Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
N-(2-Chloro­benzyl)-1,2,3,4-tetra­hydro­iso­quinoline-1,3-dione, C16H12ClNO2, crystallizes in P21/n with three crystallographically independent mol­ecules in the asymmetric unit, which differ slightly in conformation, N-(2-bromo-4-methyl­phenyl)-1,2,3,4-tetra­hydro­iso­quinoline-1,3-dione, C16H12BrNO2, crystallizes in P21/n with one mol­ecule in the asymmetric unit andN-(2,3-di­chloro­phenyl)-1,2,3,4-tetra­hydro­iso­quinoline-1,3-dione, C15H9Cl2NO2, crystallizes in P21/c with one mol­ecule in the asymmetric unit. In all three structures, the heterocyclic rings adopt approximately planar conformations. The pyridine rings are orthogonal to the substituted phenyl rings. In all three structures, the crystal packing is stabilized by intermolecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000896/na1552sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000896/na1552Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000896/na1552IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000896/na1552IIIsup4.hkl
Contains datablock III

CCDC references: 183006; 183007; 183008

Comment top

Isoquinoline is a well known ligand that has been used in studies of the formation of various adducts of group IVA halides (Miller & Onyszchuk, 1967). Tetrahydroisoquinolines represent a class of biologically active phenyl ethylamines (Brzezinska, 1994), and these compounds are of great interest due to their biological and pharmacological properties. They are also useful as key intermediates in the synthesis of isoquinoline alkaloids, such as cherylline and latifine (Honda et al., 2001). Isoquinoline fused-ring systems such as pyrroloisoquinoline show valuable pharmacological activity, e.g. antileukemic (Anderson et al., 1998), muscaricinic, agonostic (Loesel et al., 1987) and antidepressant properties (Elwan et al., 1996). Their marked antidepressant, tranquilizing (Sulkowski & Willie, 1969), analgesic and sedative (Hamamato & Kajiwara, 1966) activity renders 1(2H)-isoquinolines an important class of compounds. These compounds have also been used as intermediates for the synthesis of a number of naturally occurring alkaloids (Kobayashi, 1950; Walker et al., 1964). A variety of 1,2,3,4-tetrahydroisoquinoline derivatives have been studied extensively in the past in order to elucidate their antidepressant-like activity. The title compounds, N-(2-chlorobenzyl)-1,2,3,4-tetrahydroisoquinoline-1,3-dione, (I), N-(2-bromo-4-methylphenyl)-1,2,3,4-tetrahydroisoquinoline-1,3-dione, (II), and N-(2,3-dichlorophenyl)-1,2,3,4-tetrahydroisoquinoline-1,3-dione, (III), are of interest as intermediates in the synthesis of alkaloids such as corgoine (Kametani et al., 1975) and sendaverine (Kametani et al., 1979). \sch

The structures in the present study consist of an isoquinoline moiety and a substituted phenyl ring. Structure (I) contains three molecules in the asymmetric unit, designated (IA), (IB) and (IC) (Fig. 1). Structures (II) (Fig. 2) and (III) (Fig. 3) contain one molecule per asymmetric unit.

The CO bond lengths in all three structures, and Csp2—Br in (II) and Csp2—Cl in (III), are comparable with the values found in a search of the Cambridge Structural Database (Release?; Allen et al., 1987). The bond distances and angles of the isoquinoline moiety in these structures are in good agreement with the values reported for other 1,2,3,4-tetrahydroisoquinoline derivatives (Bellard et al., 1982; Plywaczyk et al., 1984). Selected geometric parameters for (I), (II) and (III) are given in Tables 1, 3 and 5, respectively.

In (I), the phenyl rings of the benzyl groups are twisted with respect to the isoquinoline system. The torsion angles around the N1—C16 and C16—C10 single bonds are almost equal for (IB) and (IC) but are different for (IA). This shows that the orientation of the benzyl group in (IA) is different from that in (IB) and (IC).

The isoquinoline moiety is slightly folded about the line passing through atoms C8 and C9, and the dihedral angle between the two halves ranges from 2.2 (1) to 3.7 (1)°. The phenyl ring in all three structures is orthogonal to the isoquinoline moiety, forming a dihedral angle of 87.6 (1)° in (IA), 85.7 (1)° in (IB), 84.5 (1)° in (IC), 76.6 (1)° in (II) and 69.9 (1)° in (III). It can be seen that the value in (III) is lower than that in (II), and this is probably a result of the heavier substituents in the phenyl ring of (II). Query.

The dihedral angle between the least-squares planes of the substituted phenyl and benzo-fused rings is 88.2 (1)° for (IA), 85.2 (1)° for (IB), 84.4 (1)° for (IC), 75.6 (0)° for (II) and 69.3 (1)° for (III). The deviations of atoms O1 and O2 from the mean planes defined by atoms N1, C1, C2, C9, C8 and C7 are -0.098 (2) and 0.040 (1) Å, respectively, in (IA), -0.084 (3) and 0.071 (3) Å, respectively, in (IB), -0.108 (3) and 0.086 (3) Å, respectively, in (IC), -0.072 (0) and 0.016 (0) Å, respectively, in (II), and -0.237 (2) and 0.149 (2) Å, respectively, in (III).

In all three structures, the bond lengths and angles, the dihedral angles between the two halves of the isoquinoline moiety, and the dihedral angles between the isoquinoline moiety and the phenyl ring are comparable with those observed in similar structures (Ammon & Wheeler, 1974).

In addition to normal van der Waals interactions, the crystal packing in all three structures is stabilized by intermolecular C—H···O hydrogen bonds. In (I), five intermolecular C—H···O hydrogen bonds occur, with H···O distances less than the sum of the van der Waals radii (Bondi, 1964). In this structure, the symmetry-related isoquinoline molecules are arranged in a head-to-head manner and are alternately parallel to each other. This type of stacking is also found in 1,4-dihydroisoquinoline (Minter et al., 1996). In (II), an intermolecular C—H···O hydrogen bond between atoms C5 and O1 stabilizes the crystal packing. The interesting feature of the crystal structure of (III) is that a single C—H···O hydrogen bond links the molecules into cyclic centrosymmetric dimers formed by an R22(16) ring system. This is a layered structure, with layers parallel to the ac plane. Details of the hydrogen-bond geometry in (I), (II) and (III) are given in Tables 2, 4 and 6, respectively.

The most remarkable feature of the crystal structure of (II) is the existence of short intermolecular halogen···O contact, Br1···O2i 3.012 (3) Å [symmetry code: (i) 1/2 - x, y + 1/2, 3/2 - z], between the phenyl ring and the isoquinoline moiety.

Experimental top

The title compounds were synthesized from homophthalic acid and the corresponding substituted aromatic amines. The yields were 75% (m.p. 435–437 K) for (I), 71% (m.p. 395–397 K) for (II) and 68% (m.p. 471–473 K) for (III). The compounds were dissolved in a mixture of ethyl acetate and hexane (4:1). Slow evaporation of the solvent at room temperature produced crystals from which the experimental samples were obtained.

Refinement top

For all three compounds, all H atoms were geometrically fixed and allowed to ride on their parent atoms, with C—H = 0.93–0.99 Å, and Uiso = 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (I); CAD-4 EXPRESS (Enraf Nonius, 1994) for (II), (III). Cell refinement: CAD-4 Software for (I); CAD-4 EXPRESS for (II), (III). Data reduction: TEXSAN (Molecular Structure Corporation, 1985) for (I); XCAD4 (Harms & Wocadlo, 1995) for (II), (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the three independent molecules of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the molecular structure of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view of the molecular structure of (III) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) N-(2-Chlorobenzyl)-1,2,3,4-tetrahydroisoquinoline-1,3-dione top
Crystal data top
C16H12ClNO2F(000) = 1776
Mr = 285.72Dx = 1.410 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.7922 (14) ÅCell parameters from 25 reflections
b = 21.538 (4) Åθ = 20–30°
c = 24.351 (5) ŵ = 2.52 mm1
β = 98.92 (2)°T = 293 K
V = 4037.4 (13) Å3Prism, colourless
Z = 120.50 × 0.41 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
5013 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 68.2°, θmin = 5.5°
ω/2θ scansh = 09
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
k = 025
Tmin = 0.366, Tmax = 0.633l = 2928
7916 measured reflections3 standard reflections every 200 reflections
7348 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.1067P)2 + 1.2945P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
7348 reflectionsΔρmax = 0.38 e Å3
542 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (2)
Crystal data top
C16H12ClNO2V = 4037.4 (13) Å3
Mr = 285.72Z = 12
Monoclinic, P21/nCu Kα radiation
a = 7.7922 (14) ŵ = 2.52 mm1
b = 21.538 (4) ÅT = 293 K
c = 24.351 (5) Å0.50 × 0.41 × 0.20 mm
β = 98.92 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
5013 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
Rint = 0.039
Tmin = 0.366, Tmax = 0.6333 standard reflections every 200 reflections
7916 measured reflections intensity decay: 0.6%
7348 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
7348 reflectionsΔρmin = 0.34 e Å3
542 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.97253 (16)0.75637 (5)0.33096 (6)0.1079 (4)
N1A0.8330 (4)0.59516 (13)0.42749 (11)0.0625 (7)
O1A0.8642 (4)0.55336 (13)0.34525 (10)0.0839 (8)
O2A0.8095 (5)0.63704 (13)0.51103 (12)0.0998 (10)
C1A0.8301 (5)0.54512 (17)0.39165 (13)0.0629 (8)
C2A0.7782 (5)0.48367 (16)0.41021 (13)0.0692 (9)
H2A10.86520.45290.40190.083*
H2A20.66600.47240.38750.083*
C3A0.7317 (5)0.41894 (17)0.49172 (15)0.0719 (10)
H3A0.72590.38320.46860.086*
C4A0.7129 (5)0.4130 (2)0.54606 (17)0.0801 (11)
H4A0.69760.37290.56090.096*
C5A0.7159 (5)0.4639 (2)0.57951 (16)0.0830 (12)
H5A0.69980.45920.61720.100*
C6A0.7422 (5)0.52244 (19)0.55884 (14)0.0751 (10)
H6A0.74400.55800.58210.090*
C7A0.8029 (5)0.59081 (17)0.48238 (14)0.0674 (9)
C8A0.7660 (4)0.52861 (16)0.50335 (13)0.0591 (8)
C9A0.7593 (4)0.47705 (15)0.46972 (13)0.0566 (8)
C10A0.7293 (4)0.68657 (14)0.37006 (13)0.0581 (8)
C11A0.7593 (5)0.73405 (15)0.33435 (16)0.0702 (9)
C12A0.6248 (7)0.7641 (2)0.3020 (2)0.0944 (13)
H12A0.64860.79630.27760.113*
C13A0.4570 (6)0.7477 (2)0.30459 (19)0.0897 (13)
H13A0.36390.76930.28280.108*
C14A0.4235 (5)0.7006 (2)0.33840 (17)0.0807 (11)
H14A0.30730.68840.34000.097*
C15A0.5596 (5)0.67084 (18)0.37016 (16)0.0744 (10)
H15A0.53460.63770.39340.089*
C16A0.8788 (5)0.65554 (17)0.40652 (16)0.0726 (10)
H16E0.97570.65000.38500.087*
H16F0.92010.68300.43840.087*
Cl1B0.25039 (13)0.27435 (5)0.02324 (5)0.0827 (3)
N1B0.1484 (3)0.44858 (13)0.10985 (11)0.0602 (7)
O1B0.2034 (4)0.47403 (14)0.02456 (11)0.0890 (8)
O2B0.0940 (4)0.42243 (12)0.19529 (11)0.0809 (7)
C1B0.1646 (4)0.49158 (18)0.06820 (14)0.0639 (9)
C2B0.1299 (5)0.55794 (17)0.07851 (13)0.0671 (9)
H2B10.22950.58250.06980.081*
H2B20.02650.57070.05200.081*
C3B0.0834 (5)0.63678 (17)0.14993 (15)0.0728 (10)
H3B0.09430.66870.12370.087*
C4B0.0513 (6)0.65202 (19)0.20233 (17)0.0839 (12)
H4B0.03790.69440.21180.101*
C5B0.0384 (5)0.60659 (19)0.24109 (16)0.0790 (11)
H5B0.01680.61760.27720.095*
C6B0.0566 (5)0.54569 (17)0.22764 (14)0.0663 (9)
H6B0.04770.51420.25440.080*
C7B0.1087 (4)0.46346 (16)0.16191 (13)0.0598 (8)
C8B0.0882 (4)0.52974 (15)0.17476 (12)0.0540 (7)
C9B0.0999 (4)0.57507 (16)0.13517 (13)0.0576 (8)
C10B0.0256 (4)0.35185 (15)0.06401 (13)0.0559 (7)
C11B0.0441 (4)0.30199 (15)0.02938 (13)0.0580 (8)
C12B0.0975 (5)0.27190 (17)0.00031 (16)0.0738 (10)
H12B0.08130.23800.02340.089*
C13B0.2625 (5)0.29106 (19)0.00565 (17)0.0778 (11)
H13B0.36050.27020.01410.093*
C14B0.2853 (5)0.34018 (19)0.03954 (18)0.0786 (11)
H14B0.39900.35380.04310.094*
C15B0.1422 (5)0.36954 (18)0.06827 (16)0.0719 (9)
H15B0.15940.40330.09200.086*
C16B0.1798 (4)0.38311 (16)0.09724 (16)0.0701 (9)
H16A0.21270.36030.13260.084*
H16B0.27890.38080.07630.084*
Cl1C1.07537 (16)0.18148 (5)0.15379 (6)0.1052 (4)
N1C0.9770 (3)0.03383 (12)0.27012 (10)0.0572 (6)
O1C1.0418 (4)0.00997 (13)0.19228 (10)0.0839 (8)
O2C0.9143 (4)0.07817 (12)0.34833 (10)0.0825 (8)
C1C0.9998 (4)0.01755 (17)0.23739 (13)0.0624 (8)
C2C0.9661 (5)0.08015 (16)0.25877 (14)0.0680 (9)
H1C10.86350.09770.23470.082*
H1C21.06650.10700.25470.082*
C3C0.9223 (5)0.14154 (18)0.34284 (16)0.0773 (11)
H3C0.93490.17860.32260.093*
C4C0.8918 (6)0.1452 (2)0.39634 (18)0.0890 (12)
H4C0.88300.18480.41290.107*
C5C0.8737 (5)0.0925 (2)0.42657 (15)0.0810 (11)
H5C0.85260.09560.46390.097*
C6C0.8861 (5)0.03540 (18)0.40264 (14)0.0669 (9)
H6C0.87240.00130.42320.080*
C7C0.9346 (4)0.03072 (15)0.32361 (13)0.0578 (8)
C8C0.9190 (4)0.03115 (15)0.34812 (12)0.0540 (7)
C9C0.9351 (4)0.08437 (15)0.31746 (13)0.0584 (8)
C10C0.8500 (4)0.11897 (14)0.20870 (13)0.0575 (8)
C11C0.8677 (5)0.16024 (15)0.16607 (15)0.0659 (9)
C12C0.7265 (6)0.18443 (18)0.13214 (17)0.0829 (12)
H12C0.74270.21240.10320.099*
C13C0.5625 (6)0.16814 (19)0.14008 (18)0.0858 (12)
H13C0.46430.18470.11670.103*
C14C0.5406 (5)0.12768 (18)0.18197 (16)0.0746 (10)
H14C0.42710.11610.18770.090*
C15C0.6828 (4)0.10409 (16)0.21552 (14)0.0641 (8)
H15C0.66550.07640.24460.077*
C16C1.0054 (4)0.09482 (16)0.24707 (15)0.0655 (9)
H16C1.03610.12460.27800.079*
H16D1.10520.09230.22650.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0979 (8)0.0789 (7)0.1469 (11)0.0175 (6)0.0185 (7)0.0375 (7)
N1A0.0757 (18)0.0572 (16)0.0525 (15)0.0018 (13)0.0036 (13)0.0112 (12)
O1A0.108 (2)0.0937 (19)0.0539 (14)0.0040 (16)0.0262 (14)0.0138 (13)
O2A0.161 (3)0.0641 (17)0.0722 (17)0.0108 (18)0.0105 (18)0.0127 (14)
C1A0.073 (2)0.068 (2)0.0473 (18)0.0074 (17)0.0094 (15)0.0063 (15)
C2A0.099 (3)0.061 (2)0.0491 (18)0.0054 (19)0.0160 (17)0.0027 (15)
C3A0.086 (3)0.064 (2)0.069 (2)0.0114 (18)0.0221 (19)0.0131 (17)
C4A0.087 (3)0.078 (3)0.081 (3)0.019 (2)0.032 (2)0.026 (2)
C5A0.092 (3)0.101 (3)0.063 (2)0.024 (2)0.032 (2)0.029 (2)
C6A0.092 (3)0.085 (3)0.0511 (18)0.027 (2)0.0208 (18)0.0035 (18)
C7A0.083 (2)0.066 (2)0.0500 (18)0.0165 (18)0.0027 (16)0.0028 (16)
C8A0.067 (2)0.065 (2)0.0445 (16)0.0163 (16)0.0081 (14)0.0082 (14)
C9A0.0616 (19)0.0594 (19)0.0493 (16)0.0105 (15)0.0104 (14)0.0052 (14)
C10A0.072 (2)0.0479 (17)0.0524 (17)0.0006 (15)0.0042 (15)0.0012 (14)
C11A0.088 (3)0.0495 (18)0.072 (2)0.0023 (17)0.0096 (19)0.0037 (16)
C12A0.108 (4)0.071 (3)0.101 (3)0.012 (2)0.004 (3)0.031 (2)
C13A0.094 (3)0.079 (3)0.089 (3)0.025 (2)0.005 (2)0.012 (2)
C14A0.073 (2)0.084 (3)0.084 (3)0.011 (2)0.009 (2)0.000 (2)
C15A0.076 (2)0.076 (2)0.072 (2)0.0010 (19)0.0128 (18)0.0151 (19)
C16A0.078 (2)0.067 (2)0.070 (2)0.0086 (18)0.0028 (18)0.0144 (18)
Cl1B0.0840 (7)0.0703 (6)0.0966 (7)0.0080 (5)0.0232 (5)0.0137 (5)
N1B0.0621 (16)0.0587 (16)0.0578 (16)0.0032 (13)0.0031 (12)0.0114 (13)
O1B0.104 (2)0.103 (2)0.0648 (16)0.0080 (16)0.0279 (14)0.0244 (15)
O2B0.110 (2)0.0646 (15)0.0678 (15)0.0086 (14)0.0141 (14)0.0081 (13)
C1B0.061 (2)0.078 (2)0.0524 (19)0.0087 (17)0.0079 (15)0.0103 (17)
C2B0.084 (2)0.070 (2)0.0475 (17)0.0038 (18)0.0123 (16)0.0009 (16)
C3B0.099 (3)0.058 (2)0.062 (2)0.0001 (19)0.0149 (19)0.0055 (17)
C4B0.114 (3)0.066 (2)0.075 (3)0.001 (2)0.025 (2)0.016 (2)
C5B0.102 (3)0.079 (3)0.059 (2)0.007 (2)0.023 (2)0.0142 (19)
C6B0.079 (2)0.070 (2)0.0513 (18)0.0149 (18)0.0138 (16)0.0025 (16)
C7B0.067 (2)0.062 (2)0.0493 (17)0.0091 (16)0.0051 (15)0.0046 (15)
C8B0.0580 (18)0.0578 (18)0.0457 (16)0.0066 (14)0.0068 (13)0.0028 (14)
C9B0.0631 (19)0.0610 (19)0.0488 (17)0.0034 (15)0.0088 (14)0.0030 (14)
C10B0.0605 (19)0.0552 (18)0.0511 (17)0.0029 (15)0.0059 (14)0.0017 (14)
C11B0.070 (2)0.0508 (17)0.0526 (17)0.0003 (15)0.0084 (15)0.0024 (14)
C12B0.096 (3)0.057 (2)0.066 (2)0.0093 (19)0.006 (2)0.0084 (17)
C13B0.073 (3)0.071 (2)0.083 (3)0.019 (2)0.006 (2)0.001 (2)
C14B0.062 (2)0.082 (3)0.090 (3)0.0044 (19)0.008 (2)0.002 (2)
C15B0.067 (2)0.073 (2)0.075 (2)0.0013 (18)0.0100 (18)0.0103 (19)
C16B0.061 (2)0.065 (2)0.080 (2)0.0029 (16)0.0016 (17)0.0159 (18)
Cl1C0.1139 (9)0.0807 (7)0.1317 (10)0.0057 (6)0.0528 (8)0.0374 (7)
N1C0.0655 (16)0.0561 (15)0.0507 (14)0.0059 (13)0.0108 (12)0.0022 (12)
O1C0.109 (2)0.0955 (19)0.0525 (14)0.0224 (16)0.0301 (13)0.0078 (13)
O2C0.120 (2)0.0611 (15)0.0701 (16)0.0101 (14)0.0269 (15)0.0117 (12)
C1C0.067 (2)0.071 (2)0.0495 (18)0.0143 (17)0.0121 (15)0.0002 (15)
C2C0.091 (3)0.061 (2)0.0517 (18)0.0075 (18)0.0119 (17)0.0081 (15)
C3C0.107 (3)0.058 (2)0.065 (2)0.005 (2)0.007 (2)0.0013 (17)
C4C0.120 (4)0.072 (3)0.074 (3)0.009 (2)0.016 (2)0.018 (2)
C5C0.094 (3)0.096 (3)0.055 (2)0.000 (2)0.0166 (19)0.014 (2)
C6C0.078 (2)0.074 (2)0.0499 (18)0.0070 (18)0.0130 (16)0.0017 (16)
C7C0.065 (2)0.0581 (19)0.0501 (17)0.0094 (15)0.0092 (14)0.0034 (14)
C8C0.0548 (17)0.0606 (19)0.0455 (16)0.0062 (14)0.0044 (13)0.0019 (14)
C9C0.068 (2)0.0554 (18)0.0488 (17)0.0044 (15)0.0012 (14)0.0001 (14)
C10C0.070 (2)0.0484 (17)0.0541 (18)0.0059 (15)0.0105 (15)0.0053 (13)
C11C0.082 (2)0.0483 (17)0.071 (2)0.0070 (16)0.0228 (18)0.0027 (16)
C12C0.114 (4)0.061 (2)0.075 (2)0.026 (2)0.019 (2)0.0125 (19)
C13C0.097 (3)0.077 (3)0.077 (3)0.033 (2)0.005 (2)0.002 (2)
C14C0.071 (2)0.075 (2)0.075 (2)0.0121 (19)0.0040 (19)0.008 (2)
C15C0.070 (2)0.064 (2)0.0582 (19)0.0052 (17)0.0086 (16)0.0017 (16)
C16C0.067 (2)0.0602 (19)0.070 (2)0.0023 (16)0.0106 (17)0.0067 (16)
Geometric parameters (Å, º) top
Cl1A—C11A1.743 (4)C6B—C8B1.391 (4)
N1A—C1A1.385 (4)C6B—H6B0.9500
N1A—C7A1.396 (4)C7B—C8B1.476 (5)
N1A—C16A1.462 (4)C8B—C9B1.385 (4)
O1A—C1A1.213 (4)C10B—C15B1.381 (5)
O2A—C7A1.212 (4)C10B—C11B1.387 (4)
C1A—C2A1.475 (5)C10B—C16B1.500 (4)
C2A—C9A1.486 (4)C11B—C12B1.377 (5)
C2A—H2A10.9900C12B—C13B1.375 (5)
C2A—H2A20.9900C12B—H12B0.9500
C3A—C4A1.360 (5)C13B—C14B1.370 (6)
C3A—C9A1.391 (5)C13B—H13B0.9500
C3A—H3A0.9500C14B—C15B1.375 (5)
C4A—C5A1.364 (6)C14B—H14B0.9500
C4A—H4A0.9500C15B—H15B0.9500
C5A—C6A1.385 (6)C16B—H16A0.9900
C5A—H5A0.9500C16B—H16B0.9900
C6A—C8A1.399 (4)Cl1C—C11C1.751 (4)
C6A—H6A0.9500N1C—C1C1.391 (4)
C7A—C8A1.478 (5)N1C—C7C1.394 (4)
C8A—C9A1.376 (5)N1C—C16C1.459 (4)
C10A—C15A1.365 (5)O1C—C1C1.205 (4)
C10A—C11A1.386 (5)O2C—C7C1.209 (4)
C10A—C16A1.507 (5)C1C—C2C1.483 (5)
C11A—C12A1.372 (5)C2C—C9C1.489 (4)
C12A—C13A1.366 (6)C2C—H1C10.9900
C12A—H12A0.9500C2C—H1C20.9900
C13A—C14A1.357 (6)C3C—C4C1.362 (5)
C13A—H13A0.9500C3C—C9C1.388 (5)
C14A—C15A1.371 (5)C3C—H3C0.9500
C14A—H14A0.9500C4C—C5C1.372 (6)
C15A—H15A0.9500C4C—H4C0.9500
C16A—H16E0.9900C5C—C6C1.371 (5)
C16A—H16F0.9900C5C—H5C0.9500
Cl1B—C11B1.742 (3)C6C—C8C1.393 (4)
N1B—C7B1.388 (4)C6C—H6C0.9500
N1B—C1B1.394 (4)C7C—C8C1.473 (5)
N1B—C16B1.472 (4)C8C—C9C1.384 (4)
O1B—C1B1.210 (4)C10C—C15C1.377 (5)
O2B—C7B1.218 (4)C10C—C11C1.389 (5)
C1B—C2B1.483 (5)C10C—C16C1.503 (5)
C2B—C9B1.481 (4)C11C—C12C1.372 (5)
C2B—H2B10.9900C12C—C13C1.368 (6)
C2B—H2B20.9900C12C—H12C0.9500
C3B—C4B1.378 (5)C13C—C14C1.372 (6)
C3B—C9B1.388 (5)C13C—H13C0.9500
C3B—H3B0.9500C14C—C15C1.368 (5)
C4B—C5B1.374 (6)C14C—H14C0.9500
C4B—H4B0.9500C15C—H15C0.9500
C5B—C6B1.365 (5)C16C—H16C0.9900
C5B—H5B0.9500C16C—H16D0.9900
C1A—N1A—C7A124.2 (3)C6B—C8B—C7B118.4 (3)
C1A—N1A—C16A117.0 (3)C8B—C9B—C3B118.4 (3)
C7A—N1A—C16A118.7 (3)C8B—C9B—C2B120.6 (3)
O1A—C1A—N1A119.2 (3)C3B—C9B—C2B120.9 (3)
O1A—C1A—C2A121.8 (3)C15B—C10B—C11B116.7 (3)
N1A—C1A—C2A118.9 (3)C15B—C10B—C16B121.6 (3)
C1A—C2A—C9A117.3 (3)C11B—C10B—C16B121.7 (3)
C1A—C2A—H2A1108.0C12B—C11B—C10B121.7 (3)
C9A—C2A—H2A1108.0C12B—C11B—Cl1B118.1 (3)
C1A—C2A—H2A2108.0C10B—C11B—Cl1B120.1 (3)
C9A—C2A—H2A2108.0C13B—C12B—C11B119.8 (4)
H2A1—C2A—H2A2107.2C13B—C12B—H12B120.1
C4A—C3A—C9A120.4 (4)C11B—C12B—H12B120.1
C4A—C3A—H3A119.8C14B—C13B—C12B119.9 (4)
C9A—C3A—H3A119.8C14B—C13B—H13B120.0
C3A—C4A—C5A120.7 (4)C12B—C13B—H13B120.0
C3A—C4A—H4A119.6C13B—C14B—C15B119.4 (4)
C5A—C4A—H4A119.6C13B—C14B—H14B120.3
C4A—C5A—C6A120.3 (3)C15B—C14B—H14B120.3
C4A—C5A—H5A119.8C14B—C15B—C10B122.5 (4)
C6A—C5A—H5A119.8C14B—C15B—H15B118.8
C5A—C6A—C8A119.1 (4)C10B—C15B—H15B118.8
C5A—C6A—H6A120.4N1B—C16B—C10B113.4 (3)
C8A—C6A—H6A120.4N1B—C16B—H16A108.9
O2A—C7A—N1A119.8 (3)C10B—C16B—H16A108.9
O2A—C7A—C8A122.6 (3)N1B—C16B—H16B108.9
N1A—C7A—C8A117.5 (3)C10B—C16B—H16B108.9
C9A—C8A—C6A120.0 (3)H16A—C16B—H16B107.7
C9A—C8A—C7A121.2 (3)C1C—N1C—C7C124.5 (3)
C6A—C8A—C7A118.8 (3)C1C—N1C—C16C117.1 (3)
C8A—C9A—C3A119.4 (3)C7C—N1C—C16C118.4 (3)
C8A—C9A—C2A120.2 (3)O1C—C1C—N1C119.4 (3)
C3A—C9A—C2A120.4 (3)O1C—C1C—C2C122.1 (3)
C15A—C10A—C11A116.2 (3)N1C—C1C—C2C118.5 (3)
C15A—C10A—C16A123.3 (3)C1C—C2C—C9C117.2 (3)
C11A—C10A—C16A120.4 (3)C1C—C2C—H1C1108.0
C12A—C11A—C10A121.3 (4)C9C—C2C—H1C1108.0
C12A—C11A—Cl1A119.4 (3)C1C—C2C—H1C2108.0
C10A—C11A—Cl1A119.2 (3)C9C—C2C—H1C2108.0
C13A—C12A—C11A120.2 (4)H1C1—C2C—H1C2107.3
C13A—C12A—H12A119.9C4C—C3C—C9C120.8 (4)
C11A—C12A—H12A119.9C4C—C3C—H3C119.6
C14A—C13A—C12A119.8 (4)C9C—C3C—H3C119.6
C14A—C13A—H13A120.1C3C—C4C—C5C120.8 (4)
C12A—C13A—H13A120.1C3C—C4C—H4C119.6
C13A—C14A—C15A119.2 (4)C5C—C4C—H4C119.6
C13A—C14A—H14A120.4C6C—C5C—C4C119.6 (3)
C15A—C14A—H14A120.4C6C—C5C—H5C120.2
C10A—C15A—C14A123.2 (4)C4C—C5C—H5C120.2
C10A—C15A—H15A118.4C5C—C6C—C8C120.0 (3)
C14A—C15A—H15A118.4C5C—C6C—H6C120.0
N1A—C16A—C10A113.1 (3)C8C—C6C—H6C120.0
N1A—C16A—H16E109.0O2C—C7C—N1C119.5 (3)
C10A—C16A—H16E109.0O2C—C7C—C8C122.5 (3)
N1A—C16A—H16F109.0N1C—C7C—C8C117.9 (3)
C10A—C16A—H16F109.0C9C—C8C—C6C120.3 (3)
H16E—C16A—H16F107.8C9C—C8C—C7C120.7 (3)
C7B—N1B—C1B124.7 (3)C6C—C8C—C7C119.0 (3)
C7B—N1B—C16B118.7 (3)C8C—C9C—C3C118.4 (3)
C1B—N1B—C16B116.6 (3)C8C—C9C—C2C120.6 (3)
O1B—C1B—N1B119.7 (3)C3C—C9C—C2C121.0 (3)
O1B—C1B—C2B121.8 (3)C15C—C10C—C11C116.4 (3)
N1B—C1B—C2B118.5 (3)C15C—C10C—C16C122.1 (3)
C9B—C2B—C1B117.2 (3)C11C—C10C—C16C121.5 (3)
C9B—C2B—H2B1108.0C12C—C11C—C10C122.0 (4)
C1B—C2B—H2B1108.0C12C—C11C—Cl1C118.3 (3)
C9B—C2B—H2B2108.0C10C—C11C—Cl1C119.7 (3)
C1B—C2B—H2B2108.0C13C—C12C—C11C119.8 (4)
H2B1—C2B—H2B2107.2C13C—C12C—H12C120.1
C4B—C3B—C9B120.4 (3)C11C—C12C—H12C120.1
C4B—C3B—H3B119.8C12C—C13C—C14C119.7 (4)
C9B—C3B—H3B119.8C12C—C13C—H13C120.2
C5B—C4B—C3B120.7 (4)C14C—C13C—H13C120.2
C5B—C4B—H4B119.7C15C—C14C—C13C119.8 (4)
C3B—C4B—H4B119.7C15C—C14C—H14C120.1
C6B—C5B—C4B119.9 (3)C13C—C14C—H14C120.1
C6B—C5B—H5B120.1C14C—C15C—C10C122.4 (4)
C4B—C5B—H5B120.1C14C—C15C—H15C118.8
C5B—C6B—C8B120.0 (3)C10C—C15C—H15C118.8
C5B—C6B—H6B120.0N1C—C16C—C10C113.3 (3)
C8B—C6B—H6B120.0N1C—C16C—H16C108.9
O2B—C7B—N1B119.9 (3)C10C—C16C—H16C108.9
O2B—C7B—C8B122.4 (3)N1C—C16C—H16D108.9
N1B—C7B—C8B117.6 (3)C10C—C16C—H16D108.9
C9B—C8B—C6B120.7 (3)H16C—C16C—H16D107.7
C9B—C8B—C7B120.9 (3)
C7A—N1A—C1A—O1A177.3 (3)O2B—C7B—C8B—C6B2.2 (5)
C16A—N1A—C1A—O1A0.3 (5)N1B—C7B—C8B—C6B177.0 (3)
C7A—N1A—C1A—C2A5.2 (5)C6B—C8B—C9B—C3B1.5 (5)
C16A—N1A—C1A—C2A177.7 (3)C7B—C8B—C9B—C3B178.6 (3)
O1A—C1A—C2A—C9A173.1 (3)C6B—C8B—C9B—C2B178.7 (3)
N1A—C1A—C2A—C9A9.5 (5)C7B—C8B—C9B—C2B1.3 (5)
C9A—C3A—C4A—C5A1.9 (6)C4B—C3B—C9B—C8B1.8 (6)
C3A—C4A—C5A—C6A1.5 (6)C4B—C3B—C9B—C2B178.4 (4)
C4A—C5A—C6A—C8A0.2 (6)C1B—C2B—C9B—C8B6.2 (5)
C1A—N1A—C7A—O2A179.4 (3)C1B—C2B—C9B—C3B173.6 (3)
C16A—N1A—C7A—O2A2.4 (5)C15B—C10B—C11B—C12B0.5 (5)
C1A—N1A—C7A—C8A0.2 (5)C16B—C10B—C11B—C12B177.8 (3)
C16A—N1A—C7A—C8A176.8 (3)C15B—C10B—C11B—Cl1B177.6 (3)
C5A—C6A—C8A—C9A1.5 (5)C16B—C10B—C11B—Cl1B0.4 (4)
C5A—C6A—C8A—C7A176.9 (3)C10B—C11B—C12B—C13B0.4 (5)
O2A—C7A—C8A—C9A180.0 (4)Cl1B—C11B—C12B—C13B177.7 (3)
N1A—C7A—C8A—C9A0.9 (5)C11B—C12B—C13B—C14B0.4 (6)
O2A—C7A—C8A—C6A1.7 (6)C12B—C13B—C14B—C15B0.5 (6)
N1A—C7A—C8A—C6A177.5 (3)C13B—C14B—C15B—C10B0.6 (6)
C6A—C8A—C9A—C3A1.1 (5)C11B—C10B—C15B—C14B0.6 (5)
C7A—C8A—C9A—C3A177.2 (3)C16B—C10B—C15B—C14B177.9 (4)
C6A—C8A—C9A—C2A177.8 (3)C7B—N1B—C16B—C10B99.4 (4)
C7A—C8A—C9A—C2A3.9 (5)C11B—C10B—C16B—N1B153.1 (3)
C4A—C3A—C9A—C8A0.5 (5)C7C—N1C—C1C—O1C177.7 (3)
C4A—C3A—C9A—C2A179.4 (3)C16C—N1C—C1C—O1C0.2 (5)
C1A—C2A—C9A—C8A9.0 (5)C7C—N1C—C1C—C2C4.2 (5)
C1A—C2A—C9A—C3A172.1 (3)C16C—N1C—C1C—C2C177.9 (3)
C15A—C10A—C11A—C12A1.3 (5)O1C—C1C—C2C—C9C173.2 (3)
C16A—C10A—C11A—C12A178.2 (4)N1C—C1C—C2C—C9C8.8 (5)
C15A—C10A—C11A—Cl1A179.2 (3)C9C—C3C—C4C—C5C0.3 (7)
C16A—C10A—C11A—Cl1A1.4 (5)C3C—C4C—C5C—C6C0.1 (7)
C10A—C11A—C12A—C13A0.4 (7)C4C—C5C—C6C—C8C0.7 (6)
Cl1A—C11A—C12A—C13A179.2 (4)C1C—N1C—C7C—O2C178.6 (3)
C11A—C12A—C13A—C14A1.6 (7)C16C—N1C—C7C—O2C3.6 (5)
C12A—C13A—C14A—C15A1.1 (7)C1C—N1C—C7C—C8C2.3 (5)
C11A—C10A—C15A—C14A1.8 (6)C16C—N1C—C7C—C8C175.5 (3)
C16A—C10A—C15A—C14A177.6 (4)C5C—C6C—C8C—C9C1.5 (5)
C13A—C14A—C15A—C10A0.6 (6)C5C—C6C—C8C—C7C179.0 (3)
C1A—N1A—C16A—C10A80.2 (4)O2C—C7C—C8C—C9C176.9 (3)
C1B—N1B—C16B—C10B81.8 (4)N1C—C7C—C8C—C9C4.0 (5)
C1C—N1C—C16C—C10C83.1 (4)O2C—C7C—C8C—C6C2.6 (5)
C15A—C10A—C16A—N1A19.3 (5)N1C—C7C—C8C—C6C176.5 (3)
C15B—C10B—C16B—N1B29.8 (5)C6C—C8C—C9C—C3C1.7 (5)
C15C—C10C—C16C—N1C30.8 (4)C7C—C8C—C9C—C3C178.9 (3)
C7A—N1A—C16A—C10A102.6 (4)C6C—C8C—C9C—C2C178.6 (3)
C11A—C10A—C16A—N1A161.4 (3)C7C—C8C—C9C—C2C0.9 (5)
C7B—N1B—C1B—O1B178.4 (3)C4C—C3C—C9C—C8C1.1 (6)
C16B—N1B—C1B—O1B0.3 (5)C4C—C3C—C9C—C2C179.2 (4)
C7B—N1B—C1B—C2B2.8 (5)C1C—C2C—C9C—C8C7.2 (5)
C16B—N1B—C1B—C2B178.5 (3)C1C—C2C—C9C—C3C172.5 (3)
O1B—C1B—C2B—C9B174.3 (3)C15C—C10C—C11C—C12C0.7 (5)
N1B—C1B—C2B—C9B6.9 (5)C16C—C10C—C11C—C12C177.5 (3)
C9B—C3B—C4B—C5B1.2 (6)C15C—C10C—C11C—Cl1C179.5 (2)
C3B—C4B—C5B—C6B0.3 (7)C16C—C10C—C11C—Cl1C3.8 (4)
C4B—C5B—C6B—C8B0.0 (6)C10C—C11C—C12C—C13C0.3 (6)
C1B—N1B—C7B—O2B178.6 (3)Cl1C—C11C—C12C—C13C179.1 (3)
C16B—N1B—C7B—O2B2.8 (5)C11C—C12C—C13C—C14C0.0 (6)
C1B—N1B—C7B—C8B2.2 (5)C12C—C13C—C14C—C15C0.2 (6)
C16B—N1B—C7B—C8B176.4 (3)C13C—C14C—C15C—C10C0.6 (6)
C5B—C6B—C8B—C9B0.6 (5)C11C—C10C—C15C—C14C0.9 (5)
C5B—C6B—C8B—C7B179.4 (3)C16C—C10C—C15C—C14C177.6 (3)
O2B—C7B—C8B—C9B177.8 (3)C7C—N1C—C16C—C10C98.9 (3)
N1B—C7B—C8B—C9B3.1 (5)C11C—C10C—C16C—N1C152.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···O1Ci0.952.453.294 (4)148
C5C—H5C···O1Bii0.952.513.238 (5)133
C2A—H2A2···O1Ciii0.992.463.292 (5)141
C2B—H2B2···O1Biv0.992.563.391 (5)141
C5B—H5B···O1Av0.952.593.265 (5)129
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1, y, z.
(II) N-(2-Bromo-4-methylphenyl)-1,2,3,4-tetrahydroisoquinoline-1,3-dione top
Crystal data top
C16H12BrNO2F(000) = 664
Mr = 330.18Dx = 1.586 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.847 (2) ÅCell parameters from 25 reflections
b = 7.9190 (7) Åθ = 5.0–10.2°
c = 11.0602 (11) ŵ = 2.97 mm1
β = 94.750 (9)°T = 293 K
V = 1383.2 (3) Å3Prism, colourless
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Enraf-Nonius FR-590
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 1818
non–profiled ω/2θ scansk = 09
2554 measured reflectionsl = 013
2421 independent reflections3 standard reflections every 100 reflections
1818 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02
2421 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C16H12BrNO2V = 1383.2 (3) Å3
Mr = 330.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.847 (2) ŵ = 2.97 mm1
b = 7.9190 (7) ÅT = 293 K
c = 11.0602 (11) Å0.35 × 0.30 × 0.30 mm
β = 94.750 (9)°
Data collection top
Enraf-Nonius FR-590
diffractometer
Rint = 0.019
2554 measured reflections3 standard reflections every 100 reflections
2421 independent reflections intensity decay: 1%
1818 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
2421 reflectionsΔρmin = 0.83 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18497 (3)0.23293 (5)0.67278 (4)0.0643 (2)
N10.15445 (17)0.1708 (4)0.9412 (3)0.0396 (7)
O10.03927 (15)0.3324 (3)0.8949 (2)0.0502 (7)
O20.26553 (19)0.0036 (4)0.9991 (3)0.0748 (10)
C10.1095 (2)0.3218 (4)0.9440 (3)0.0377 (8)
C20.1520 (2)0.4689 (5)1.0072 (4)0.0481 (9)
H2A0.11320.51691.06110.058*
H2B0.16160.55380.94670.058*
C30.2748 (2)0.5659 (5)1.1457 (4)0.0536 (10)
H30.25050.67271.14560.064*
C40.3506 (2)0.5368 (7)1.2113 (4)0.0645 (12)
H40.37740.62421.25570.077*
C50.3873 (2)0.3804 (7)1.2121 (4)0.0606 (12)
H50.43860.36181.25710.073*
C60.3485 (3)0.2511 (5)1.1468 (4)0.0533 (10)
H60.37360.14491.14710.064*
C70.2332 (2)0.1397 (5)1.0058 (3)0.0459 (9)
C80.2714 (2)0.2792 (5)1.0797 (3)0.0413 (8)
C90.2346 (2)0.4363 (5)1.0797 (3)0.0406 (8)
C100.1205 (2)0.0402 (4)0.8621 (3)0.0391 (8)
C110.1288 (2)0.0497 (5)0.7388 (3)0.0425 (8)
C120.0964 (2)0.0765 (5)0.6620 (4)0.0495 (9)
H120.10230.06880.57920.059*
C130.0555 (2)0.2129 (5)0.7065 (4)0.0502 (9)
C140.0476 (2)0.2220 (4)0.8305 (4)0.0491 (9)
H140.02050.31440.86200.059*
C150.0791 (2)0.0966 (4)0.9071 (4)0.0453 (9)
H150.07250.10390.98970.054*
C160.0203 (3)0.3502 (6)0.6226 (5)0.0729 (13)
H16A0.03310.31440.58340.109*
H16B0.01220.45100.66850.109*
H16C0.05920.37250.56250.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0802 (4)0.0542 (3)0.0610 (3)0.0184 (2)0.0208 (2)0.0017 (2)
N10.0401 (16)0.0360 (15)0.0415 (16)0.0036 (13)0.0045 (13)0.0057 (13)
O10.0405 (15)0.0467 (15)0.0611 (17)0.0058 (12)0.0096 (13)0.0079 (13)
O20.0702 (19)0.0551 (18)0.094 (2)0.0302 (15)0.0255 (17)0.0209 (16)
C10.0379 (19)0.0358 (17)0.0388 (19)0.0019 (15)0.0015 (16)0.0025 (15)
C20.042 (2)0.0380 (19)0.062 (3)0.0027 (16)0.0102 (17)0.0098 (18)
C30.046 (2)0.056 (2)0.058 (2)0.0056 (18)0.0012 (19)0.010 (2)
C40.049 (2)0.085 (3)0.059 (3)0.014 (2)0.006 (2)0.019 (2)
C50.041 (2)0.092 (3)0.046 (2)0.006 (2)0.0104 (18)0.001 (2)
C60.041 (2)0.070 (3)0.048 (2)0.0097 (19)0.0035 (17)0.0005 (19)
C70.046 (2)0.046 (2)0.045 (2)0.0105 (17)0.0027 (16)0.0026 (17)
C80.0344 (18)0.052 (2)0.0373 (18)0.0039 (15)0.0003 (15)0.0012 (16)
C90.0341 (17)0.048 (2)0.0392 (19)0.0005 (15)0.0015 (14)0.0029 (16)
C100.0357 (18)0.0354 (18)0.045 (2)0.0059 (14)0.0025 (15)0.0032 (15)
C110.0406 (19)0.0405 (19)0.047 (2)0.0015 (15)0.0058 (16)0.0015 (16)
C120.055 (2)0.049 (2)0.044 (2)0.0007 (18)0.0029 (17)0.0082 (18)
C130.046 (2)0.045 (2)0.060 (2)0.0016 (17)0.0020 (18)0.0162 (18)
C140.048 (2)0.0334 (18)0.065 (3)0.0022 (16)0.0001 (19)0.0000 (18)
C150.051 (2)0.0397 (19)0.045 (2)0.0079 (17)0.0002 (16)0.0064 (16)
C160.078 (3)0.059 (3)0.081 (3)0.020 (2)0.003 (3)0.027 (2)
Geometric parameters (Å, º) top
Br1—C111.881 (4)C6—C81.394 (5)
N1—C11.393 (4)C6—H60.9300
N1—C71.407 (5)C7—C81.474 (5)
N1—C101.431 (4)C8—C91.374 (5)
O1—C11.200 (4)C10—C151.381 (5)
O2—C71.198 (4)C10—C111.383 (5)
C1—C21.490 (5)C11—C121.383 (5)
C2—C91.498 (5)C12—C131.372 (5)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.389 (6)
C3—C41.370 (6)C13—C161.506 (6)
C3—C91.385 (5)C14—C151.372 (5)
C3—H30.9300C14—H140.9300
C4—C51.368 (7)C15—H150.9300
C4—H40.9300C16—H16A0.9600
C5—C61.369 (6)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C1—N1—C7124.9 (3)C6—C8—C7118.5 (3)
C1—N1—C10117.8 (3)C8—C9—C3119.6 (3)
C7—N1—C10117.2 (3)C8—C9—C2120.5 (3)
O1—C1—N1120.4 (3)C3—C9—C2119.9 (3)
O1—C1—C2121.6 (3)C15—C10—C11119.0 (3)
N1—C1—C2118.0 (3)C15—C10—N1120.8 (3)
C1—C2—C9117.2 (3)C11—C10—N1120.1 (3)
C1—C2—H2A108.0C10—C11—C12120.3 (3)
C9—C2—H2A108.0C10—C11—Br1120.8 (3)
C1—C2—H2B108.0C12—C11—Br1118.9 (3)
C9—C2—H2B108.0C13—C12—C11120.8 (4)
H2A—C2—H2B107.2C13—C12—H12119.6
C4—C3—C9120.0 (4)C11—C12—H12119.6
C4—C3—H3120.0C12—C13—C14118.6 (3)
C9—C3—H3120.0C12—C13—C16120.6 (4)
C5—C4—C3120.6 (4)C14—C13—C16120.8 (4)
C5—C4—H4119.7C15—C14—C13120.9 (4)
C3—C4—H4119.7C15—C14—H14119.5
C6—C5—C4120.1 (4)C13—C14—H14119.5
C6—C5—H5119.9C14—C15—C10120.3 (4)
C4—C5—H5119.9C14—C15—H15119.8
C5—C6—C8119.8 (4)C10—C15—H15119.8
C5—C6—H6120.1C13—C16—H16A109.5
C8—C6—H6120.1C13—C16—H16B109.5
O2—C7—N1119.5 (3)H16A—C16—H16B109.5
O2—C7—C8123.4 (3)C13—C16—H16C109.5
N1—C7—C8117.1 (3)H16A—C16—H16C109.5
C9—C8—C6119.9 (3)H16B—C16—H16C109.5
C9—C8—C7121.6 (3)
C7—N1—C1—O1173.2 (3)C7—C8—C9—C22.2 (5)
C10—N1—C1—O110.2 (5)C4—C3—C9—C80.5 (6)
C7—N1—C1—C28.1 (5)C4—C3—C9—C2179.5 (3)
C10—N1—C1—C2168.5 (3)C1—C2—C9—C84.5 (5)
O1—C1—C2—C9171.9 (3)C1—C2—C9—C3176.5 (3)
N1—C1—C2—C99.4 (5)C1—N1—C10—C15102.7 (4)
C9—C3—C4—C50.1 (7)C7—N1—C10—C1580.4 (4)
C3—C4—C5—C60.2 (7)C1—N1—C10—C1177.3 (4)
C4—C5—C6—C80.2 (6)C7—N1—C10—C1199.5 (4)
C1—N1—C7—O2178.3 (4)C15—C10—C11—C120.2 (5)
C10—N1—C7—O25.1 (5)N1—C10—C11—C12179.7 (3)
C1—N1—C7—C81.4 (5)C15—C10—C11—Br1179.7 (2)
C10—N1—C7—C8175.2 (3)N1—C10—C11—Br10.2 (4)
C5—C6—C8—C90.2 (6)C10—C11—C12—C130.0 (6)
C5—C6—C8—C7177.2 (4)Br1—C11—C12—C13179.5 (3)
O2—C7—C8—C9176.4 (4)C11—C12—C13—C140.2 (6)
N1—C7—C8—C94.0 (5)C11—C12—C13—C16180.0 (4)
O2—C7—C8—C61.0 (6)C12—C13—C14—C150.7 (6)
N1—C7—C8—C6178.6 (3)C16—C13—C14—C15179.6 (4)
C6—C8—C9—C30.6 (6)C13—C14—C15—C100.9 (6)
C7—C8—C9—C3176.8 (4)C11—C10—C15—C140.7 (5)
C6—C8—C9—C2179.5 (4)N1—C10—C15—C14179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.532.808 (5)98
C5—H5···O1i0.932.613.451 (5)151
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(III) N-(2,3-Dichlorophenyl)-1,2,3,4-tetrahydroisoquinoline-1,3-dione top
Crystal data top
C15H9Cl2NO2F(000) = 624
Mr = 306.13Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6702 (8) ÅCell parameters from 25 reflections
b = 6.1560 (5) Åθ = 6.2–10.3°
c = 14.5889 (7) ŵ = 0.50 mm1
β = 112.236 (4)°T = 293 K
V = 1302.67 (14) Å3Prism, colourless
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1872 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
non–profiled ω/2θ scansh = 1817
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 07
Tmin = 0.886, Tmax = 0.907l = 017
2391 measured reflections3 standard reflections every 100 reflections
2287 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.01
2287 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H9Cl2NO2V = 1302.67 (14) Å3
Mr = 306.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6702 (8) ŵ = 0.50 mm1
b = 6.1560 (5) ÅT = 293 K
c = 14.5889 (7) Å0.25 × 0.25 × 0.20 mm
β = 112.236 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1872 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.015
Tmin = 0.886, Tmax = 0.9073 standard reflections every 100 reflections
2391 measured reflections intensity decay: 1%
2287 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2287 reflectionsΔρmin = 0.23 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23957 (5)0.39980 (12)0.61118 (6)0.0561 (3)
Cl20.37167 (5)0.46466 (14)0.49537 (5)0.0618 (3)
N10.26384 (13)0.7203 (3)0.76998 (15)0.0387 (5)
O10.36347 (14)0.4587 (4)0.85483 (17)0.0669 (6)
O20.16720 (14)0.9913 (4)0.68980 (16)0.0610 (6)
C10.29209 (18)0.5527 (4)0.83976 (19)0.0449 (6)
C20.22926 (19)0.4909 (4)0.8906 (2)0.0500 (7)
H2A0.26650.46510.95990.060*
H2B0.19990.35440.86280.060*
C30.10494 (19)0.6249 (5)0.9445 (2)0.0514 (7)
H30.11860.51180.99020.062*
C40.03460 (19)0.7662 (5)0.9364 (2)0.0580 (8)
H40.00060.74730.97610.070*
C50.0141 (2)0.9361 (5)0.8698 (2)0.0544 (7)
H50.03361.03130.86470.065*
C60.06419 (17)0.9646 (5)0.8110 (2)0.0476 (6)
H60.05071.07960.76640.057*
C70.18721 (16)0.8548 (4)0.75383 (18)0.0399 (6)
C80.13555 (15)0.8206 (4)0.81842 (17)0.0390 (6)
C90.15579 (16)0.6493 (4)0.88512 (19)0.0415 (6)
C100.31925 (15)0.7597 (4)0.71221 (18)0.0393 (6)
C110.31480 (16)0.6159 (4)0.63733 (18)0.0386 (5)
C120.37232 (17)0.6471 (4)0.58559 (18)0.0430 (6)
C130.43133 (18)0.8229 (5)0.6068 (2)0.0481 (6)
H130.46950.84400.57190.058*
C140.43348 (18)0.9662 (5)0.6795 (2)0.0509 (7)
H140.47281.08540.69300.061*
C150.37803 (18)0.9364 (4)0.7333 (2)0.0469 (6)
H150.38031.03380.78290.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0558 (5)0.0490 (4)0.0727 (5)0.0171 (3)0.0347 (4)0.0118 (3)
Cl20.0694 (5)0.0705 (5)0.0587 (5)0.0082 (4)0.0391 (4)0.0152 (3)
N10.0362 (10)0.0401 (11)0.0461 (11)0.0027 (8)0.0228 (9)0.0046 (9)
O10.0566 (12)0.0795 (15)0.0765 (15)0.0304 (11)0.0388 (11)0.0307 (12)
O20.0569 (12)0.0636 (13)0.0757 (14)0.0187 (10)0.0399 (11)0.0303 (11)
C10.0411 (13)0.0487 (14)0.0487 (14)0.0067 (11)0.0215 (11)0.0068 (11)
C20.0494 (15)0.0479 (15)0.0598 (16)0.0066 (12)0.0286 (13)0.0155 (13)
C30.0531 (15)0.0593 (16)0.0484 (15)0.0003 (13)0.0268 (12)0.0069 (13)
C40.0512 (16)0.078 (2)0.0570 (16)0.0054 (14)0.0342 (13)0.0084 (16)
C50.0461 (15)0.0649 (18)0.0604 (17)0.0073 (13)0.0294 (13)0.0059 (15)
C60.0423 (14)0.0486 (14)0.0549 (16)0.0057 (11)0.0217 (12)0.0000 (12)
C70.0373 (12)0.0388 (13)0.0458 (13)0.0011 (10)0.0183 (10)0.0037 (11)
C80.0345 (12)0.0418 (13)0.0423 (13)0.0009 (9)0.0164 (10)0.0016 (10)
C90.0372 (12)0.0446 (14)0.0445 (13)0.0022 (11)0.0175 (10)0.0013 (11)
C100.0349 (11)0.0408 (13)0.0466 (13)0.0035 (10)0.0204 (10)0.0042 (11)
C110.0350 (12)0.0381 (12)0.0445 (13)0.0013 (10)0.0172 (10)0.0031 (10)
C120.0392 (12)0.0505 (14)0.0425 (13)0.0012 (11)0.0189 (10)0.0001 (11)
C130.0413 (13)0.0603 (17)0.0495 (14)0.0047 (12)0.0248 (11)0.0065 (12)
C140.0451 (15)0.0512 (15)0.0593 (17)0.0144 (12)0.0231 (13)0.0011 (13)
C150.0459 (14)0.0460 (14)0.0530 (15)0.0062 (11)0.0233 (12)0.0045 (12)
Geometric parameters (Å, º) top
Cl1—C111.722 (2)C5—C61.376 (4)
Cl2—C121.727 (3)C5—H50.9300
N1—C11.398 (3)C6—C81.399 (3)
N1—C71.403 (3)C6—H60.9300
N1—C101.441 (3)C7—C81.471 (3)
O1—C11.203 (3)C8—C91.387 (4)
O2—C71.207 (3)C10—C111.387 (3)
C1—C21.489 (4)C10—C151.382 (4)
C2—C91.488 (4)C11—C121.391 (3)
C2—H2A0.9700C12—C131.380 (4)
C2—H2B0.9700C13—C141.370 (4)
C3—C41.374 (4)C13—H130.9300
C3—C91.390 (4)C14—C151.386 (4)
C3—H30.9300C14—H140.9300
C4—C51.381 (4)C15—H150.9300
C4—H40.9300
C1—N1—C7124.9 (2)N1—C7—C8116.8 (2)
C1—N1—C10117.07 (19)C9—C8—C6120.0 (2)
C7—N1—C10117.98 (19)C9—C8—C7121.5 (2)
O1—C1—N1120.3 (2)C6—C8—C7118.5 (2)
O1—C1—C2122.0 (2)C8—C9—C3119.1 (2)
N1—C1—C2117.7 (2)C8—C9—C2120.2 (2)
C1—C2—C9116.7 (2)C3—C9—C2120.7 (2)
C1—C2—H2A108.1C11—C10—C15120.5 (2)
C9—C2—H2A108.1C11—C10—N1119.4 (2)
C1—C2—H2B108.1C15—C10—N1120.0 (2)
C9—C2—H2B108.1C10—C11—C12119.3 (2)
H2A—C2—H2B107.3C10—C11—Cl1119.59 (18)
C4—C3—C9120.6 (3)C12—C11—Cl1121.1 (2)
C4—C3—H3119.7C13—C12—C11120.2 (2)
C9—C3—H3119.7C13—C12—Cl2119.4 (2)
C3—C4—C5120.4 (2)C11—C12—Cl2120.4 (2)
C3—C4—H4119.8C14—C13—C12119.8 (2)
C5—C4—H4119.8C14—C13—H13120.1
C6—C5—C4120.0 (3)C12—C13—H13120.1
C6—C5—H5120.0C13—C14—C15121.0 (2)
C4—C5—H5120.0C13—C14—H14119.5
C5—C6—C8120.0 (3)C15—C14—H14119.5
C5—C6—H6120.0C10—C15—C14119.1 (2)
C8—C6—H6120.0C10—C15—H15120.5
O2—C7—N1119.7 (2)C14—C15—H15120.5
O2—C7—C8123.4 (2)
C7—N1—C1—O1173.1 (3)C4—C3—C9—C81.0 (4)
C10—N1—C1—O15.4 (4)C4—C3—C9—C2177.3 (3)
C7—N1—C1—C29.3 (4)C1—C2—C9—C813.5 (4)
C10—N1—C1—C2172.2 (2)C1—C2—C9—C3168.3 (2)
O1—C1—C2—C9165.6 (3)C1—N1—C10—C1174.0 (3)
N1—C1—C2—C916.9 (4)C7—N1—C10—C11107.3 (3)
C9—C3—C4—C50.7 (4)C1—N1—C10—C15104.3 (3)
C3—C4—C5—C60.0 (4)C7—N1—C10—C1574.4 (3)
C4—C5—C6—C80.4 (4)C15—C10—C11—C122.1 (4)
C1—N1—C7—O2178.0 (3)N1—C10—C11—C12176.2 (2)
C10—N1—C7—O23.5 (4)C15—C10—C11—Cl1178.90 (19)
C1—N1—C7—C82.5 (4)N1—C10—C11—Cl12.8 (3)
C10—N1—C7—C8176.0 (2)C10—C11—C12—C131.8 (4)
C5—C6—C8—C90.1 (4)Cl1—C11—C12—C13179.2 (2)
C5—C6—C8—C7179.5 (2)C10—C11—C12—Cl2177.39 (19)
O2—C7—C8—C9174.1 (3)Cl1—C11—C12—Cl21.6 (3)
N1—C7—C8—C96.4 (3)C11—C12—C13—C140.4 (4)
O2—C7—C8—C65.4 (4)Cl2—C12—C13—C14178.8 (2)
N1—C7—C8—C6174.0 (2)C12—C13—C14—C150.8 (4)
C6—C8—C9—C30.6 (4)C11—C10—C15—C140.9 (4)
C7—C8—C9—C3179.9 (2)N1—C10—C15—C14177.4 (2)
C6—C8—C9—C2177.7 (2)C13—C14—C15—C100.6 (4)
C7—C8—C9—C21.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.523.161 (3)126
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC16H12ClNO2C16H12BrNO2C15H9Cl2NO2
Mr285.72330.18306.13
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)7.7922 (14), 21.538 (4), 24.351 (5)15.847 (2), 7.9190 (7), 11.0602 (11)15.6702 (8), 6.1560 (5), 14.5889 (7)
α, β, γ (°)90, 98.92 (2), 9090, 94.750 (9), 9090, 112.236 (4), 90
V3)4037.4 (13)1383.2 (3)1302.67 (14)
Z1244
Radiation typeCu KαMo KαMo Kα
µ (mm1)2.522.970.50
Crystal size (mm)0.50 × 0.41 × 0.200.35 × 0.30 × 0.300.25 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius FR-590
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (North et al., 1968)
Empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.366, 0.6330.886, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
7916, 7348, 5013 2554, 2421, 1818 2391, 2287, 1872
Rint0.0390.0190.015
(sin θ/λ)max1)0.6020.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.200, 1.06 0.042, 0.126, 1.02 0.036, 0.156, 1.01
No. of reflections734824212287
No. of parameters542182181
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.340.59, 0.830.24, 0.23

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 Software, CAD-4 EXPRESS, TEXSAN (Molecular Structure Corporation, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
Cl1A—C11A1.743 (4)N1B—C16B1.472 (4)
N1A—C1A1.385 (4)O1B—C1B1.210 (4)
N1A—C7A1.396 (4)O2B—C7B1.218 (4)
N1A—C16A1.462 (4)Cl1C—C11C1.751 (4)
O1A—C1A1.213 (4)N1C—C1C1.391 (4)
O2A—C7A1.212 (4)N1C—C7C1.394 (4)
Cl1B—C11B1.742 (3)N1C—C16C1.459 (4)
N1B—C7B1.388 (4)O1C—C1C1.205 (4)
N1B—C1B1.394 (4)O2C—C7C1.209 (4)
C1A—N1A—C16A—C10A80.2 (4)C15A—C10A—C16A—N1A19.3 (5)
C1B—N1B—C16B—C10B81.8 (4)C15B—C10B—C16B—N1B29.8 (5)
C1C—N1C—C16C—C10C83.1 (4)C15C—C10C—C16C—N1C30.8 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···O1Ci0.952.453.294 (4)148
C5C—H5C···O1Bii0.952.513.238 (5)133
C2A—H2A2···O1Ciii0.992.463.292 (5)141
C2B—H2B2···O1Biv0.992.563.391 (5)141
C5B—H5B···O1Av0.952.593.265 (5)129
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
Br1—C111.881 (4)N1—C101.431 (4)
N1—C11.393 (4)O1—C11.200 (4)
N1—C71.407 (5)O2—C71.198 (4)
C1—N1—C10—C15102.7 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.532.808 (5)98
C5—H5···O1i0.932.613.451 (5)151
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (III) top
Cl1—C111.722 (2)N1—C101.441 (3)
Cl2—C121.727 (3)O1—C11.203 (3)
N1—C11.398 (3)O2—C71.207 (3)
N1—C71.403 (3)
C1—N1—C10—C1174.0 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.523.161 (3)126
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds