Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C12H12N4O2S, crystallizes with Z′ = 2 in space group P21/c. The intramolecular dimensions are consis­tent with a highly polarized electronic structure. Each of the independent mol­ecules forms a centrosymmetric dimer linked by paired N—H...N hydrogen bonds, and these dimers are linked into a single type of chain by aromatic π–π-stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005735/na1564sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005735/na1564Isup2.hkl
Contains datablock I

CCDC reference: 187934

Comment top

Alkoxy- and amino-substituted O6-benzyloxy-5-nitrosopyrimidines (Marchal et al., 2000, 2002; Quesada et al., 2000) are important as potential, or proven, in vitro inhibitors of the human DNA-repair protein O6-alkylguanine-DNA-transferase (Chae et al., 1995; Quesada et al., 2002). We report here the molecular and supramolecular structure of a closely-related analogue (I) containing a (methylthio) substituent.

The title compound, (I), crystallizes in space group P21/c with two independent molecules in the asymmetric unit, i.e. with Z' = 2 (Fig. 1), but no additional symmetry could be detected. The intramolecular dimensions of the two independent molecules are very similar (Table 1), and show a number of features typical of 5-nitrosopyrimidines (Low et al., 2000; Low, Cannon et al., 2001; Low, Moreno et al., 2001; Quesada et al., 2002); in particular, there is marked fixation of the C—C and C—N bonds, with bonds Cn2—Nn3, Cn4—Nn4 and Cn6—Nn1 (n = 1 or 2) being short, despite the Cn4—Nn4 bond being formally a single bond in the classical representation of (I); in addition, the C—N and N—O distances in each C-nitroso fragment differ by only ca 0.11 Å, whereas in simple neutral compounds, where there is no possibility of significant electronic delocalization, these distances normally differ by at least 0.20 Å (Talberg, 1977; Schlemper et al., 1986) and the NO distance rarely exceeds 1.25 Å (Davis et al., 1965; Bauer & Andreassen, 1972; Talberg, 1977; Schlemper et al., 1986). The dimensions all point to the importance of the charge-separated form (Ia) (see Scheme) as an important contributor. In this respect, the electronic structure of (I) resembles that of the 2-benzyloxy analogue (II) (Quesada et al., 2002). Although the Cn2—Sn2 (n = 1 or 2) distances are significantly shorter than typical Car—S distances (Allen et al., 1987), there is no other support for a significant contribution from form (Ib), although the atoms concerned in (Ib) are almost coplanar (Table 1); the methyl–S distances are entirely normal.

In each of the independent molecules of (I), there is an intramolecular N—H···O hydrogen bond (Table 2) generating S(6) motifs; it is this motif which emphasizes the close similarity in overall molecular shape between 4-amino-5-nitroso pyrimidines, (III), and purines, (IV), which may indeed influence the biochemical activity of compounds of type (III). In addition, the molecules of each type are linked by paired N—H···N hydrogen bonds into centrosymmetric dimers (Fig. 2), in which the ring atoms N13 and N23 act as the acceptors (Table 2); molecules of type 1 (containing atom S12) form a dimer centred at (1/2, 1/2, 1/2), while molecules of type 2 (containing atom S22) form a dimer centred at (0, 1/2, 1/2).

The formation of hydrogen-bonded dimers which themselves form no other hydrogen bonds is unusual in this type of pyrimidine (Quesada et al., 2002); however, there are aromatic ππ-stacking interactions between the dimer units formed by (I). Within the asymmetric unit, the two pyrimidine planes make an angle of 0.57 (6)°; the centroid separation is 3.4421 (8) Å and the interplanar spacing ca 3.35 Å. Thus, the hydrogen-bonded dimer centred at (1/2, 1/2, 1/2) and formed by molecules of type 1 forms ππ-stacking interactions with the type 2 dimers centred at (0, 1/2, 1/2) and (1, 1/2, 1/2), and propagation of these interactions generates a chain running parallel to the [100] direction in which type 1 and type 2 dimers alternate (Fig. 3).

Experimental top

Isoamyl nitrite (1.65 ml, 12 mmol) was added to a solution of 4-amino-6-benzyloxy-2-(methylthio)pyrimidine (2.47 g, 10 mmol) in dimethyl sulfoxide (DMSO, 25 ml). The reaction mixture was stirred at room temperature and monitored by thin-layer chromatography (eluent CH2Cl2/MeOH, 9:1 v/v) until the starting pyrimidine was no longer detected (24 h). Addition of water (50 ml) precipitated product (I). The product was filtered, washed with water and dried, and then recrystallized from acetonitrile–dimethyl sulfoxide (5:1, v/v) [yield 2.10 g, 76%; m.p. 420 K]. 1H NMR (DMSO-d6) δ: 10.02 (bs, 1H, NH2), 8.80 (bs, 1H, NH2), 7.55–7.58 (m, 2H), 7.40–7.46 (m, 5H), 5.70 (s, 2H, CH2O), 2.57 (s, 3H, CH 3S); 13C NMR (DMSO-d6) δ: 177.8, 168.5, 145.7, 140.2, 135.9, 128.6, 128.5, 128.4, 69.1, 14.1. Crystals of (I) suitable for single-crystal X-ray diffraction analysis were selected directly from the analytical sample.

Refinement top

H atoms were treated as riding, with C—H distances in the range 0.95–0.99 Å and N—H distances of 0.88 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded dimers (a) by molecules of type 1 and (b) by molecules of type 2. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (1 - x, 1 - y, 1 - z) and (-x, -y, 1 - z), respectively.
[Figure 3] Fig. 3. Stereoview of part of the structure of (I), showing a [100] chain formed by the linking of hydrogen-bonded dimers by means of ππ stacking. For the sake of clarity, the benzyl groups have been omitted.
(I) top
Crystal data top
C12H12N4O2SF(000) = 1152
Mr = 276.32Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6223 reflections
a = 15.6152 (10) Åθ = 1.3–29.0°
b = 9.1842 (6) ŵ = 0.26 mm1
c = 17.7920 (11) ÅT = 120 K
β = 90.830 (2)°Block, colourless
V = 2551.3 (3) Å30.50 × 0.35 × 0.20 mm
Z = 8
Data collection top
Bruker-SMART-1000 CCD
diffractometer
6223 independent reflections
Radiation source: fine-focus sealed X-ray tube4840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ scans, and ω scans with κ offsetsθmax = 29.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2020
Tmin = 0.882, Tmax = 0.950k = 1212
24010 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.058P)2 + 0.327P]
where P = (Fo2 + 2Fc2)/3
6223 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H12N4O2SV = 2551.3 (3) Å3
Mr = 276.32Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.6152 (10) ŵ = 0.26 mm1
b = 9.1842 (6) ÅT = 120 K
c = 17.7920 (11) Å0.50 × 0.35 × 0.20 mm
β = 90.830 (2)°
Data collection top
Bruker-SMART-1000 CCD
diffractometer
6223 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4840 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.950Rint = 0.023
24010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
6223 reflectionsΔρmin = 0.25 e Å3
345 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.26619 (7)0.57631 (12)0.38289 (6)0.0256 (2)
C120.34204 (8)0.50920 (15)0.39377 (7)0.0251 (3)
S120.37614 (2)0.38279 (4)0.32777 (2)0.03292 (10)
C1210.29268 (10)0.3893 (2)0.25706 (9)0.0404 (4)
N130.39803 (7)0.52625 (12)0.45058 (6)0.0253 (2)
C140.37771 (8)0.62629 (15)0.50305 (7)0.0250 (3)
N140.43291 (7)0.64343 (14)0.55976 (7)0.0315 (3)
C150.29961 (8)0.70870 (15)0.49700 (8)0.0261 (3)
N150.27135 (8)0.81465 (14)0.54536 (7)0.0363 (3)
O150.31865 (7)0.84115 (13)0.60181 (6)0.0432 (3)
C160.24639 (8)0.67458 (15)0.43399 (8)0.0255 (3)
O160.17207 (6)0.74563 (11)0.42737 (6)0.0298 (2)
C1670.11727 (9)0.70483 (16)0.36374 (8)0.0312 (3)
C1610.04088 (9)0.80449 (16)0.36150 (8)0.0288 (3)
C1620.00075 (10)0.85356 (16)0.42541 (8)0.0330 (3)
C1630.07137 (10)0.94235 (17)0.42015 (9)0.0355 (3)
C1640.10439 (10)0.98162 (19)0.35154 (9)0.0410 (4)
C1650.06544 (12)0.9315 (2)0.28700 (10)0.0558 (5)
C1660.00637 (11)0.8434 (2)0.29205 (9)0.0479 (5)
N210.23421 (7)0.27186 (13)0.50043 (6)0.0264 (2)
C220.15755 (8)0.30913 (15)0.46994 (7)0.0261 (3)
S220.12166 (2)0.21882 (4)0.38943 (2)0.03311 (10)
C2210.20532 (10)0.09006 (17)0.37297 (10)0.0390 (4)
N230.10250 (7)0.40863 (13)0.49387 (6)0.0273 (3)
C240.12322 (8)0.47877 (16)0.55858 (8)0.0281 (3)
N240.06825 (8)0.57627 (15)0.58339 (7)0.0383 (3)
C250.20171 (9)0.44616 (16)0.59792 (8)0.0293 (3)
N250.22988 (8)0.50434 (16)0.66500 (7)0.0407 (3)
O250.18349 (8)0.60084 (15)0.69388 (7)0.0528 (3)
C260.25442 (8)0.34040 (15)0.56363 (8)0.0270 (3)
O260.32842 (6)0.31138 (11)0.59831 (5)0.0303 (2)
C2670.38374 (9)0.20328 (17)0.56463 (9)0.0335 (3)
C2610.45856 (9)0.18088 (17)0.61798 (9)0.0337 (3)
C2620.50491 (11)0.0520 (2)0.61235 (12)0.0511 (5)
C2630.57526 (12)0.0281 (2)0.65882 (14)0.0668 (6)
C2640.60074 (11)0.1306 (2)0.71148 (13)0.0611 (6)
C2650.55452 (10)0.2569 (2)0.71799 (10)0.0480 (5)
C2660.48365 (9)0.28248 (19)0.67110 (9)0.0389 (4)
H12A0.23670.38320.28120.061*
H12B0.29920.30720.22240.061*
H12C0.29660.48090.22910.061*
H14A0.48000.59090.56180.038*
H14B0.42240.70730.59530.038*
H16A0.09830.60260.36920.037*
H16B0.14940.71330.31640.037*
H1620.02260.82640.47350.040*
H1630.09790.97590.46470.043*
H1640.15341.04260.34810.049*
H1650.08810.95760.23910.067*
H1660.03230.80920.24740.058*
H22A0.25970.14170.36710.059*
H22B0.19220.03490.32710.059*
H22C0.20990.02300.41570.059*
H24A0.02050.59330.55810.046*
H24B0.07940.62420.62520.046*
H26A0.40400.23780.51530.040*
H26B0.35230.11070.55700.040*
H2620.48820.01970.57650.061*
H2630.60660.06010.65450.080*
H2640.64960.11370.74270.073*
H2650.57080.32730.75460.058*
H2660.45240.37070.67580.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0202 (5)0.0290 (6)0.0275 (6)0.0012 (4)0.0042 (4)0.0013 (5)
C120.0214 (6)0.0269 (7)0.0270 (6)0.0037 (5)0.0007 (5)0.0006 (5)
S120.02645 (18)0.0395 (2)0.03268 (19)0.00186 (15)0.00430 (14)0.01012 (15)
C1210.0306 (8)0.0596 (11)0.0308 (8)0.0036 (7)0.0061 (6)0.0118 (7)
N130.0195 (5)0.0288 (6)0.0276 (6)0.0006 (5)0.0034 (4)0.0007 (5)
C140.0203 (6)0.0276 (7)0.0269 (6)0.0028 (5)0.0033 (5)0.0012 (5)
N140.0239 (6)0.0381 (7)0.0324 (6)0.0051 (5)0.0090 (5)0.0083 (5)
C150.0212 (6)0.0265 (7)0.0306 (7)0.0000 (5)0.0036 (5)0.0001 (5)
N150.0306 (7)0.0371 (7)0.0409 (7)0.0034 (5)0.0065 (5)0.0090 (6)
O150.0353 (6)0.0503 (7)0.0437 (6)0.0053 (5)0.0125 (5)0.0178 (5)
C160.0193 (6)0.0267 (7)0.0305 (7)0.0018 (5)0.0033 (5)0.0050 (5)
O160.0218 (5)0.0331 (5)0.0343 (5)0.0042 (4)0.0099 (4)0.0013 (4)
C1670.0249 (7)0.0363 (8)0.0320 (7)0.0017 (6)0.0106 (6)0.0006 (6)
C1610.0205 (6)0.0345 (8)0.0314 (7)0.0026 (6)0.0053 (5)0.0046 (6)
C1620.0348 (8)0.0348 (8)0.0293 (7)0.0004 (6)0.0072 (6)0.0022 (6)
C1630.0311 (8)0.0387 (8)0.0367 (8)0.0016 (6)0.0002 (6)0.0033 (6)
C1640.0260 (8)0.0500 (10)0.0467 (9)0.0080 (7)0.0078 (7)0.0018 (7)
C1650.0461 (10)0.0865 (15)0.0344 (9)0.0268 (10)0.0097 (8)0.0083 (9)
C1660.0390 (9)0.0765 (13)0.0283 (8)0.0208 (9)0.0005 (7)0.0071 (8)
N210.0193 (5)0.0307 (6)0.0293 (6)0.0015 (5)0.0019 (4)0.0056 (5)
C220.0218 (6)0.0307 (7)0.0257 (6)0.0005 (5)0.0009 (5)0.0060 (5)
S220.02616 (18)0.0416 (2)0.03141 (19)0.00181 (15)0.00467 (14)0.00393 (15)
C2210.0344 (8)0.0364 (8)0.0463 (9)0.0017 (7)0.0016 (7)0.0075 (7)
N230.0205 (5)0.0354 (6)0.0259 (6)0.0033 (5)0.0050 (4)0.0024 (5)
C240.0199 (6)0.0362 (8)0.0281 (7)0.0027 (6)0.0042 (5)0.0029 (6)
N240.0266 (6)0.0523 (8)0.0358 (7)0.0138 (6)0.0112 (5)0.0106 (6)
C250.0197 (6)0.0397 (8)0.0282 (7)0.0034 (6)0.0057 (5)0.0027 (6)
N250.0291 (7)0.0567 (9)0.0361 (7)0.0086 (6)0.0080 (5)0.0073 (6)
O250.0370 (6)0.0748 (9)0.0460 (7)0.0187 (6)0.0140 (5)0.0226 (6)
C260.0192 (6)0.0328 (7)0.0287 (7)0.0000 (5)0.0025 (5)0.0102 (6)
O260.0196 (5)0.0387 (6)0.0324 (5)0.0063 (4)0.0053 (4)0.0053 (4)
C2670.0231 (7)0.0353 (8)0.0420 (8)0.0065 (6)0.0030 (6)0.0043 (6)
C2610.0173 (6)0.0391 (8)0.0447 (8)0.0025 (6)0.0001 (6)0.0159 (7)
C2620.0294 (8)0.0452 (10)0.0787 (13)0.0099 (7)0.0015 (8)0.0112 (9)
C2630.0315 (9)0.0584 (13)0.1103 (18)0.0178 (9)0.0063 (11)0.0271 (12)
C2640.0215 (8)0.0762 (14)0.0852 (15)0.0004 (9)0.0142 (9)0.0438 (12)
C2650.0275 (8)0.0641 (12)0.0520 (10)0.0124 (8)0.0118 (7)0.0252 (9)
C2660.0242 (7)0.0445 (9)0.0476 (9)0.0001 (6)0.0066 (6)0.0177 (7)
Geometric parameters (Å, º) top
N11—C121.347 (2)N21—C221.351 (2)
C12—N131.336 (2)C22—N231.329 (2)
N13—C141.351 (2)N23—C241.354 (2)
C14—C151.438 (2)C24—C251.434 (2)
C15—C161.421 (2)C25—C261.417 (2)
C16—N111.321 (2)C26—N211.323 (2)
C12—S121.740 (2)C22—S221.741 (2)
S12—C1211.799 (2)S22—C2211.789 (2)
C121—H12A0.9800C221—H22A0.9800
C121—H12B0.9800C221—H22B0.9800
C121—H12C0.9800C221—H22C0.9800
C14—N141.327 (2)C24—N241.321 (2)
N14—H14A0.8800N24—H24A0.8800
N14—H14B0.8800N24—H24B0.8800
C15—N151.376 (2)C25—N251.374 (2)
N15—O151.262 (2)N25—O251.259 (2)
C16—O161.335 (2)C26—O261.329 (2)
O16—C1671.458 (2)O26—C2671.451 (2)
C167—C1611.504 (2)C267—C2611.509 (2)
C167—H16A0.9900C267—H26A0.9900
C167—H16B0.9900C267—H26B0.9900
C161—C1621.382 (2)C261—C2661.381 (2)
C161—C1661.388 (2)C261—C2621.392 (2)
C162—C1631.392 (2)C262—C2631.383 (3)
C162—H1620.9500C262—H2620.9500
C163—C1641.367 (2)C263—C2641.382 (3)
C163—H1630.9500C263—H2630.9500
C164—C1651.386 (2)C264—C2651.372 (3)
C164—H1640.9500C264—H2640.9500
C165—C1661.384 (2)C265—C2661.396 (2)
C165—H1650.9500C265—H2650.9500
C166—H1660.9500C266—H2660.9500
C16—N11—C12115.3 (2)C26—N21—C22114.8 (2)
N13—C12—N11128.3 (2)N23—C22—N21128.3 (2)
N13—C12—S12112.67 (9)N23—C22—S22112.91 (9)
N11—C12—S12119.04 (9)N21—C22—S22118.9 (2)
C12—S12—C121102.95 (7)C22—S22—C221102.85 (7)
S12—C121—H12A109.5S22—C221—H22A109.5
S12—C121—H12B109.5S22—C221—H22B109.5
H12A—C121—H12B109.5H22A—C221—H22B109.5
S12—C121—H12C109.5S22—C221—H22C109.5
H12A—C121—H12C109.5H22A—C221—H22C109.5
H12B—C121—H12C109.5H22B—C221—H22C109.5
C12—N13—C14116.4 (2)C22—N23—C24116.9 (2)
N14—C14—N13116.7 (2)N24—C24—N23117.3 (2)
N14—C14—C15122.4 (2)N24—C24—C25122.2 (2)
N13—C14—C15120.9 (2)N23—C24—C25120.5 (2)
C14—N14—H14A120.0C24—N24—H24A120.0
C14—N14—H14B120.0C24—N24—H24B120.0
H14A—N14—H14B120.0H24A—N24—H24B120.0
N15—C15—C16117.4 (2)N25—C25—C26117.4 (2)
N15—C15—C14127.2 (2)N25—C25—C24127.1 (2)
C16—C15—C14115.4 (2)C26—C25—C24115.5 (2)
O15—N15—C15116.4 (2)O25—N25—C25116.7 (2)
N11—C16—O16119.0 (2)N21—C26—O26119.6 (2)
N11—C16—C15123.6 (2)N21—C26—C25124.0 (2)
O16—C16—C15117.4 (2)O26—C26—C25116.4 (2)
C16—O16—C167116.3 (2)C26—O26—C267117.7 (2)
O16—C167—C161108.7 (2)O26—C267—C261107.1 (2)
O16—C167—H16A110.0O26—C267—H26A110.3
C161—C167—H16A110.0C261—C267—H26A110.3
O16—C167—H16B110.0O26—C267—H26B110.3
C161—C167—H16B110.0C261—C267—H26B110.3
H16A—C167—H16B108.3H26A—C267—H26B108.6
C162—C161—C166118.3 (2)C266—C261—C262118.8 (2)
C162—C161—C167123.1 (2)C266—C261—C267123.2 (2)
C166—C161—C167118.6 (2)C262—C261—C267118.0 (2)
C161—C162—C163120.8 (2)C263—C262—C261120.1 (2)
C161—C162—H162119.6C263—C262—H262120.0
C163—C162—H162119.6C261—C262—H262120.0
C164—C163—C162120.6 (2)C264—C263—C262121.1 (2)
C164—C163—H163119.7C264—C263—H263119.5
C162—C163—H163119.7C262—C263—H263119.5
C163—C164—C165119.2 (2)C265—C264—C263119.1 (2)
C163—C164—H164120.4C265—C264—H264120.5
C165—C164—H164120.4C263—C264—H264120.5
C166—C165—C164120.3 (2)C264—C265—C266120.3 (2)
C166—C165—H165119.8C264—C265—H265119.8
C164—C165—H165119.8C266—C265—H265119.8
C165—C166—C161120.8 (2)C261—C266—C265120.7 (2)
C165—C166—H166119.6C261—C266—H266119.7
C161—C166—H166119.6C265—C266—H266119.7
C121—S12—C12—N13177.1 (1)C221—S22—C22—N23178.0 (1)
O15—N15—C15—C16178.5 (1)O25—N25—C25—C26178.3 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N13i0.882.203.073 (2)171
N14—H14B···O150.882.042.661 (2)127
N24—H24A···N23ii0.882.122.985 (2)168
N24—H24B···O250.882.032.655 (2)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N4O2S
Mr276.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)15.6152 (10), 9.1842 (6), 17.7920 (11)
β (°) 90.830 (2)
V3)2551.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.35 × 0.20
Data collection
DiffractometerBruker-SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.882, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
24010, 6223, 4840
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.05
No. of reflections6223
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: SMART (Bruker, 1997), SMART, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.347 (2)N21—C221.351 (2)
C12—N131.336 (2)C22—N231.329 (2)
N13—C141.351 (2)N23—C241.354 (2)
C14—C151.438 (2)C24—C251.434 (2)
C15—C161.421 (2)C25—C261.417 (2)
C16—N111.321 (2)C26—N211.323 (2)
C12—S121.740 (2)C22—S221.741 (2)
S12—C1211.799 (2)S22—C2211.789 (2)
C14—N141.327 (2)C24—N241.321 (2)
C15—N151.376 (2)C25—N251.374 (2)
N15—O151.262 (2)N25—O251.259 (2)
C16—O161.335 (2)C26—O261.329 (2)
C121—S12—C12—N13177.1 (1)C221—S22—C22—N23178.0 (1)
O15—N15—C15—C16178.5 (1)O25—N25—C25—C26178.3 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N13i0.882.203.073 (2)171
N14—H14B···O150.882.042.661 (2)127
N24—H24A···N23ii0.882.122.985 (2)168
N24—H24B···O250.882.032.655 (2)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds