and the strain is taken up by angular distortion rather than by bond-length distortions (Allen, 1981). A similar effect has also been observed by Varghese et al. (1986) and Sankaranarayanan et al. (2000).

The angular disposition of the bond about atom S1 shows a significant deviation from that of a regular tetrahedron, with the largest deviation in the O—S—O angle. The widening of the O2—S1—O3 angle to 119.1 (2)° in (I) and 119.5 (2)° in (II) from the ideal tetrahedral value is presumably the result of the repulsive interaction between the short SO bonds, similar to that observed in related structures (Rodriguez et al., 1985; Beddoes et al., 1986). The orientation of the indole substituent is influenced by a weak C5—H5···O2 interaction, defined by the torsion angle C5—C4—N1—S1 in (I) and C4—N1—S1—O2 in (II), while the orientation of the phenyl ring bound to the sulfonyl group is governed by a C10—H10···O3 interaction, defined by the N1—S1—C9—C10 torsion angle in both compounds.

In addition to van der Waals interactions, the molecular structures and packing are stabilized by C—H···O and C—H···halogen interactions (Tables 2 and 4). In compound (I), the hydrogen bonds form cyclic dimers with graph-set descriptors (Bernstein et al., 1995) R21(10) and R22(8) about a 21 axis. This system of rings is joined through the O5—C19—C18 ethoxy chain by a hydrogen bond to the Cl1 atom of a molecule shifted by b in the [010] direction. For R21(10), the ring is C15—H15B···O1i···H23—C23—C22—C21—C20—C2—C1, and for R22(8), the ring is C15—H15B···O1i—P1i—C15i—H15Bi···O1···P1 [symmetry code: (i) Please provide missing symmetry code]. There are three intramolecular rings in (I), namely, S(6) C5—H5···O2—S1—N1—C4, S(6) C15—H15A···O3—S1—N1—C1 and S(5) C10—H10···O3—S1—C9 (Fig. 3). In (II), there is a C22(20) chain, O1i···H15A—C15—C1—N1—S1—C9—C14—H14···Br1ii—C25ii—C24ii—C23ii—C22ii– C21ii—C20ii—C2ii—C1ii—C15ii—H15ii [symmetry code: (ii) Please provide missing symmetry code]. There are also two intramolecular rings in (II), namely, S(6) C5—H5···O2—S1—N1—C4 and S(6) C15—H15A···O3—S1—N1—C1 (Fig. 4).

Experimental top

A mixture of 2-bromomethyl-1-phenylsulfonyl-3-(β-arylvinyl)indole (5 mmol) and triethylphosphite (1.5 g, 9 mmol) was heated under nitrogen at 543 K for 3 h. The sticky oil was then poured over ice (200 g) and acidified with concentrated HCl (1 ml). The solid which precipitated was filtered and dried over calcium chloride. The crude product was recrystallized from ethyl acetate to give the phosphonate esters, (I) and (II), as colourless crystalline solids. How were the two compounds separated?

Refinement top

All H atoms were geometrically fixed and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5eq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELX97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The crystal structure of (I), with the hydrogen-bonding scheme shown as dashed lines [symmetry code: (i) Please provide missing symmetry code].
[Figure 4] Fig. 4. The crystal structure of (II), with the hydrogen-bonding scheme shown as dashed lines [symmetry codes: (i); (ii) Please provide missing symmetry codes].
(I) Diethyl {3-[β-(2,4-dichlorophenyl)vinyl]-N-phenylsulfonyl-indol-2-ylmethyl}phosphonate top
Crystal data top
C27H26Cl2NO5PSF(000) = 1200
Mr = 578.42Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 16.608 (2) ÅCell parameters from 25 reflections
b = 8.357 (1) Åθ = 2.1–25.0°
c = 19.647 (5) ŵ = 0.41 mm1
β = 93.30 (1)°T = 293 K
V = 2722.4 (9) Å3Tablet, colourless
Z = 40.36 × 0.36 × 0.21 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2932 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
non–profiled ω/2θ scansh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 90
Tmin = 0.865, Tmax = 0.917l = 023
4904 measured reflections3 standard reflections every 100 reflections
4759 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4759 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C27H26Cl2NO5PSV = 2722.4 (9) Å3
Mr = 578.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.608 (2) ŵ = 0.41 mm1
b = 8.357 (1) ÅT = 293 K
c = 19.647 (5) Å0.36 × 0.36 × 0.21 mm
β = 93.30 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2932 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.865, Tmax = 0.9173 standard reflections every 100 reflections
4904 measured reflections intensity decay: none
4759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
4759 reflectionsΔρmin = 0.32 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31476 (6)0.40244 (15)0.20785 (5)0.0529 (3)
S10.56810 (6)0.49475 (14)0.26025 (5)0.0531 (3)
Cl10.03728 (8)1.20568 (18)0.03072 (7)0.0844 (5)
Cl20.31530 (9)0.9612 (2)0.10733 (6)0.0956 (5)
N10.51749 (18)0.5255 (4)0.18548 (15)0.0450 (8)
O10.26812 (19)0.3479 (4)0.26437 (15)0.0714 (9)
O20.64009 (18)0.4126 (4)0.24564 (16)0.0708 (9)
O30.51363 (18)0.4218 (4)0.30449 (15)0.0671 (9)
O40.3698 (2)0.2740 (4)0.17576 (16)0.0719 (9)
O50.26459 (18)0.4594 (5)0.14249 (17)0.0866 (11)
C10.4410 (2)0.6030 (4)0.17979 (18)0.0419 (9)
C20.4326 (2)0.6851 (5)0.11981 (18)0.0419 (9)
C30.5067 (2)0.6632 (5)0.08469 (18)0.0432 (9)
C40.5578 (2)0.5671 (5)0.12538 (19)0.0475 (10)
C50.6326 (2)0.5164 (6)0.1048 (2)0.0642 (13)
H50.66550.44850.13160.077*
C60.6557 (3)0.5718 (7)0.0426 (3)0.0774 (15)
H60.70620.54390.02830.093*
C70.6061 (3)0.6668 (7)0.0015 (2)0.0742 (14)
H70.62290.69950.04070.089*
C80.5322 (3)0.7139 (6)0.0219 (2)0.0611 (12)
H80.49920.77920.00610.073*
C90.5921 (2)0.6862 (5)0.2918 (2)0.0502 (10)
C100.5567 (3)0.7392 (7)0.3484 (3)0.0860 (17)
H100.52000.67500.36970.103*
C110.5760 (4)0.8894 (8)0.3737 (3)0.114 (2)
H110.55310.92580.41300.137*
C120.6287 (4)0.9853 (7)0.3412 (3)0.0975 (19)
H120.64011.08780.35750.117*
C130.6642 (3)0.9304 (7)0.2854 (3)0.0803 (15)
H130.70060.99480.26380.096*
C140.6466 (3)0.7804 (6)0.2607 (2)0.0611 (12)
H140.67170.74250.22270.073*
C150.3776 (2)0.5725 (5)0.22920 (19)0.0484 (10)
H15A0.40360.55610.27410.058*
H15B0.34370.66680.23140.058*
C160.4035 (4)0.1393 (7)0.2100 (3)0.0906 (17)
H16A0.41660.16620.25740.109*
H16B0.36440.05300.20870.109*
C170.4773 (4)0.0859 (7)0.1778 (4)0.117 (2)
H17A0.51670.17010.18060.175*
H17B0.49880.00700.20120.175*
H17C0.46440.06010.13090.175*
C180.1903 (4)0.4472 (13)0.1260 (4)0.183 (5)
H18A0.18040.33470.11670.220*
H18B0.16230.47260.16660.220*
C190.1507 (4)0.5314 (8)0.0726 (3)0.113 (2)
H19A0.18970.58590.04680.170*
H19B0.12050.45800.04350.170*
H19C0.11470.60810.09080.170*
C200.3606 (2)0.7712 (5)0.0984 (2)0.0480 (10)
H200.32180.77830.13060.058*
C210.3420 (2)0.8415 (5)0.0395 (2)0.0553 (11)
H210.37900.83280.00590.066*
C220.2681 (2)0.9320 (5)0.0224 (2)0.0526 (11)
C230.2112 (3)0.9613 (6)0.0703 (2)0.0683 (13)
H230.22090.92410.11470.082*
C240.1414 (3)1.0431 (6)0.0539 (2)0.0718 (14)
H240.10431.05940.08690.086*
C250.1258 (3)1.1009 (5)0.0101 (2)0.0598 (11)
C260.1792 (3)1.0764 (5)0.0599 (2)0.0592 (12)
H260.16861.11550.10380.071*
C270.2494 (2)0.9919 (5)0.0432 (2)0.0541 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0492 (6)0.0631 (8)0.0476 (6)0.0046 (6)0.0149 (5)0.0059 (5)
S10.0511 (6)0.0574 (7)0.0501 (6)0.0019 (5)0.0033 (5)0.0076 (5)
Cl10.0758 (8)0.0931 (10)0.0822 (9)0.0294 (7)0.0151 (7)0.0024 (7)
Cl20.0972 (10)0.1380 (13)0.0536 (7)0.0354 (10)0.0225 (7)0.0246 (8)
N10.0407 (17)0.055 (2)0.0393 (18)0.0023 (16)0.0038 (14)0.0019 (15)
O10.077 (2)0.077 (2)0.0630 (19)0.0183 (18)0.0294 (16)0.0064 (17)
O20.0604 (19)0.074 (2)0.077 (2)0.0223 (17)0.0056 (16)0.0020 (18)
O30.073 (2)0.071 (2)0.0568 (18)0.0150 (17)0.0024 (15)0.0225 (16)
O40.087 (2)0.062 (2)0.069 (2)0.0063 (18)0.0265 (17)0.0052 (17)
O50.0495 (18)0.137 (3)0.072 (2)0.016 (2)0.0050 (16)0.031 (2)
C10.040 (2)0.046 (2)0.040 (2)0.0026 (18)0.0046 (16)0.0041 (18)
C20.042 (2)0.048 (2)0.036 (2)0.0035 (18)0.0031 (16)0.0038 (18)
C30.045 (2)0.047 (2)0.038 (2)0.0074 (19)0.0075 (17)0.0037 (18)
C40.046 (2)0.055 (3)0.042 (2)0.003 (2)0.0066 (18)0.0086 (19)
C50.043 (2)0.085 (3)0.065 (3)0.006 (2)0.011 (2)0.014 (3)
C60.053 (3)0.115 (4)0.067 (3)0.000 (3)0.025 (3)0.022 (3)
C70.066 (3)0.105 (4)0.054 (3)0.012 (3)0.019 (2)0.002 (3)
C80.057 (3)0.083 (3)0.044 (2)0.006 (2)0.011 (2)0.003 (2)
C90.041 (2)0.065 (3)0.044 (2)0.001 (2)0.0017 (18)0.001 (2)
C100.075 (3)0.106 (4)0.080 (4)0.031 (3)0.028 (3)0.024 (3)
C110.114 (5)0.126 (6)0.107 (5)0.035 (5)0.043 (4)0.058 (4)
C120.104 (4)0.088 (4)0.101 (5)0.033 (4)0.015 (4)0.037 (4)
C130.070 (3)0.086 (4)0.085 (4)0.026 (3)0.004 (3)0.002 (3)
C140.054 (3)0.075 (3)0.055 (3)0.011 (2)0.007 (2)0.004 (2)
C150.050 (2)0.058 (3)0.038 (2)0.005 (2)0.0091 (17)0.0047 (19)
C160.105 (4)0.063 (3)0.105 (4)0.000 (3)0.016 (4)0.013 (3)
C170.089 (4)0.074 (4)0.184 (7)0.013 (3)0.016 (5)0.035 (4)
C180.074 (4)0.319 (13)0.150 (7)0.056 (6)0.032 (5)0.121 (8)
C190.085 (4)0.132 (6)0.117 (5)0.002 (4)0.035 (4)0.009 (4)
C200.046 (2)0.052 (2)0.047 (2)0.005 (2)0.0079 (18)0.001 (2)
C210.053 (2)0.072 (3)0.042 (2)0.007 (2)0.0063 (19)0.005 (2)
C220.060 (3)0.055 (3)0.043 (2)0.004 (2)0.002 (2)0.002 (2)
C230.070 (3)0.086 (4)0.049 (3)0.021 (3)0.005 (2)0.010 (2)
C240.072 (3)0.095 (4)0.049 (3)0.025 (3)0.008 (2)0.003 (3)
C250.053 (3)0.062 (3)0.063 (3)0.007 (2)0.005 (2)0.008 (2)
C260.071 (3)0.055 (3)0.050 (2)0.003 (2)0.011 (2)0.005 (2)
C270.058 (3)0.058 (3)0.046 (2)0.003 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
P1—O11.463 (3)C11—H110.9300
P1—O41.566 (3)C12—C131.355 (7)
P1—O51.564 (3)C12—H120.9300
P1—C151.798 (4)C13—C141.370 (7)
S1—O21.422 (3)C13—H130.9300
S1—O31.427 (3)C14—H140.9300
S1—N11.670 (3)C15—H15A0.9700
S1—C91.754 (4)C15—H15B0.9700
Cl1—C251.739 (4)C16—C171.480 (8)
Cl2—C271.735 (4)C16—H16A0.9700
N1—C11.424 (5)C16—H16B0.9700
N1—C41.433 (5)C17—H17A0.9600
O4—C161.410 (6)C17—H17B0.9600
O5—C181.261 (6)C17—H17C0.9600
C1—C21.364 (5)C18—C191.395 (9)
C1—C151.495 (5)C18—H18A0.9700
C2—C201.438 (5)C18—H18B0.9700
C2—C31.457 (5)C19—H19A0.9600
C3—C41.387 (5)C19—H19B0.9600
C3—C81.394 (5)C19—H19C0.9600
C4—C51.396 (5)C20—C211.320 (5)
C5—C61.380 (6)C20—H200.9300
C5—H50.9300C21—C221.464 (6)
C6—C71.373 (7)C21—H210.9300
C6—H60.9300C22—C231.395 (6)
C7—C81.371 (6)C22—C271.400 (5)
C7—H70.9300C23—C241.368 (6)
C8—H80.9300C23—H230.9300
C9—C101.361 (6)C24—C251.358 (6)
C9—C141.371 (6)C24—H240.9300
C10—C111.382 (8)C25—C261.373 (6)
C10—H100.9300C26—C271.385 (6)
C11—C121.371 (8)C26—H260.9300
O1—P1—O4116.1 (2)C9—C14—H14120.0
O1—P1—O5116.0 (2)C13—C14—H14120.0
O4—P1—O5100.0 (2)C1—C15—P1113.8 (3)
O1—P1—C15113.2 (2)C1—C15—H15A108.8
O4—P1—C15106.9 (2)P1—C15—H15A108.8
O5—P1—C15103.0 (2)C1—C15—H15B108.8
O2—S1—O3119.1 (2)P1—C15—H15B108.8
O2—S1—N1106.5 (2)H15A—C15—H15B107.7
O3—S1—N1107.3 (2)O4—C16—C17110.7 (5)
O2—S1—C9109.6 (2)O4—C16—H16A109.5
O3—S1—C9108.3 (2)C17—C16—H16A109.5
N1—S1—C9105.26 (18)O4—C16—H16B109.5
C1—N1—C4106.3 (3)C17—C16—H16B109.5
C1—N1—S1122.7 (2)H16A—C16—H16B108.1
C4—N1—S1121.8 (2)C16—C17—H17A109.5
C16—O4—P1125.4 (3)C16—C17—H17B109.5
C18—O5—P1130.8 (4)H17A—C17—H17B109.5
C2—C1—N1110.1 (3)C16—C17—H17C109.5
C2—C1—C15127.3 (3)H17A—C17—H17C109.5
N1—C1—C15122.0 (3)H17B—C17—H17C109.5
C1—C2—C20123.1 (3)O5—C18—C19124.3 (7)
C1—C2—C3107.4 (3)O5—C18—H18A106.2
C20—C2—C3129.5 (3)C19—C18—H18A106.2
C4—C3—C8118.7 (4)O5—C18—H18B106.2
C4—C3—C2107.7 (3)C19—C18—H18B106.2
C8—C3—C2133.6 (4)H18A—C18—H18B106.4
C3—C4—C5122.2 (4)C18—C19—H19A109.5
C3—C4—N1108.5 (3)C18—C19—H19B109.5
C5—C4—N1129.1 (4)H19A—C19—H19B109.5
C4—C5—C6116.9 (5)C18—C19—H19C109.5
C4—C5—H5121.6H19A—C19—H19C109.5
C6—C5—H5121.6H19B—C19—H19C109.5
C7—C6—C5121.9 (4)C21—C20—C2128.9 (4)
C7—C6—H6119.1C21—C20—H20115.5
C5—C6—H6119.1C2—C20—H20115.5
C8—C7—C6120.7 (4)C20—C21—C22125.6 (4)
C8—C7—H7119.7C20—C21—H21117.2
C6—C7—H7119.7C22—C21—H21117.2
C7—C8—C3119.6 (4)C23—C22—C27115.8 (4)
C7—C8—H8120.2C23—C22—C21121.8 (4)
C3—C8—H8120.2C27—C22—C21122.4 (4)
C10—C9—C14120.4 (4)C24—C23—C22121.8 (4)
C10—C9—S1119.0 (4)C24—C23—H23119.1
C14—C9—S1120.6 (3)C22—C23—H23119.1
C9—C10—C11119.2 (5)C25—C24—C23120.7 (4)
C9—C10—H10120.4C25—C24—H24119.7
C11—C10—H10120.4C23—C24—H24119.7
C12—C11—C10120.3 (5)C24—C25—C26120.7 (4)
C12—C11—H11119.8C24—C25—Cl1120.5 (4)
C10—C11—H11119.8C26—C25—Cl1118.8 (4)
C13—C12—C11119.9 (5)C27—C26—C25118.4 (4)
C13—C12—H12120.1C27—C26—H26120.8
C11—C12—H12120.1C25—C26—H26120.8
C12—C13—C14120.2 (5)C26—C27—C22122.7 (4)
C12—C13—H13119.9C26—C27—Cl2117.4 (3)
C14—C13—H13119.9C22—C27—Cl2119.9 (3)
C9—C14—C13120.0 (4)
O2—S1—N1—C1179.0 (3)O2—S1—C9—C10133.5 (4)
O3—S1—N1—C150.4 (3)O3—S1—C9—C102.0 (4)
C9—S1—N1—C164.7 (3)N1—S1—C9—C10112.4 (4)
O2—S1—N1—C438.7 (4)O2—S1—C9—C1445.5 (4)
O3—S1—N1—C4167.3 (3)O3—S1—C9—C14176.9 (3)
C9—S1—N1—C477.6 (3)N1—S1—C9—C1468.6 (4)
O1—P1—O4—C1627.0 (5)C14—C9—C10—C110.5 (8)
O5—P1—O4—C16152.5 (4)S1—C9—C10—C11179.4 (5)
C15—P1—O4—C16100.5 (4)C9—C10—C11—C121.5 (10)
O1—P1—O5—C1810.8 (9)C10—C11—C12—C132.3 (11)
O4—P1—O5—C18114.8 (8)C11—C12—C13—C141.0 (10)
C15—P1—O5—C18135.1 (8)C10—C9—C14—C131.8 (7)
C4—N1—C1—C21.2 (4)S1—C9—C14—C13179.3 (4)
S1—N1—C1—C2148.5 (3)C12—C13—C14—C91.0 (8)
C4—N1—C1—C15172.7 (3)C2—C1—C15—P183.8 (5)
S1—N1—C1—C1540.1 (5)N1—C1—C15—P186.1 (4)
N1—C1—C2—C20177.8 (3)O1—P1—C15—C1164.6 (3)
C15—C1—C2—C206.9 (6)O4—P1—C15—C135.5 (3)
N1—C1—C2—C30.8 (4)O5—P1—C15—C169.4 (3)
C15—C1—C2—C3171.7 (4)P1—O4—C16—C17155.1 (4)
C1—C2—C3—C40.1 (4)P1—O5—C18—C19166.3 (7)
C20—C2—C3—C4178.4 (4)C1—C2—C20—C21172.8 (4)
C1—C2—C3—C8178.1 (4)C3—C2—C20—C215.6 (7)
C20—C2—C3—C80.5 (7)C2—C20—C21—C22177.8 (4)
C8—C3—C4—C51.6 (6)C20—C21—C22—C234.3 (7)
C2—C3—C4—C5176.7 (4)C20—C21—C22—C27174.5 (4)
C8—C3—C4—N1177.7 (3)C27—C22—C23—C240.1 (7)
C2—C3—C4—N10.6 (4)C21—C22—C23—C24178.7 (5)
C1—N1—C4—C31.1 (4)C22—C23—C24—C250.9 (8)
S1—N1—C4—C3148.7 (3)C23—C24—C25—C260.9 (8)
C1—N1—C4—C5176.8 (4)C23—C24—C25—Cl1179.7 (4)
S1—N1—C4—C535.6 (6)C24—C25—C26—C270.2 (7)
C3—C4—C5—C62.6 (7)Cl1—C25—C26—C27179.6 (3)
N1—C4—C5—C6177.8 (4)C25—C26—C27—C220.5 (7)
C4—C5—C6—C72.7 (7)C25—C26—C27—Cl2179.4 (3)
C5—C6—C7—C81.8 (8)C23—C22—C27—C260.6 (7)
C6—C7—C8—C30.7 (8)C21—C22—C27—C26179.4 (4)
C4—C3—C8—C70.6 (6)C23—C22—C27—Cl2179.4 (3)
C2—C3—C8—C7177.1 (4)C21—C22—C27—Cl20.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.322.896 (6)120
C10—H10···O30.932.472.867 (7)106
C15—H15A···O30.972.202.915 (5)130
C15—H15B···O1i0.972.403.347 (5)165
C23—H23···O1i0.932.463.382 (5)173
C19—H19B···Cl1ii0.962.873.826 (7)172
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
(II) Diethyl {3-[β-(4-bromophenyl)vinyl]-N-phenylsulfonyl-indol-2-ylmethyl}phosphonate top
Crystal data top
C27H27BrNO5PSF(000) = 1208
Mr = 588.44Dx = 1.466 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.837 (1) ÅCell parameters from 25 reflections
b = 8.323 (1) Åθ = 1.4–24.9°
c = 19.611 (1) ŵ = 1.72 mm1
β = 104.11 (1)°T = 293 K
V = 2665.3 (3) Å3Prism, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
non–profiled ω/2θ scansh = 2019
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.461, Tmax = 0.709l = 023
4827 measured reflections3 standard reflections every 100 reflections
4683 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01
4683 reflections(Δ/σ)max = 0.012
327 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C27H27BrNO5PSV = 2665.3 (3) Å3
Mr = 588.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.837 (1) ŵ = 1.72 mm1
b = 8.323 (1) ÅT = 293 K
c = 19.611 (1) Å0.3 × 0.2 × 0.2 mm
β = 104.11 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2474 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.461, Tmax = 0.7093 standard reflections every 100 reflections
4827 measured reflections intensity decay: none
4683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4683 reflectionsΔρmin = 0.28 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.21126 (4)0.48138 (8)0.10170 (3)0.0981 (3)
S10.00350 (8)0.20548 (15)0.36559 (6)0.0597 (4)
P10.15918 (7)0.33526 (16)0.23152 (7)0.0612 (4)
N10.0179 (2)0.1773 (4)0.27833 (18)0.0520 (9)
O10.23730 (19)0.4025 (5)0.26952 (18)0.0833 (11)
O20.0741 (2)0.2863 (4)0.37432 (18)0.0803 (10)
O30.0749 (2)0.2779 (4)0.39078 (17)0.0745 (10)
O40.0835 (2)0.4509 (4)0.21792 (19)0.0798 (10)
O50.1538 (2)0.2815 (5)0.15409 (17)0.0837 (11)
C10.0437 (2)0.1104 (5)0.2479 (2)0.0479 (11)
C20.0086 (2)0.0200 (5)0.1911 (2)0.0482 (10)
C30.0794 (3)0.0221 (5)0.1847 (2)0.0515 (11)
C40.0941 (3)0.1178 (5)0.2382 (2)0.0537 (11)
C50.1726 (3)0.1447 (6)0.2468 (3)0.0695 (14)
H50.18150.21000.28270.083*
C60.2362 (3)0.0716 (7)0.2005 (3)0.0805 (16)
H60.28940.08800.20490.097*
C70.2231 (3)0.0262 (7)0.1473 (3)0.0825 (17)
H70.26740.07670.11730.099*
C80.1455 (3)0.0501 (6)0.1381 (3)0.0663 (13)
H80.13730.11330.10130.080*
C100.0714 (4)0.0660 (8)0.4220 (3)0.0883 (18)
H100.12030.01310.42290.106*
C90.0015 (3)0.0095 (5)0.3988 (2)0.0538 (11)
C110.0715 (5)0.2243 (10)0.4445 (4)0.121 (3)
H110.12090.27820.46050.145*
C120.0005 (6)0.3002 (8)0.4432 (3)0.110 (2)
H120.00090.40690.45730.132*
C130.0708 (5)0.2214 (9)0.4216 (3)0.107 (2)
H130.11970.27350.42160.128*
C140.0722 (4)0.0653 (7)0.3997 (3)0.0878 (18)
H140.12180.01110.38540.105*
C150.1320 (2)0.1575 (5)0.2721 (2)0.0535 (11)
H15A0.16540.06920.26290.064*
H15B0.14490.17390.32260.064*
C160.0746 (4)0.5820 (7)0.2633 (3)0.0928 (18)
H16A0.10430.67510.25300.111*
H16B0.09680.55210.31200.111*
C170.0129 (4)0.6209 (7)0.2517 (3)0.0998 (19)
H17A0.04200.52790.26130.150*
H17B0.03410.65330.20370.150*
H17C0.01960.70680.28240.150*
C180.2087 (6)0.2973 (16)0.1193 (4)0.228 (7)
H18A0.26070.26920.15090.274*
H18B0.21140.41080.10880.274*
C190.2040 (4)0.2139 (10)0.0563 (3)0.127 (3)
H19A0.20280.28930.01900.190*
H19B0.15510.14990.04530.190*
H19C0.25100.14540.06150.190*
C200.0543 (3)0.0591 (5)0.1474 (2)0.0505 (11)
H200.11090.05870.16430.061*
C210.0265 (3)0.1312 (6)0.0872 (3)0.0671 (14)
H210.03010.13000.06980.080*
C220.0728 (3)0.2135 (6)0.0437 (2)0.0573 (12)
C230.1564 (3)0.2252 (7)0.0615 (3)0.0752 (15)
H230.18570.18150.10390.090*
C240.1986 (3)0.3007 (7)0.0180 (3)0.0810 (16)
H240.25560.30380.03010.097*
C250.1557 (3)0.3703 (6)0.0427 (3)0.0636 (13)
C260.0738 (3)0.3576 (7)0.0627 (3)0.0808 (16)
H260.04490.40220.10490.097*
C270.0332 (3)0.2777 (8)0.0199 (3)0.0883 (18)
H270.02340.26680.03470.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1018 (5)0.1097 (6)0.0948 (5)0.0133 (4)0.0473 (4)0.0188 (4)
S10.0738 (8)0.0523 (7)0.0596 (7)0.0006 (7)0.0290 (6)0.0040 (6)
P10.0499 (7)0.0706 (9)0.0593 (8)0.0124 (7)0.0058 (6)0.0020 (7)
N10.053 (2)0.054 (2)0.053 (2)0.0015 (18)0.0208 (18)0.0032 (18)
O10.059 (2)0.095 (3)0.084 (3)0.0299 (19)0.0033 (18)0.002 (2)
O20.094 (3)0.076 (2)0.082 (2)0.024 (2)0.042 (2)0.0048 (19)
O30.090 (2)0.067 (2)0.069 (2)0.0276 (19)0.0245 (19)0.0158 (18)
O40.073 (2)0.068 (2)0.090 (3)0.0017 (18)0.0018 (19)0.010 (2)
O50.065 (2)0.129 (3)0.059 (2)0.031 (2)0.0188 (17)0.007 (2)
C10.050 (3)0.045 (3)0.053 (3)0.005 (2)0.020 (2)0.008 (2)
C20.047 (2)0.046 (3)0.054 (3)0.001 (2)0.016 (2)0.003 (2)
C30.054 (3)0.044 (3)0.058 (3)0.001 (2)0.016 (2)0.011 (2)
C40.049 (3)0.050 (3)0.065 (3)0.003 (2)0.018 (2)0.013 (2)
C50.059 (3)0.077 (4)0.077 (3)0.011 (3)0.026 (3)0.015 (3)
C60.047 (3)0.101 (5)0.098 (4)0.009 (3)0.027 (3)0.019 (4)
C70.048 (3)0.101 (5)0.094 (4)0.019 (3)0.009 (3)0.014 (4)
C80.053 (3)0.074 (3)0.070 (3)0.009 (3)0.012 (3)0.000 (3)
C100.075 (4)0.094 (5)0.097 (4)0.010 (3)0.024 (3)0.034 (4)
C90.059 (3)0.056 (3)0.049 (3)0.006 (3)0.019 (2)0.006 (2)
C110.132 (6)0.107 (6)0.141 (7)0.051 (5)0.068 (5)0.058 (5)
C120.199 (9)0.063 (4)0.079 (4)0.007 (5)0.053 (5)0.016 (3)
C130.132 (6)0.095 (5)0.091 (5)0.042 (5)0.021 (4)0.024 (4)
C140.077 (4)0.089 (5)0.097 (4)0.017 (3)0.020 (3)0.026 (4)
C150.050 (3)0.064 (3)0.044 (2)0.005 (2)0.007 (2)0.000 (2)
C160.115 (5)0.066 (4)0.092 (4)0.008 (4)0.015 (4)0.008 (3)
C170.129 (5)0.078 (4)0.100 (5)0.030 (4)0.041 (4)0.012 (4)
C180.185 (8)0.407 (17)0.124 (7)0.185 (11)0.097 (7)0.110 (9)
C190.107 (5)0.200 (8)0.086 (5)0.006 (5)0.046 (4)0.004 (5)
C200.045 (2)0.053 (3)0.051 (3)0.002 (2)0.007 (2)0.001 (2)
C210.046 (3)0.086 (4)0.067 (3)0.005 (3)0.009 (2)0.012 (3)
C220.049 (3)0.066 (3)0.055 (3)0.004 (2)0.009 (2)0.007 (2)
C230.068 (3)0.093 (4)0.059 (3)0.015 (3)0.004 (3)0.018 (3)
C240.055 (3)0.107 (5)0.078 (4)0.013 (3)0.010 (3)0.017 (4)
C250.072 (3)0.065 (3)0.059 (3)0.012 (3)0.025 (3)0.000 (3)
C260.068 (4)0.101 (4)0.069 (3)0.004 (3)0.008 (3)0.027 (3)
C270.048 (3)0.129 (5)0.083 (4)0.008 (3)0.006 (3)0.041 (4)
Geometric parameters (Å, º) top
Br1—C251.897 (5)C12—C131.343 (9)
S1—O21.412 (3)C12—H120.9300
S1—O31.425 (3)C13—C141.367 (8)
S1—N11.685 (4)C13—H130.9300
S1—C91.753 (5)C14—H140.9300
P1—O11.456 (3)C15—H15A0.9700
P1—O51.564 (4)C15—H15B0.9700
P1—O41.567 (4)C16—C171.470 (8)
P1—C151.792 (4)C16—H16A0.9700
N1—C41.420 (5)C16—H16B0.9700
N1—C11.430 (5)C17—H17A0.9600
O4—C161.439 (6)C17—H17B0.9600
O5—C181.281 (7)C17—H17C0.9600
C1—C21.355 (6)C18—C191.403 (9)
C1—C151.497 (5)C18—H18A0.9700
C2—C201.442 (6)C18—H18B0.9700
C2—C31.457 (6)C19—H19A0.9600
C3—C41.386 (6)C19—H19B0.9600
C3—C81.393 (6)C19—H19C0.9600
C4—C51.391 (6)C20—C211.306 (6)
C5—C61.367 (7)C20—H200.9300
C5—H50.9300C21—C221.460 (6)
C6—C71.383 (8)C21—H210.9300
C6—H60.9300C22—C231.369 (6)
C7—C81.376 (7)C22—C271.371 (6)
C7—H70.9300C23—C241.387 (7)
C8—H80.9300C23—H230.9300
C10—C91.356 (7)C24—C251.362 (7)
C10—C111.389 (8)C24—H240.9300
C10—H100.9300C25—C261.342 (6)
C9—C141.348 (7)C26—C271.376 (7)
C11—C121.347 (9)C26—H260.9300
C11—H110.9300C27—H270.9300
O2—S1—O3119.5 (2)C9—C14—H14120.1
O2—S1—N1105.8 (2)C13—C14—H14120.1
O3—S1—N1107.62 (18)C1—C15—P1114.6 (3)
O2—S1—C9109.8 (2)C1—C15—H15A108.6
O3—S1—C9109.4 (2)P1—C15—H15A108.6
N1—S1—C9103.46 (19)C1—C15—H15B108.6
O1—P1—O5116.0 (2)P1—C15—H15B108.6
O1—P1—O4116.5 (2)H15A—C15—H15B107.6
O5—P1—O499.1 (2)O4—C16—C17108.8 (5)
O1—P1—C15112.8 (2)O4—C16—H16A109.9
O5—P1—C15103.6 (2)C17—C16—H16A109.9
O4—P1—C15107.3 (2)O4—C16—H16B109.9
C4—N1—C1106.4 (3)C17—C16—H16B109.9
C4—N1—S1119.8 (3)H16A—C16—H16B108.3
C1—N1—S1122.6 (3)C16—C17—H17A109.5
C16—O4—P1124.3 (3)C16—C17—H17B109.5
C18—O5—P1127.5 (4)H17A—C17—H17B109.5
C2—C1—N1110.1 (4)C16—C17—H17C109.5
C2—C1—C15127.3 (4)H17A—C17—H17C109.5
N1—C1—C15122.0 (4)H17B—C17—H17C109.5
C1—C2—C20123.6 (4)O5—C18—C19121.7 (7)
C1—C2—C3107.1 (4)O5—C18—H18A106.9
C20—C2—C3129.3 (4)C19—C18—H18A106.9
C4—C3—C8118.9 (4)O5—C18—H18B106.9
C4—C3—C2107.9 (4)C19—C18—H18B106.9
C8—C3—C2133.1 (4)H18A—C18—H18B106.7
C3—C4—C5122.3 (4)C18—C19—H19A109.5
C3—C4—N1108.4 (4)C18—C19—H19B109.5
C5—C4—N1129.3 (5)H19A—C19—H19B109.5
C6—C5—C4117.5 (5)C18—C19—H19C109.5
C6—C5—H5121.3H19A—C19—H19C109.5
C4—C5—H5121.3H19B—C19—H19C109.5
C5—C6—C7121.3 (5)C21—C20—C2128.4 (4)
C5—C6—H6119.3C21—C20—H20115.8
C7—C6—H6119.3C2—C20—H20115.8
C8—C7—C6121.1 (5)C20—C21—C22128.3 (4)
C8—C7—H7119.5C20—C21—H21115.9
C6—C7—H7119.5C22—C21—H21115.9
C7—C8—C3118.9 (5)C23—C22—C27116.6 (4)
C7—C8—H8120.6C23—C22—C21123.2 (4)
C3—C8—H8120.6C27—C22—C21120.2 (4)
C9—C10—C11118.5 (6)C22—C23—C24121.6 (5)
C9—C10—H10120.8C22—C23—H23119.2
C11—C10—H10120.8C24—C23—H23119.2
C14—C9—C10120.8 (5)C25—C24—C23119.2 (5)
C14—C9—S1119.9 (4)C25—C24—H24120.4
C10—C9—S1119.3 (4)C23—C24—H24120.4
C12—C11—C10120.5 (7)C26—C25—C24120.7 (4)
C12—C11—H11119.8C26—C25—Br1119.0 (4)
C10—C11—H11119.8C24—C25—Br1120.3 (4)
C11—C12—C13119.9 (7)C25—C26—C27119.2 (5)
C11—C12—H12120.1C25—C26—H26120.4
C13—C12—H12120.1C27—C26—H26120.4
C12—C13—C14120.6 (7)C22—C27—C26122.6 (5)
C12—C13—H13119.7C22—C27—H27118.7
C14—C13—H13119.7C26—C27—H27118.7
C9—C14—C13119.7 (6)
O2—S1—N1—C446.4 (4)C2—C3—C8—C7178.7 (5)
O3—S1—N1—C4175.2 (3)C11—C10—C9—C142.2 (9)
C9—S1—N1—C469.0 (4)C11—C10—C9—S1176.5 (5)
O2—S1—N1—C1174.7 (3)O2—S1—C9—C1427.7 (5)
O3—S1—N1—C145.9 (4)O3—S1—C9—C14160.7 (4)
C9—S1—N1—C169.8 (4)N1—S1—C9—C1484.8 (4)
O1—P1—O4—C1629.7 (5)O2—S1—C9—C10153.6 (4)
O5—P1—O4—C16154.8 (4)O3—S1—C9—C1020.6 (5)
C15—P1—O4—C1697.8 (4)N1—S1—C9—C1093.9 (4)
O1—P1—O5—C183.8 (9)C9—C10—C11—C120.1 (10)
O4—P1—O5—C18121.7 (9)C10—C11—C12—C131.5 (11)
C15—P1—O5—C18127.9 (9)C11—C12—C13—C141.1 (11)
C4—N1—C1—C22.1 (4)C10—C9—C14—C132.6 (9)
S1—N1—C1—C2145.6 (3)S1—C9—C14—C13176.1 (5)
C4—N1—C1—C15174.5 (4)C12—C13—C14—C90.9 (10)
S1—N1—C1—C1542.0 (5)C2—C1—C15—P185.9 (5)
N1—C1—C2—C20177.8 (4)N1—C1—C15—P185.0 (4)
C15—C1—C2—C205.9 (7)O1—P1—C15—C1163.6 (3)
N1—C1—C2—C32.0 (5)O5—P1—C15—C170.3 (4)
C15—C1—C2—C3173.8 (4)O4—P1—C15—C134.0 (4)
C1—C2—C3—C41.1 (5)P1—O4—C16—C17157.4 (4)
C20—C2—C3—C4178.6 (4)P1—O5—C18—C19165.8 (7)
C1—C2—C3—C8178.8 (5)C1—C2—C20—C21170.5 (5)
C20—C2—C3—C81.5 (8)C3—C2—C20—C219.2 (8)
C8—C3—C4—C50.2 (7)C2—C20—C21—C22178.9 (5)
C2—C3—C4—C5179.9 (4)C20—C21—C22—C230.4 (9)
C8—C3—C4—N1179.9 (4)C20—C21—C22—C27177.5 (5)
C2—C3—C4—N10.2 (5)C27—C22—C23—C241.1 (8)
C1—N1—C4—C31.4 (4)C21—C22—C23—C24178.3 (5)
S1—N1—C4—C3146.1 (3)C22—C23—C24—C252.6 (9)
C1—N1—C4—C5178.9 (4)C23—C24—C25—C264.3 (9)
S1—N1—C4—C534.2 (6)C23—C24—C25—Br1177.7 (4)
C3—C4—C5—C60.6 (7)C24—C25—C26—C272.2 (9)
N1—C4—C5—C6179.8 (4)Br1—C25—C26—C27179.7 (5)
C4—C5—C6—C70.3 (8)C23—C22—C27—C263.3 (9)
C5—C6—C7—C81.7 (9)C21—C22—C27—C26179.4 (6)
C6—C7—C8—C32.0 (8)C25—C26—C27—C221.7 (9)
C4—C3—C8—C71.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.312.893 (6)121
C15—H15B···O30.972.172.904 (6)132
C15—H15A···O1i0.972.353.301 (5)167
C14—H14···Br1ii0.932.883.660 (7)142
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC27H26Cl2NO5PSC27H27BrNO5PS
Mr578.42588.44
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)16.608 (2), 8.357 (1), 19.647 (5)16.837 (1), 8.323 (1), 19.611 (1)
β (°) 93.30 (1) 104.11 (1)
V3)2722.4 (9)2665.3 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.411.72
Crystal size (mm)0.36 × 0.36 × 0.210.3 × 0.2 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.865, 0.9170.461, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
4904, 4759, 2932 4827, 4683, 2474
Rint0.0300.060
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.181, 1.01 0.050, 0.144, 1.01
No. of reflections47594683
No. of parameters336327
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.320.36, 0.28

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2000), SHELX97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
P1—O11.463 (3)S1—C91.754 (4)
P1—O41.566 (3)Cl1—C251.739 (4)
P1—O51.564 (3)Cl2—C271.735 (4)
P1—C151.798 (4)N1—C11.424 (5)
S1—O21.422 (3)N1—C41.433 (5)
S1—O31.427 (3)C18—C191.395 (9)
S1—N11.670 (3)
O1—P1—O4116.1 (2)O3—S1—C9108.3 (2)
O1—P1—O5116.0 (2)C16—O4—P1125.4 (3)
O1—P1—C15113.2 (2)C18—O5—P1130.8 (4)
O4—P1—C15106.9 (2)C4—C3—C8118.7 (4)
O5—P1—C15103.0 (2)C3—C4—C5122.2 (4)
O2—S1—N1106.5 (2)C4—C5—C6116.9 (5)
O3—S1—N1107.3 (2)C7—C6—C5121.9 (4)
O2—S1—C9109.6 (2)C8—C7—C6120.7 (4)
O2—S1—N1—C438.7 (4)O3—S1—C9—C102.0 (4)
C9—S1—N1—C477.6 (3)N1—S1—C9—C10112.4 (4)
O1—P1—O4—C1627.0 (5)O2—S1—C9—C1445.5 (4)
O5—P1—O4—C16152.5 (4)C2—C1—C15—P183.8 (5)
O4—P1—O5—C18114.8 (8)O1—P1—C15—C1164.6 (3)
S1—N1—C1—C1540.1 (5)O4—P1—C15—C135.5 (3)
S1—N1—C4—C535.6 (6)O5—P1—C15—C169.4 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.322.896 (6)120
C10—H10···O30.932.472.867 (7)106
C15—H15A···O30.972.202.915 (5)130
C15—H15B···O1i0.972.403.347 (5)165
C23—H23···O1i0.932.463.382 (5)173
C19—H19B···Cl1ii0.962.873.826 (7)172
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
Br1—C251.897 (5)P1—O51.564 (4)
S1—O21.412 (3)P1—O41.567 (4)
S1—O31.425 (3)P1—C151.792 (4)
S1—N11.685 (4)N1—C41.420 (5)
S1—C91.753 (5)N1—C11.430 (5)
P1—O11.456 (3)C18—C191.403 (9)
O2—S1—N1105.8 (2)C18—O5—P1127.5 (4)
O1—P1—O5116.0 (2)C4—C3—C8118.9 (4)
O1—P1—O4116.5 (2)C3—C4—C5122.3 (4)
O1—P1—C15112.8 (2)C6—C5—C4117.5 (5)
O5—P1—C15103.6 (2)C5—C6—C7121.3 (5)
C16—O4—P1124.3 (3)C8—C7—C6121.1 (5)
O2—S1—N1—C446.4 (4)O3—S1—C9—C1020.6 (5)
O1—P1—O4—C1629.7 (5)N1—S1—C9—C1093.9 (4)
O5—P1—O4—C16154.8 (4)C2—C1—C15—P185.9 (5)
S1—N1—C1—C1542.0 (5)O1—P1—C15—C1163.6 (3)
S1—N1—C4—C534.2 (6)O5—P1—C15—C170.3 (4)
O2—S1—C9—C1427.7 (5)O4—P1—C15—C134.0 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.312.893 (6)121
C15—H15B···O30.972.172.904 (6)132
C15—H15A···O1i0.972.353.301 (5)167
C14—H14···Br1ii0.932.883.660 (7)142
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds