Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, bis(2-iso­propyl-5-methyl­cyclo­hex-1-yl) malonate, C23H40O4, crystallizes in the monoclinic space group P21. In the crystal, the mol­ecule is not C2 symmetric.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019308/na1538sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019308/na1538IIIsup2.hkl
Contains datablock III

CCDC reference: 182024

Comment top

A large number of substituted malonic acid derivatives are known (Kanters & Kroon, 1972). Some attention has been focused on related keto (Adhikesavalu & Venkatesan, 1983) and aldehyde derivatives (Lundgren & Aurivillius, 1964), but little attention has been paid to the corresponding malonate ester derivatives. We were originally interested in the conformational preference of simple 1,3-dicarbonyl-containing molecules. To this aim, we synthesized the title C2-symmetric dimenthyl malonate, (III), as our model compound. We chose the enantiopure (-)-menthol, (I), as our ester scaffold, as this would lead directly to enantiopure C2-symmetric (III) without contamination resulting from the formation of other stereoisomers. Addition of commercially available malonyl dichloride, (II), to a stirred solution of natural (-)-menthol and triethylamine in dichloromethane gave the required (-)-dimenthyl malonate, (III), as a cream-coloured precipitate in good yield (66%). The crude product was purified by flash column chromatography on silica gel, eluting with light petroleum (313–333 K)-ether (19:1) mixture, and was then vapour recrystallized from hexane to give colourless needle-like crystals of (III). \sch

X-ray diffraction of (III) revealed its structure, illustrated in Fig. 1. The stereochemistry was assigned by reference to (-)-menthol. It was immediately evident that this molecule was not C2 symmetric in its solid phase, due to the non-equivalence of the carbonyl groups C1O4 and C3O3. By comparison, solution phase NMR studies at room temperature are consistent with C2 symmetry. We ascribe the conformation of this molecule in the crystal state to packing effects. The overall unit cell is pseudo C2 symmetric and contains two identical malonate molecules, as shown in Fig. 2.

The molecule is certainly not an enol derivative, with a C1—C2—C3 bond angle of 111.5 (5)° and not significantly different C1—C2 and C2—C3 bond lengths of 1.492 (7) and 1.497 (8) Å, respectively (Table 1). All the substituents on the cyclohexyl ring are in the expected equatorial position.

The most striking structural feature is the relative conformation of both carbonyl groups, C1O4 and C3O3. They are clearly twisted away from each other, as shown by the torsion angles of 138.3 (6)° for O4—C1—C2—O3 and 102.6 (6)° for C1—C2—C3—O3. This is presumably due to a combination of hyperconjugation effects at C2—H with both carbonyl groups and a minimization of their relative dipole moments. This can also be seen in a related twist involving the other O atom in the ester motif, as shown by the torsion angles of -42.5 (6)° for O1—C1—C2—C3 and -73.4 (6)° for C1—C2—C3—O2. In contrast, both the ester groups strive for planarity [-9.5 (7)° for C4—O2—C3—O3 and -0.8 (8)° for C14—O1—C1—O4] through anomeric assistance (Table 1).

This type of anti-parallel alignment has been reported in the structural arrangement of diimidazolines (Brennan & McKee, 1999), diones (Klein et al., 1999) and related malonic acid derivatives (Kalsbeek, 1992). The effect of the non-equivalence of the menthyl groups is more interesting and can be seen more clearly by the non-equivalence of the ester groups. The torsion angle of the ester group C14—O1—C1—C2 is planar [-180.0 (4)°], whereas the related ester grouping C4—O2—C3—C2 certainly has a slight twist [166.6 (4)°] (Table 1). This is more than likely due to a combination of crystal-packing effects and the presence of a local pseudo twofold axis (Table 2 and Fig. 2). This layer sequence is positioned in an ABAB system, with layer B oriented anti-parallel to layer A.

Experimental top

Malonyl dichloride (5.0 g, 3.45 ml, 35.5 mmol) was slowly added to a stirred solution of triethylamine (7.1 g, 9.90 ml, 70.9 mmol) and (-)-menthol (11.1 g, 70.9 mmol) in dichloromethane (100 ml), and the resulting solution was stirred for 1 h. The reaction was quenched slowly with water (30 ml) and the organic layer was extracted with diethyl ether (3 × 50 ml), dried (MgSO4) and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with light petroleum (313–333 K)-ether (19:1) to give the title compound, (III) (9.0 g, 66%), as light-cream solid. This solid was recrystallized using hexane to give colourless needle crystals (m.p. 327–328 K) Prism given as shape below. Spectroscopic analysis: Rf [light petroleum (313–333 K):ether (9:1)] 0.75; IR (νmax, film, cm-1): 1725 (CO); [α]D -83.7 (c. 2.7 in acetone); 1H NMR (250 MHz, CDCl3, δ, p.p.m.): 4.8 (2H, td, J = 10.8 and 4.4 Hz, CHO), 3.36 (2H, s, CH2CO), 2.15–0.85 (18H, m, 6 × CH2 and 6 × CH), 1.1–0.95 (6H, m, 2 × CH3), 0.85 (3H, d, J = 7.0 Hz, CHCH3); 13C NMR (67 MHz, CDCl3, δ, p.p.m.): 166.2, 75.5, 46.9, 42.4, 40.7, 34.2, 31.4, 26.1, 23.4, 22.0, 20.8, 16.3; analysis found M+ 381.3017; C23H41O4 requires M+ 381.3005; MS (m/z): 381 (80%, M), 243 (100, M - C10H18).

Refinement top

H atoms were placed in geometrical positions, with C—H = 0.98–1.0 Å. Uiso was refined for the H atoms on C2; other H atoms were treated as riding, with Uiso(H) = 1.2 or 1.5Ueq(C). Are these the correct restraints?

Computing details top

Data collection: CAD-4-PC Software (Enraf Nonius, 1994); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (III) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (III), viewed along the b axis.
Bis(2-isopropyl-5-methylcyclohex-1-yl) malonate top
Crystal data top
C23H40O4F(000) = 420
Mr = 380.55Dx = 1.112 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 12.990 (2) ÅCell parameters from 25 reflections
b = 6.092 (3) Åθ = 8.6–13.4°
c = 14.528 (2) ŵ = 0.07 mm1
β = 98.55 (2)°T = 180 K
V = 1136.9 (6) Å3Prism, colourless
Z = 20.2 × 0.2 × 0.2 mm
Data collection top
Enraf Nonius CAD-4
diffractometer
θmax = 25.0°, θmin = 1.4°
non–profiled ω/2θ scansh = 1515
2285 measured reflectionsk = 07
2194 independent reflectionsl = 017
1234 reflections with I > 2σ(I)2 standard reflections every 60 min
Rint = 0.049 intensity decay: 7%
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.096P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max = 0.003
S = 0.93Δρmax = 0.22 e Å3
2194 reflectionsΔρmin = 0.21 e Å3
251 parameters
Crystal data top
C23H40O4V = 1136.9 (6) Å3
Mr = 380.55Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.990 (2) ŵ = 0.07 mm1
b = 6.092 (3) ÅT = 180 K
c = 14.528 (2) Å0.2 × 0.2 × 0.2 mm
β = 98.55 (2)°
Data collection top
Enraf Nonius CAD-4
diffractometer
Rint = 0.049
2285 measured reflections2 standard reflections every 60 min
2194 independent reflections intensity decay: 7%
1234 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.22 e Å3
2194 reflectionsΔρmin = 0.21 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5999 (3)0.6974 (7)0.8711 (3)0.0421 (10)
O20.3567 (3)0.7307 (6)0.7709 (2)0.0354 (9)
O30.3775 (3)0.5342 (8)0.9031 (3)0.0529 (12)
O40.5993 (3)1.0556 (8)0.8439 (4)0.0710 (15)
C10.5590 (4)0.8948 (11)0.8681 (4)0.0346 (13)
C20.4554 (4)0.8918 (11)0.9007 (4)0.0377 (14)
H2A0.41751.02890.88080.039 (11)*
H2B0.46540.88620.96950.039 (11)*
C30.3917 (4)0.6988 (11)0.8624 (3)0.0368 (14)
C40.3127 (4)0.5403 (9)0.7159 (3)0.0301 (13)
H40.27530.44450.7560.036*
C50.2351 (4)0.6284 (9)0.6363 (3)0.0304 (13)
H50.27410.72990.59980.036*
C60.1978 (4)0.4338 (10)0.5718 (4)0.0402 (15)
H6A0.15730.3310.60520.048*
H6B0.15120.48910.51650.048*
C70.2883 (4)0.3117 (10)0.5403 (4)0.0450 (16)
H7A0.2610.18860.49930.054*
H7B0.32620.41230.50360.054*
C80.3631 (4)0.2228 (10)0.6213 (4)0.0401 (14)
H80.32440.11750.65650.048*
C90.4011 (4)0.4129 (10)0.6858 (4)0.0380 (14)
H9A0.44590.35470.74160.046*
H9B0.44390.51280.65330.046*
C100.4551 (5)0.1026 (11)0.5911 (4)0.0551 (18)
H10A0.49190.20130.55380.083*
H10B0.430.02580.55370.083*
H10C0.50260.0550.64620.083*
C110.1464 (4)0.7608 (10)0.6667 (3)0.0359 (14)
H110.17870.88110.70810.043*
C120.0766 (4)0.6287 (12)0.7227 (4)0.0558 (19)
H12A0.11940.56150.77660.084*
H12B0.04060.51350.68320.084*
H12C0.02520.72660.74410.084*
C130.0783 (5)0.8700 (11)0.5842 (4)0.0477 (16)
H13A0.03930.75720.54550.072*
H13B0.12250.95120.5470.072*
H13C0.02950.97150.60740.072*
C140.7019 (4)0.6626 (10)0.8422 (4)0.0334 (14)
H140.73330.80650.82840.04*
C150.6828 (4)0.5236 (10)0.7551 (4)0.0381 (14)
H15A0.64150.6090.70460.046*
H15B0.64160.39270.76720.046*
C160.7843 (4)0.4500 (10)0.7238 (4)0.0398 (15)
H160.82140.5820.70440.048*
C170.8530 (5)0.3378 (10)0.8030 (4)0.0425 (16)
H17A0.92070.30150.78320.051*
H17B0.81980.19880.81820.051*
C180.8713 (4)0.4814 (11)0.8888 (4)0.0426 (16)
H18A0.90950.6150.87480.051*
H18B0.91530.40110.93930.051*
C190.7701 (4)0.5483 (9)0.9221 (3)0.0293 (12)
H190.73350.41020.93550.035*
C200.7855 (4)0.6864 (10)1.0129 (3)0.0411 (15)
H200.71450.71851.02850.049*
C210.8435 (5)0.5582 (12)1.0943 (4)0.0583 (18)
H21A0.84310.64151.15190.087*
H21B0.91550.53421.0840.087*
H21C0.80930.41621.09930.087*
C220.8379 (5)0.9049 (12)1.0031 (4)0.0492 (16)
H22A0.90570.88070.9830.074*
H22B0.84760.98121.06310.074*
H22C0.79420.99450.95670.074*
C230.7612 (5)0.2933 (12)0.6404 (4)0.061 (2)
H23A0.72490.16310.65880.091*
H23B0.82670.2490.620.091*
H23C0.71720.36810.58920.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.037 (2)0.034 (3)0.058 (2)0.001 (2)0.0139 (18)0.002 (2)
O20.042 (2)0.035 (2)0.0265 (18)0.0040 (19)0.0027 (15)0.0043 (18)
O30.057 (3)0.062 (3)0.038 (2)0.012 (2)0.0010 (19)0.019 (2)
O40.057 (3)0.048 (3)0.110 (4)0.005 (3)0.019 (3)0.026 (3)
C10.039 (3)0.026 (4)0.035 (3)0.001 (3)0.007 (2)0.003 (3)
C20.039 (3)0.042 (4)0.029 (3)0.001 (3)0.003 (2)0.017 (3)
C30.035 (3)0.053 (4)0.022 (3)0.009 (3)0.002 (2)0.002 (3)
C40.039 (3)0.021 (3)0.028 (3)0.009 (3)0.001 (2)0.005 (3)
C50.038 (3)0.026 (3)0.026 (3)0.006 (3)0.002 (2)0.009 (2)
C60.050 (4)0.036 (4)0.033 (3)0.016 (3)0.000 (3)0.005 (3)
C70.056 (4)0.036 (4)0.044 (4)0.008 (3)0.008 (3)0.012 (3)
C80.047 (3)0.023 (3)0.053 (3)0.006 (3)0.014 (3)0.001 (3)
C90.042 (3)0.034 (4)0.038 (3)0.008 (3)0.006 (3)0.005 (3)
C100.064 (4)0.042 (4)0.060 (4)0.001 (4)0.011 (3)0.008 (3)
C110.026 (3)0.045 (4)0.036 (3)0.006 (3)0.000 (2)0.000 (3)
C120.050 (4)0.069 (5)0.054 (4)0.001 (4)0.023 (3)0.007 (4)
C130.049 (3)0.043 (4)0.048 (4)0.012 (3)0.001 (3)0.007 (3)
C140.022 (3)0.034 (4)0.046 (3)0.005 (2)0.011 (2)0.003 (3)
C150.040 (3)0.032 (4)0.041 (3)0.010 (3)0.001 (2)0.008 (3)
C160.055 (4)0.033 (4)0.034 (3)0.013 (3)0.015 (3)0.005 (3)
C170.057 (4)0.033 (4)0.040 (3)0.004 (3)0.018 (3)0.001 (3)
C180.039 (3)0.054 (4)0.036 (3)0.005 (3)0.010 (3)0.000 (3)
C190.033 (3)0.025 (3)0.031 (3)0.001 (3)0.010 (2)0.004 (3)
C200.052 (3)0.040 (4)0.034 (3)0.000 (3)0.015 (3)0.002 (3)
C210.091 (5)0.048 (4)0.036 (3)0.000 (4)0.010 (3)0.002 (3)
C220.057 (4)0.050 (4)0.039 (3)0.016 (4)0.002 (3)0.001 (3)
C230.076 (5)0.077 (6)0.031 (3)0.001 (4)0.014 (3)0.013 (3)
Geometric parameters (Å, º) top
O1—C11.313 (7)C12—H12B0.98
O1—C141.463 (6)C12—H12C0.98
O2—C31.353 (6)C13—H13A0.98
O2—C41.475 (6)C13—H13B0.98
O3—C31.192 (7)C13—H13C0.98
O4—C11.188 (7)C14—C151.511 (7)
C1—C21.492 (7)C14—C191.521 (7)
C2—C31.497 (8)C14—H141.0
C2—H2A0.99C15—C161.525 (8)
C2—H2B0.99C15—H15A0.99
C4—C91.504 (7)C15—H15B0.99
C4—C51.515 (6)C16—C171.510 (7)
C4—H41.0C16—C231.537 (8)
C5—C111.525 (7)C16—H161.0
C5—C61.544 (7)C17—C181.513 (8)
C5—H51.0C17—H17A0.99
C6—C71.519 (8)C17—H17B0.99
C6—H6A0.99C18—C191.522 (7)
C6—H6B0.99C18—H18A0.99
C7—C81.511 (8)C18—H18B0.99
C7—H7A0.99C19—C201.553 (7)
C7—H7B0.99C19—H191.0
C8—C101.521 (8)C20—C221.512 (8)
C8—C91.525 (8)C20—C211.520 (8)
C8—H81.0C20—H201.0
C9—H9A0.99C21—H21A0.98
C9—H9B0.99C21—H21B0.98
C10—H10A0.98C21—H21C0.98
C10—H10B0.98C22—H22A0.98
C10—H10C0.98C22—H22B0.98
C11—C131.532 (7)C22—H22C0.98
C11—C121.533 (7)C23—H23A0.98
C11—H111.0C23—H23B0.98
C12—H12A0.98C23—H23C0.98
C1—O1—C14120.1 (4)H12B—C12—H12C109.5
C3—O2—C4117.7 (4)C11—C13—H13A109.5
O4—C1—O1124.8 (5)C11—C13—H13B109.5
O4—C1—C2124.2 (6)H13A—C13—H13B109.5
O1—C1—C2111.0 (5)C11—C13—H13C109.5
C1—C2—C3111.5 (5)H13A—C13—H13C109.5
C1—C2—H2A109.3H13B—C13—H13C109.5
C3—C2—H2A109.3O1—C14—C15106.2 (4)
C1—C2—H2B109.3O1—C14—C19107.3 (4)
C3—C2—H2B109.3C15—C14—C19112.7 (5)
H2A—C2—H2B108O1—C14—H14110.2
O3—C3—O2123.7 (6)C15—C14—H14110.2
O3—C3—C2126.4 (5)C19—C14—H14110.2
O2—C3—C2109.8 (5)C14—C15—C16111.9 (4)
O2—C4—C9108.2 (4)C14—C15—H15A109.2
O2—C4—C5107.2 (4)C16—C15—H15A109.2
C9—C4—C5114.3 (4)C14—C15—H15B109.2
O2—C4—H4109C16—C15—H15B109.2
C9—C4—H4109H15A—C15—H15B107.9
C5—C4—H4109C17—C16—C15110.2 (4)
C4—C5—C11114.3 (4)C17—C16—C23110.1 (5)
C4—C5—C6107.7 (4)C15—C16—C23110.0 (5)
C11—C5—C6113.5 (4)C17—C16—H16108.9
C4—C5—H5106.9C15—C16—H16108.9
C11—C5—H5106.9C23—C16—H16108.9
C6—C5—H5106.9C16—C17—C18111.6 (5)
C7—C6—C5111.8 (4)C16—C17—H17A109.3
C7—C6—H6A109.3C18—C17—H17A109.3
C5—C6—H6A109.3C16—C17—H17B109.3
C7—C6—H6B109.3C18—C17—H17B109.3
C5—C6—H6B109.3H17A—C17—H17B108
H6A—C6—H6B107.9C17—C18—C19112.3 (5)
C8—C7—C6112.2 (5)C17—C18—H18A109.1
C8—C7—H7A109.2C19—C18—H18A109.1
C6—C7—H7A109.2C17—C18—H18B109.1
C8—C7—H7B109.2C19—C18—H18B109.1
C6—C7—H7B109.2H18A—C18—H18B107.9
H7A—C7—H7B107.9C14—C19—C18108.3 (4)
C7—C8—C10112.9 (5)C14—C19—C20112.8 (4)
C7—C8—C9108.6 (5)C18—C19—C20114.0 (4)
C10—C8—C9110.2 (5)C14—C19—H19107.1
C7—C8—H8108.3C18—C19—H19107.1
C10—C8—H8108.3C20—C19—H19107.1
C9—C8—H8108.3C22—C20—C21110.4 (5)
C4—C9—C8112.3 (4)C22—C20—C19113.5 (4)
C4—C9—H9A109.2C21—C20—C19111.6 (5)
C8—C9—H9A109.2C22—C20—H20107
C4—C9—H9B109.2C21—C20—H20107
C8—C9—H9B109.2C19—C20—H20107
H9A—C9—H9B107.9C20—C21—H21A109.5
C8—C10—H10A109.5C20—C21—H21B109.5
C8—C10—H10B109.5H21A—C21—H21B109.5
H10A—C10—H10B109.5C20—C21—H21C109.5
C8—C10—H10C109.5H21A—C21—H21C109.5
H10A—C10—H10C109.5H21B—C21—H21C109.5
H10B—C10—H10C109.5C20—C22—H22A109.5
C5—C11—C13112.1 (4)C20—C22—H22B109.5
C5—C11—C12114.1 (5)H22A—C22—H22B109.5
C13—C11—C12108.9 (4)C20—C22—H22C109.5
C5—C11—H11107.1H22A—C22—H22C109.5
C13—C11—H11107.1H22B—C22—H22C109.5
C12—C11—H11107.1C16—C23—H23A109.5
C11—C12—H12A109.5C16—C23—H23B109.5
C11—C12—H12B109.5H23A—C23—H23B109.5
H12A—C12—H12B109.5C16—C23—H23C109.5
C11—C12—H12C109.5H23A—C23—H23C109.5
H12A—C12—H12C109.5H23B—C23—H23C109.5
C14—O1—C1—O40.8 (8)C4—C5—C11—C13172.8 (5)
C14—O1—C1—C2180.0 (4)C6—C5—C11—C1363.1 (6)
O4—C1—C2—C3138.3 (6)C4—C5—C11—C1262.8 (6)
O1—C1—C2—C342.5 (6)C6—C5—C11—C1261.3 (6)
C4—O2—C3—O39.5 (7)C1—O1—C14—C15113.5 (5)
C4—O2—C3—C2166.6 (4)C1—O1—C14—C19125.7 (5)
C1—C2—C3—O3102.6 (6)O1—C14—C15—C16172.8 (4)
C1—C2—C3—O273.4 (6)C19—C14—C15—C1655.7 (6)
C3—O2—C4—C983.6 (5)C14—C15—C16—C1753.6 (6)
C3—O2—C4—C5152.7 (4)C14—C15—C16—C23175.1 (5)
O2—C4—C5—C1159.2 (5)C15—C16—C17—C1854.5 (6)
C9—C4—C5—C11179.1 (4)C23—C16—C17—C18176.0 (5)
O2—C4—C5—C6173.6 (4)C16—C17—C18—C1957.7 (6)
C9—C4—C5—C653.8 (6)O1—C14—C19—C18172.1 (4)
C4—C5—C6—C754.5 (6)C15—C14—C19—C1855.6 (6)
C11—C5—C6—C7177.9 (4)O1—C14—C19—C2060.7 (5)
C5—C6—C7—C858.8 (6)C15—C14—C19—C20177.2 (4)
C6—C7—C8—C10179.2 (5)C17—C18—C19—C1456.4 (6)
C6—C7—C8—C956.7 (6)C17—C18—C19—C20177.1 (5)
O2—C4—C9—C8175.1 (4)C14—C19—C20—C2260.9 (6)
C5—C4—C9—C855.8 (6)C18—C19—C20—C2263.1 (6)
C7—C8—C9—C454.5 (6)C14—C19—C20—C21173.6 (4)
C10—C8—C9—C4178.7 (5)C18—C19—C20—C2162.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O4i0.992.443.374 (8)157
C20—H20···O3ii1.002.543.351 (7)138
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC23H40O4
Mr380.55
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)12.990 (2), 6.092 (3), 14.528 (2)
β (°) 98.55 (2)
V3)1136.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerEnraf Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2285, 2194, 1234
Rint0.049
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 0.93
No. of reflections2194
No. of parameters251
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: CAD-4-PC Software (Enraf Nonius, 1994), CAD-4-PC Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—C21.492 (7)C2—C31.497 (8)
C14—O1—C1—O40.8 (8)C4—O2—C3—O39.5 (7)
C14—O1—C1—C2180.0 (4)C4—O2—C3—C2166.6 (4)
O4—C1—C2—C3138.3 (6)C1—C2—C3—O3102.6 (6)
O1—C1—C2—C342.5 (6)C1—C2—C3—O273.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O4i0.992.443.374 (8)157
C20—H20···O3ii1.002.543.351 (7)138
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds