Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C28H27N3O4S, crystallizes in the centrosymmetric space group P21/n, with one mol­ecule in the asymmetric unit. In the indole ring, the dihedral angle between the fused rings is 3.6 (1)°. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 79.2 (1)° with the best plane of the indole moiety. The phenyl ring of the di­methyl­amino­phenyl group is orthogonal to the phenyl ring of the phenyl­sulfonyl group. The dihedral angle formed by the weighted least-squares planes through the pyrrole ring and the phenyl ring of the di­methyl­amino­phenyl group is 7.8 (1)°. The molecular structure is stabilized by C—H...O and C—H...N interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005152/na1558sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005152/na1558Isup2.hkl
Contains datablock I

CCDC reference: 187931

Comment top

The indole ring system is present in a number of natural products, many of which are found to possess antibacterial (Okabe & Adachi, 1998), antitumour (Schollmeyer et al., 1995), antidepressive (Papenstasion & Newmeyer, 1972), antimicrobial (El-Sayed et al., 1986; Gadaginamath & Patil, 1999) and anti-inflammatory activities (Rodriguez et al., 1985; Polleto et al., 1974). Indoles also intercalate with DNA (Sivaraman et al., 1996); intercalation between the base pairs in DNA has been implicated for their medicinal activities. The indole ring system occurs in plants (Nigovic et al., 2000); for example, indole-3-acetic acid is a naturally occurring plant growth hormone that controls several growth activities of plants (Moore, 1989; Fargasova, 1994). Indoles have also been proven to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Sulfonamide-containing drugs act as diuretics and sulthiame as a carbonic anhydrase inhibitor (Crawford & Kennedy, 1959; Camerman & Camerman, 1975; Tanimukai et al., 1965). The sulfonamides inhibit growing bacterial organisms and are also useful for treating urinary and gastrointestinal infections. Against this background, and in order to obtain detailed information on its molecular conformation in the solid state, X-ray studies on the title compound, (I), have been carried out. \sch

The indole system of (I) is not strictly planar, and the dihedral angle formed by the pyrrole and benzo planes is 3.6 (1)°. Atom S1 has a distorted tetrahedral configuration. The widening of the O1—S1—O2 angle to 120.5 (2)°, and the resultant narrowing of the C9—S1—N1 angle to 104.7 (1)° from the ideal tetrahedral value, are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The O2—S1—N1—C4 and O2—S1—C9—C14 torsion angles describe the conformation of the phenylsulfonyl with respect to the indole system, which causes the best planes of the indole and phenyl rings to form a dihedral angle of 79.2 (1)°, as observed in similar structures (Yokum & Fronzeck, 1997; Sankaranarayanan et al., 2000).

The phenyl ring of the dimethylaminophenyl group is orthogonal to the phenyl ring of the phenylsulfonyl group, forming a dihedral angle of 80.1 (1)°. The dihedral angle formed by the weighted least-squares planes through the pyrrole ring and the phenyl of the dimethylaminophenyl group is 7.8 (1)°. Atoms C15 and C20 are out of the indole plane by 0.021 (3) and 0.212 (3) Å, respectively, on one side, while atom S1 is 0.727 (1) Å out of the plane on the other side.

The relatively large values of the C—N distances in the indole moiety, namely N1—C4 and N1—C1, are due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1997, 1998). The C15—C2—C3 angle is wider than C15—C2—C1. The S1—N1 and S1—C9 bond distances are comparable with the literature values of 1.642 (24) and 1.758 (18) Å (Allen et al., 1987). The significant difference in the lengths of the C17—O4 and C18—O4 bonds is attributed to a partial contribution from the O-—CO+—C resonance structure for the O3C17—O4—C18 group (Merlino, 1971). This feature, commonly observed in the carboxlic ester groups of substituents in various compounds, gives average values of 1.340 and 1.447 Å for these bonds (Varghese et al., 1986). The bond angles involving the carbonyl O atom are invariably expanded (Dunitz & Schweizer, 1982). The O4—C17—C16 and O3—C17—C16 exocyclic bond angles are comparable with the corresponding values for the structure of ethyl 2-acetyl-3-[5-(p-tolyl)-2-furyl]acrylate [110.2 (1) and 125.6 (1)°; Lokaj et al., 1990].

In the benzene ring of the indole system of (I), the endocyclic angles at C5 and C8 are contracted to 117.5 (3) and 118.8 (3)°, respectively, while those at C6, C7 and C4 are expanded to 121.5 (3), 121.1 (4) and 122.0 (3)°, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring, and the strain is taken up by angular distortion rather than by bond-length distortions (Allen, 1981). A similar effect has also been observed by Varghese et al. (1986) and Sankaranarayanan et al. (2000).

The orientation of the indole substituent is influenced by a weak C5—H5···O1 interaction, defined by the torsion angles C5—C4—N1—S1 and C4—N1—S1—C9, while the orientation of the phenyl bound to the sulfonyl group is governed by a C14—H14···O1 interaction, defined by the torsion angle O1—S1—C9—C14. In addition to van der Waals interactions, the molecular structure of (I) is stabilized by C—H···O and C—H···N hydrogen bonds (Table 2).

Experimental top

To a well stirred suspension of sodium hydride (0.1 g, 4 mmol) in dry tetrahydrofuran (5 ml) under nitrogen at 273 K, a solution of diethyl [1-phenylsulfonyl-3-(β-carbethoxyvinyl)indol-2-yl]methylphosphonate (1.01 g, 2 mmol) in the same solvent (15 ml) was added slowly. After the evolution of hydrogen had ceased, 4-nitroso-N,N-dimethylaniline (0.30 g, 2 mmol) in the same solvent (10 ml) was added. The mixture was stirred for a further 3 h and then poured over ice. The bright orange-red solid which precipitated was filtered and dried over calcium chloride. Compound (I) was crystallized from ethyl acetate. NB Colourless given below - please clarify.

Refinement top

Due to the poor quality of the crystal, the higher-angle reflections were very weak and only 44% of the reflections were found to be observed with I > 2σ(I). This resulted in a high value for Rint. All H atoms were geometrically fixed and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å Query, and Uiso(H) = 1.5eq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELX97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and with 35% probability displacement ellipsoids.
Ethyl β-{2-[4-(dimethylamino)phenyliminomethyl]-1-(phenylsulfonyl)indol- 3-yl}acrylate top
Crystal data top
C28H27N3O4SF(000) = 1056
Mr = 501.59Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0582 (3) ÅCell parameters from 7574 reflections
b = 11.3915 (3) Åθ = 1.6–28.4°
c = 15.8945 (3) ŵ = 0.17 mm1
β = 109.595 (1)°T = 293 K
V = 2568.6 (1) Å3Block, colourless
Z = 40.32 × 0.23 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.094
Graphite monochromatorθmax = 28.4°, θmin = 1.6°
ω scansh = 1620
17978 measured reflectionsk = 1415
6295 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0829P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
6295 reflectionsΔρmax = 0.41 e Å3
329 parametersΔρmin = 0.37 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (8)
Crystal data top
C28H27N3O4SV = 2568.6 (1) Å3
Mr = 501.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0582 (3) ŵ = 0.17 mm1
b = 11.3915 (3) ÅT = 293 K
c = 15.8945 (3) Å0.32 × 0.23 × 0.18 mm
β = 109.595 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2749 reflections with I > 2σ(I)
17978 measured reflectionsRint = 0.094
6295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.187H-atom parameters constrained
S = 0.91Δρmax = 0.41 e Å3
6295 reflectionsΔρmin = 0.37 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35605 (7)0.13951 (8)0.08787 (6)0.0514 (3)
N10.45573 (18)0.1915 (2)0.16214 (16)0.0426 (6)
N20.42957 (18)0.5039 (2)0.11628 (16)0.0441 (7)
N30.3182 (2)0.8231 (3)0.16884 (19)0.0614 (8)
O10.36989 (19)0.0176 (2)0.08197 (17)0.0739 (8)
O20.33467 (18)0.2114 (2)0.01103 (15)0.0677 (7)
O30.60095 (19)0.6794 (2)0.36450 (17)0.0704 (8)
O40.6494 (3)0.6094 (2)0.50258 (18)0.1075 (13)
C10.4722 (2)0.3136 (2)0.1779 (2)0.0377 (7)
C20.5242 (2)0.3315 (2)0.2656 (2)0.0394 (7)
C30.5429 (2)0.2177 (3)0.3089 (2)0.0413 (8)
C40.4985 (2)0.1333 (3)0.2446 (2)0.0411 (8)
C50.5047 (3)0.0138 (3)0.2640 (3)0.0586 (10)
H50.47400.04140.22100.070*
C60.5576 (3)0.0193 (3)0.3485 (3)0.0692 (11)
H60.56340.09870.36300.083*
C70.6030 (3)0.0630 (3)0.4133 (3)0.0700 (11)
H70.63790.03770.47050.084*
C80.5972 (3)0.1810 (3)0.3942 (2)0.0580 (10)
H80.62900.23540.43750.070*
C90.2706 (2)0.1615 (3)0.1377 (2)0.0520 (9)
C100.2309 (3)0.2720 (4)0.1347 (3)0.0678 (11)
H100.25060.33430.10750.081*
C110.1622 (3)0.2882 (5)0.1725 (3)0.0990 (16)
H110.13470.36180.17030.119*
C120.1338 (4)0.1972 (7)0.2131 (4)0.122 (2)
H120.08780.20920.23930.147*
C130.1726 (4)0.0891 (6)0.2155 (4)0.1122 (19)
H130.15240.02730.24270.135*
C140.2411 (3)0.0703 (4)0.1783 (3)0.0806 (13)
H140.26760.00390.18050.097*
C150.5561 (2)0.4455 (3)0.3038 (2)0.0435 (8)
H150.55450.50480.26310.052*
C160.5871 (3)0.4766 (3)0.3883 (2)0.0584 (10)
H160.59350.42020.43230.070*
C170.6115 (3)0.5988 (3)0.4141 (2)0.0568 (9)
C180.6866 (4)0.7253 (4)0.5392 (3)0.1042 (17)
H18A0.74870.71790.58380.125*
H18B0.69050.77720.49220.125*
C190.6217 (5)0.7677 (6)0.5773 (5)0.171 (3)
H19A0.56070.77370.53220.257*
H19B0.64130.84370.60280.257*
H19C0.61840.71470.62320.257*
C200.4452 (2)0.3969 (3)0.1047 (2)0.0414 (8)
H200.43920.37100.04750.050*
C210.4036 (2)0.5800 (3)0.0423 (2)0.0422 (8)
C220.4291 (3)0.6969 (3)0.0548 (2)0.0510 (9)
H220.46520.72240.11150.061*
C230.4025 (3)0.7768 (3)0.0144 (2)0.0525 (9)
H230.42290.85420.00380.063*
C240.3456 (2)0.7435 (3)0.1000 (2)0.0463 (8)
C250.3195 (3)0.6259 (3)0.1123 (2)0.0535 (9)
H250.28190.60050.16860.064*
C260.3479 (2)0.5462 (3)0.0433 (2)0.0504 (9)
H260.32940.46810.05410.060*
C270.2495 (3)0.7897 (4)0.2540 (3)0.0799 (13)
H27A0.27070.72040.27590.120*
H27B0.24220.85250.29610.120*
H27C0.19000.77420.24630.120*
C280.3307 (3)0.9474 (3)0.1501 (3)0.0791 (13)
H28A0.29070.97180.11730.119*
H28B0.31430.99020.20520.119*
H28C0.39530.96280.11530.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0559 (6)0.0456 (6)0.0497 (5)0.0021 (4)0.0137 (4)0.0142 (4)
N10.0422 (16)0.0341 (15)0.0489 (16)0.0028 (11)0.0119 (13)0.0024 (12)
N20.0514 (18)0.0395 (16)0.0414 (15)0.0072 (13)0.0156 (13)0.0048 (12)
N30.078 (2)0.054 (2)0.0538 (19)0.0166 (16)0.0239 (17)0.0172 (15)
O10.081 (2)0.0431 (15)0.0905 (19)0.0035 (13)0.0195 (16)0.0292 (13)
O20.0754 (19)0.0820 (19)0.0428 (14)0.0016 (14)0.0159 (13)0.0011 (12)
O30.097 (2)0.0371 (15)0.0690 (17)0.0082 (13)0.0174 (16)0.0045 (13)
O40.194 (4)0.0576 (19)0.0543 (18)0.025 (2)0.020 (2)0.0119 (14)
C10.0364 (18)0.0319 (17)0.0466 (19)0.0017 (13)0.0162 (15)0.0023 (14)
C20.0413 (19)0.0295 (17)0.0483 (19)0.0018 (13)0.0161 (16)0.0045 (14)
C30.0394 (19)0.0347 (18)0.0498 (19)0.0015 (14)0.0147 (16)0.0039 (15)
C40.0375 (19)0.0353 (18)0.0520 (19)0.0018 (14)0.0172 (16)0.0043 (15)
C50.060 (2)0.034 (2)0.077 (3)0.0048 (17)0.018 (2)0.0022 (18)
C60.072 (3)0.039 (2)0.094 (3)0.0060 (19)0.025 (3)0.022 (2)
C70.075 (3)0.050 (3)0.072 (3)0.005 (2)0.007 (2)0.018 (2)
C80.059 (2)0.044 (2)0.058 (2)0.0003 (17)0.0026 (19)0.0078 (17)
C90.046 (2)0.056 (2)0.048 (2)0.0094 (18)0.0071 (17)0.0089 (17)
C100.059 (3)0.070 (3)0.074 (3)0.006 (2)0.021 (2)0.009 (2)
C110.061 (3)0.134 (5)0.105 (4)0.016 (3)0.031 (3)0.033 (3)
C120.063 (4)0.212 (8)0.104 (4)0.026 (4)0.045 (3)0.039 (5)
C130.080 (4)0.157 (6)0.112 (4)0.040 (4)0.048 (4)0.005 (4)
C140.073 (3)0.079 (3)0.090 (3)0.019 (2)0.029 (3)0.003 (2)
C150.044 (2)0.0366 (19)0.0460 (19)0.0030 (14)0.0098 (16)0.0074 (14)
C160.084 (3)0.038 (2)0.048 (2)0.0005 (18)0.015 (2)0.0041 (16)
C170.070 (3)0.042 (2)0.053 (2)0.0020 (18)0.014 (2)0.0034 (18)
C180.140 (5)0.088 (4)0.094 (4)0.030 (3)0.051 (3)0.023 (3)
C190.192 (8)0.132 (6)0.254 (9)0.013 (5)0.161 (8)0.044 (5)
C200.044 (2)0.042 (2)0.0415 (18)0.0035 (15)0.0177 (15)0.0006 (14)
C210.049 (2)0.0393 (19)0.0397 (18)0.0077 (15)0.0173 (16)0.0019 (14)
C220.067 (2)0.040 (2)0.0449 (19)0.0082 (17)0.0169 (18)0.0048 (15)
C230.074 (3)0.0335 (18)0.052 (2)0.0077 (17)0.024 (2)0.0034 (16)
C240.051 (2)0.046 (2)0.047 (2)0.0158 (16)0.0227 (17)0.0107 (16)
C250.060 (2)0.053 (2)0.0419 (19)0.0019 (18)0.0086 (17)0.0026 (16)
C260.054 (2)0.042 (2)0.050 (2)0.0041 (16)0.0107 (18)0.0015 (16)
C270.077 (3)0.096 (3)0.059 (3)0.020 (2)0.014 (2)0.030 (2)
C280.109 (4)0.053 (3)0.086 (3)0.027 (2)0.047 (3)0.027 (2)
Geometric parameters (Å, º) top
S1—O11.413 (2)C11—H110.9300
S1—O21.415 (2)C12—C131.358 (7)
S1—N11.676 (3)C12—H120.9300
S1—C91.740 (4)C13—C141.367 (6)
N1—C41.417 (4)C13—H130.9300
N1—C11.420 (4)C14—H140.9300
N2—C201.267 (4)C15—C161.315 (4)
N2—C211.406 (4)C15—H150.9300
N3—C241.374 (4)C16—C171.463 (5)
N3—C281.446 (4)C16—H160.9300
N3—C271.452 (5)C18—C191.398 (6)
O3—C171.185 (4)C18—H18A0.9700
O4—C171.335 (4)C18—H18B0.9700
O4—C181.475 (5)C19—H19A0.9600
C1—C21.366 (4)C19—H19B0.9600
C1—C201.451 (4)C19—H19C0.9600
C2—C151.446 (4)C20—H200.9300
C2—C31.451 (4)C21—C221.382 (4)
C3—C81.392 (4)C21—C261.392 (4)
C3—C41.399 (4)C22—C231.379 (4)
C4—C51.392 (4)C22—H220.9300
C5—C61.364 (5)C23—C241.396 (5)
C5—H50.9300C23—H230.9300
C6—C71.391 (5)C24—C251.391 (4)
C6—H60.9300C25—C261.377 (4)
C7—C81.374 (4)C25—H250.9300
C7—H70.9300C26—H260.9300
C8—H80.9300C27—H27A0.9600
C9—C141.373 (5)C27—H27B0.9600
C9—C101.388 (5)C27—H27C0.9600
C10—C111.371 (6)C28—H28A0.9600
C10—H100.9300C28—H28B0.9600
C11—C121.364 (7)C28—H28C0.9600
O1—S1—O2120.51 (16)C9—C14—H14120.2
O1—S1—N1106.1 (1)C16—C15—C2128.7 (3)
O2—S1—N1107.1 (2)C16—C15—H15115.6
O1—S1—C9108.6 (2)C2—C15—H15115.6
O2—S1—C9108.7 (2)C15—C16—C17120.8 (3)
N1—S1—C9104.65 (14)C15—C16—H16119.6
C4—N1—C1107.3 (2)C17—C16—H16119.6
C4—N1—S1120.5 (2)O3—C17—O4123.0 (3)
C1—N1—S1122.2 (2)O3—C17—C16125.9 (3)
C20—N2—C21119.0 (3)O4—C17—C16111.1 (3)
C24—N3—C28119.9 (3)C19—C18—O4104.6 (5)
C24—N3—C27119.9 (3)C19—C18—H18A110.8
C28—N3—C27116.8 (3)O4—C18—H18A110.8
C17—O4—C18117.9 (3)C19—C18—H18B110.8
C2—C1—N1109.4 (2)O4—C18—H18B110.8
C2—C1—C20129.2 (3)H18A—C18—H18B108.9
N1—C1—C20120.9 (3)C18—C19—H19A109.5
C1—C2—C15124.0 (3)C18—C19—H19B109.5
C1—C2—C3107.8 (3)H19A—C19—H19B109.5
C15—C2—C3128.2 (3)C18—C19—H19C109.5
C8—C3—C4119.1 (3)H19A—C19—H19C109.5
C8—C3—C2133.5 (3)H19B—C19—H19C109.5
C4—C3—C2107.3 (3)N2—C20—C1121.9 (3)
C5—C4—C3122.0 (3)N2—C20—H20119.0
C5—C4—N1129.7 (3)C1—C20—H20119.0
C3—C4—N1108.2 (3)C22—C21—C26117.0 (3)
C6—C5—C4117.5 (3)C22—C21—N2119.2 (3)
C6—C5—H5121.2C26—C21—N2123.7 (3)
C4—C5—H5121.2C23—C22—C21122.0 (3)
C5—C6—C7121.5 (3)C23—C22—H22119.0
C5—C6—H6119.3C21—C22—H22119.0
C7—C6—H6119.3C22—C23—C24121.1 (3)
C8—C7—C6121.1 (4)C22—C23—H23119.5
C8—C7—H7119.4C24—C23—H23119.5
C6—C7—H7119.4N3—C24—C25121.9 (3)
C7—C8—C3118.8 (3)N3—C24—C23121.2 (3)
C7—C8—H8120.6C25—C24—C23116.8 (3)
C3—C8—H8120.6C26—C25—C24121.7 (3)
C14—C9—C10119.9 (4)C26—C25—H25119.1
C14—C9—S1120.7 (3)C24—C25—H25119.1
C10—C9—S1119.4 (3)C25—C26—C21121.4 (3)
C11—C10—C9119.1 (4)C25—C26—H26119.3
C11—C10—H10120.4C21—C26—H26119.3
C9—C10—H10120.4N3—C27—H27A109.5
C12—C11—C10120.5 (5)N3—C27—H27B109.5
C12—C11—H11119.7H27A—C27—H27B109.5
C10—C11—H11119.7N3—C27—H27C109.5
C13—C12—C11120.1 (5)H27A—C27—H27C109.5
C13—C12—H12119.9H27B—C27—H27C109.5
C11—C12—H12119.9N3—C28—H28A109.5
C12—C13—C14120.7 (5)N3—C28—H28B109.5
C12—C13—H13119.7H28A—C28—H28B109.5
C14—C13—H13119.7N3—C28—H28C109.5
C13—C14—C9119.7 (5)H28A—C28—H28C109.5
C13—C14—H14120.2H28B—C28—H28C109.5
O1—S1—N1—C446.3 (3)O2—S1—C9—C1034.2 (3)
O2—S1—N1—C4176.2 (2)N1—S1—C9—C1079.9 (3)
C9—S1—N1—C468.5 (3)C14—C9—C10—C110.2 (6)
O1—S1—N1—C1172.6 (2)S1—C9—C10—C11178.6 (3)
O2—S1—N1—C142.6 (3)C9—C10—C11—C120.6 (7)
C9—S1—N1—C172.6 (3)C10—C11—C12—C130.9 (8)
C4—N1—C1—C21.1 (3)C11—C12—C13—C140.8 (9)
S1—N1—C1—C2146.6 (2)C12—C13—C14—C90.4 (8)
C4—N1—C1—C20173.8 (3)C10—C9—C14—C130.1 (6)
S1—N1—C1—C2040.7 (4)S1—C9—C14—C13178.8 (4)
N1—C1—C2—C15178.0 (3)C1—C2—C15—C16163.1 (4)
C20—C1—C2—C156.0 (5)C3—C2—C15—C1619.5 (6)
N1—C1—C2—C30.1 (3)C2—C15—C16—C17176.5 (3)
C20—C1—C2—C3171.9 (3)C18—O4—C17—O35.0 (6)
C1—C2—C3—C8174.4 (3)C18—O4—C17—C16174.2 (4)
C15—C2—C3—C83.4 (6)C15—C16—C17—O34.9 (6)
C1—C2—C3—C41.3 (3)C15—C16—C17—O4174.2 (4)
C15—C2—C3—C4179.0 (3)C17—O4—C18—C19107.4 (5)
C8—C3—C4—C52.0 (5)C21—N2—C20—C1179.9 (3)
C2—C3—C4—C5178.3 (3)C2—C1—C20—N232.5 (5)
C8—C3—C4—N1174.4 (3)N1—C1—C20—N2156.3 (3)
C2—C3—C4—N12.0 (3)C20—N2—C21—C22149.2 (3)
C1—N1—C4—C5177.9 (3)C20—N2—C21—C2634.9 (4)
S1—N1—C4—C535.9 (4)C26—C21—C22—C231.2 (5)
C1—N1—C4—C31.9 (3)N2—C21—C22—C23177.4 (3)
S1—N1—C4—C3148.1 (2)C21—C22—C23—C242.2 (5)
C3—C4—C5—C61.2 (5)C28—N3—C24—C25167.8 (3)
N1—C4—C5—C6174.3 (3)C27—N3—C24—C259.0 (5)
C4—C5—C6—C70.6 (6)C28—N3—C24—C2313.4 (5)
C5—C6—C7—C80.8 (6)C27—N3—C24—C23172.2 (3)
C6—C7—C8—C31.5 (6)C22—C23—C24—N3179.4 (3)
C4—C3—C8—C72.1 (5)C22—C23—C24—C251.8 (5)
C2—C3—C8—C7177.3 (3)N3—C24—C25—C26179.3 (3)
O1—S1—C9—C1411.8 (3)C23—C24—C25—C260.4 (5)
O2—S1—C9—C14144.6 (3)C24—C25—C26—C210.5 (5)
N1—S1—C9—C14101.2 (3)C22—C21—C26—C250.1 (5)
O1—S1—C9—C10167.1 (3)N2—C21—C26—C25175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.332.925 (4)121
C18—H18B···O30.972.302.692 (5)103
C20—H20···O20.932.342.791 (3)109
C15—H15···N20.932.453.024 (3)119

Experimental details

Crystal data
Chemical formulaC28H27N3O4S
Mr501.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.0582 (3), 11.3915 (3), 15.8945 (3)
β (°) 109.595 (1)
V3)2568.6 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.32 × 0.23 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17978, 6295, 2749
Rint0.094
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.187, 0.91
No. of reflections6295
No. of parameters329
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELX97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—O11.413 (2)N1—C11.420 (4)
S1—O21.415 (2)N3—C241.374 (4)
S1—N11.676 (3)O3—C171.185 (4)
S1—C91.740 (4)O4—C171.335 (4)
N1—C41.417 (4)O4—C181.475 (5)
O1—S1—N1106.1 (1)C6—C5—C4117.5 (3)
O2—S1—C9108.7 (2)C5—C6—C7121.5 (3)
C17—O4—C18117.9 (3)C8—C7—C6121.1 (4)
C2—C1—N1109.4 (2)C7—C8—C3118.8 (3)
C1—C2—C15124.0 (3)O3—C17—O4123.0 (3)
C15—C2—C3128.2 (3)O3—C17—C16125.9 (3)
C5—C4—C3122.0 (3)O4—C17—C16111.1 (3)
O2—S1—N1—C4176.2 (2)O1—S1—C9—C1411.8 (3)
C9—S1—N1—C468.5 (3)O2—S1—C9—C14144.6 (3)
S1—N1—C4—C535.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.332.925 (4)121
C18—H18B···O30.972.302.692 (5)103
C20—H20···O20.932.342.791 (3)109
C15—H15···N20.932.453.024 (3)119
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds