Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Three chiral electron-deficient phosphine ligands, [(4R,15R)-,3-bis­(tri­fluoro­methane­sulfonyl)­per­hydro-1,3,2-benzodiazaphosphol-2-yl]­diethyl­amine, C12H20F6N3O4PS2, (IIIa), [(4R,5R)-1,3-bis­(tri­fluoro­methane­sulfonyl)­per­hydro-1,3,2-benzodi­aza­phosphol-2-yl]­di­methyl­amine, C10H16F6N3O4PS2, (IIIb), and bis­[(4R,5R)-1,3-bis­(tri­fluoro­methane­sulfonyl)­per­hydro-1,3,2-benzodi­aza­phosphol-2-yl]­methyl­amine, (IV), as the chloroform solvate, C17H23F12N5O8P2S4·0.98CHCl3, have been prepared from (1R,2R)-N,N′-bis­(tri­fluoro­methane­sulfonyl)-1,2-cyclo­hexane­di­amine and diethyl phosphor­amido­us dichloride, dimethyl phosphoramidous dichloride or methyl imidodi­phosphorus tetrachloride. The π-acceptor abilities of these new types of ligands have been evaluated by X-ray determination of the P—N bond lengths; it has been found that the most promising ligand is the bis­(phosphine) (IV).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018200/na1537sup1.cif
Contains datablocks global, IIIa, IIIb, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018200/na1537IIIasup2.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018200/na1537IIIbsup3.hkl
Contains datablock IIIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018200/na1537IVsup4.hkl
Contains datablock IV

CCDC references: 182037; 182038; 182039

Comment top

Phosphorus(III) ligands of the type PR3, where R is, for example, an alkyl, alkoxy or aryl group, are ubiquitous in homogeneous catalysis (Collman et al., 1987; Levason, 1990; McCauliffe, 1987; Pignolet, 1983). While certain R groups can impart significant π-acceptor character to these ligands, the number of ligands that approach the π-acceptor ability of CO is rather small (Brookhart et al., 1992; Moloy & Petersen 1995; Phillips et al., 1988; Schnabel & Roddick, 1993). This may change rapidly, however, because recent publications (Gimbert et al., 1999; Jolly et al., 1990; Kundig et al., 1994; van Leeuwen & Roobeck, 1983, 1981) have shown that certain transition-metal-catalyzed transformations are considerably more successful when less electron-rich phosphorus ligands are used. In contrast with the large number of phosphines, the phosphinites (Jacobsen et al., 1999), phosphites (Hilgraf & Pfalz, 1999), diazaphospholes (Brunel et al., 1998) and, to a lesser degree, phosphoramidites (Feringa, 2000), that have frequently been employed as ligands in asymmetric catalysis, and electron-deficient mono- and bidentate tris(amino)phosphine derivatives, have rarely been used, although phosphoramides have acted as ligands (Hersh et al., 1996) and have served as Lewis bases (Denmark et al., 1994) in various asymmetric procedures.

The trifluoromethanesulfonylamino group is strongly electron-withdrawing and, therefore, should substantially affect phosphorus σ-donation and π-acidity. With this in mind, two new types of chiral phosphorus ligands that could be expected to approach the π-acceptor ability of CO have been prepared from (1R,2R)-N,N'-bis(trifluoromethanesulfonyl)-1,2-cyclohexanediamine, (I) (Denmark et al., 1998; Takahashi et al., 1992), namely [(4R,5R)-1,3-bis(trifluoromethanesulfonyl)perhydro-1,3,2-benzodiazaphosphol-2- yl)diethylamine, (IIIa) and bis[(4R,5R)-1,3-bis(trifluoromethanesulfonyl)perhydro-1,3,2-benzodiazaphosphol- 2-yl]methylamine chloroform solvate, (IV). \sch

X-ray diffraction analysis of these new compounds (Figs. 1 and 2) indicates some interesting differences. The dimethylamine analogue (IIIb) of (IIIa) has also been prepared, and displays bond distances and angles very close to those of (IIIa) (Tables 1 and 2). A minor difference between the two is the conformation of the six- and five-membered rings, which are inverted. In the potentially monodentate (IIIa), the trifluoromethyl groups are trans and perpendicular to the mean plane defined by the five-membered ring, whereas in the potentially bidentate (IV), the trifluoromethyl groups are cis. This is especially clear when considering the distances of the S atoms from the least-squares weighted plane through each ring (Table 4), where each pair being the same sign means that both atoms are on the same side with respect to the plane. In addition, the first set of torsion angles in Table 4 indicates the orientation of the trifluoromethyl groups with respect to the P—Namine bond (not the plane through the ring). Finally, the reciprocal orientation of the trifluoromethyl groups might be defined by the second set of torsion angles in Table 4, between directions involving non-bonded atoms.

Despite the strong sp2 character of the N atoms of the five-membered ring, the bonds about these atoms are not all coplanar, as indicated by the values of the distances of the N atoms from the planes defined by the atoms surrounding them (Table 4).

In both (IIIa) and (IV), the internal N—P—N angle is approximately 86°. The N—P bond distances for all three compiunds are compared in Table 4, showing that significant differences are observed between the distances involving Nring and those involving Namine. The averages for P—Nring are 1.784 (5) Å for (IIIa) and (IIIb), and 1.755 (3) Å for (IV), while the averages for P—Namine are 1.639 (3) Å for (IIIa) and (IIIb), and 1.690 (9) Å for (IV). [For a discussion of the nature of the P—N bond, see Kremer et al. (1996)]. The observed difference for the P—N10 distance suggests that there is a reduced electron density at P in the bis(phosphine), and thus greater π-accepting ability. This apparent electronic difference may contribute to the ability of the chelating phosphine to give rise to metal complexes. For example, (IV), but not (IIIa) or (IIIb), has been shown to react with the hexacarbonylphenylacetylene dicobalt complex to give, by thermal substitution of two additional carbonyl groups, the resulting bis(phosphine) dicobalt tetracarbonylphenylacetylene complex (D. Konya, unpublished results).

Experimental top

The bis(amide), (I), was prepared according to the literature method of Denmark et al. (1994) from commercially available (1R,2R)-1,2-cyclohexanediamine and triflic anhydride. In the presence of KH in tetrahydrofuran (THF), the bis(amide) yields the dipotassium salt, (II), which, on treatment with diethyl phosphoramidous dichloride (Whitaker et al., 1995), provides the phosphine, (IIIa) (92% yield; m.p. 336–338 K). The phosphine (IIIb) was obtained by an analogous procedure (86% yield; m.p. 339–341 K). The bis(phosphine) ligand, (IV), was prepared from (II) by reaction with methyl imidodiphosphorus tetrachloride (King & Gimeno, 1978) (82% yield; m.p. 473–475 K). The phosphines (IIIa), (IIIb) and (IV) are rather stable to hydrolysis and oxidation and can be stored for several months at room temperature without decomposition.

Spectroscopic data for (IIIa): [α]25D = -35 (c 0.8, THF); 1H NMR (CDCl3, 200 MHz, δ, p.p.m.): 1.15 (t, J = 7.2 Hz, 6H), 1.20–1.65 (m, 4H), 1.80–1.95 (m, 2H), 2.55–2.70 (m, 2H), 2.90–3.40 (m, 5H), 3,59 (td, J = 3.1 and 10.6 Hz, 1H); 13C NMR (CDCl3, 50 MHz, δ, p.p.m.): 13.8, 13.9, 23.9, 24.4, 29.6, 30.6, 41.4, 41.7, 65.7 (d, J = 5.5 Hz), 67.3 (d, J= 5.5 Hz); 19F NMR (CDCl3, 188.3 MHz, δ, p.p.m.): -76.1 (br s, 3 F), -77.6 (d, J = 11.4 Hz, 3 F); 31P NMR (CDCl3, 81 MHz,δ, p.p.m.): 99.3 (s large, 2P); IR (cm-1): 1458, 1448, 1392, 1219, 1196; MS (CI) m/z: 480 [100%, (M+H)+], 407 (3.7%), 396 (10.8%), 346 (2.5%). Analysis calculated for C12H20F6N3O4PS2: C 30.06, N 8,77, H 4.20%; found: C 29.87, N 9.01, H 3.92%.

Spectroscopic data for (IIIb): [α]25D = -42 (c 0.9, THF); 1H NMR (CDCl3, 200 MHz, δ, p.p.m.): 1.15–1.65 (m, 4H), 1.75–1.95 (m, 2H), 2.50–2.70 (m, 2H), 2.73 (s, 3H), 2.78 (s, 3H), 3.57 (td, J = 3.5 and 10.6 Hz, 1H), 3,66 (td, J = 3.0 and 10.6 Hz, 1H); 13C NMR (CDCl3, 50 MHz, d, p.p.m.): 23.4, 23.9, 29.3, 29.9, 37.4, 37.9, 65.4 (d, J = 4.5 Hz), 66.9 (d, J = 4,5 Hz); 19F NMR (CDCl3, 188.3 MHz, d, p.p.m.): -76.5 (d, J =11.5 Hz, 3 F), -77.60 (d, J = 9.8 Hz, 3 F); 31P NMR (CDCl3, 81 MHz, d, p.p.m.): 102.90 (s, 2P); IR (film, n, cm-1): 3293, 2952, 1462, 1451, 1392; MS (CI) m/z: 452 [100%, (M+H)+], 318 (6.9%). Analysis calculated for C10H16F6N3O4PS2: C 26.61, N 9.31, H 3.57%; found: C 26.42, N 9.47, H 3.84%.

Spectroscopic data for (IV): [α]25D = -34 (c 1.0, THF); 1H NMR (CDCl3, 200 MHz,δ, p.p.m.): 1.22 (t, J = 10.4 Hz, 4H), 1.4–1.7 (m, 4H), 1.84 (br s, 4H), 2.5–2.7 (m, 4H), 3.01 (t, J = 9.1 Hz, 3H), 3.34 (t, J = 10.4 Hz, 2H), 3.98 (s, 2H); 13C NMR (CDCl3, 50 MHz,δ, p.p.m.): 23.8, 24.4, 28.9, 30.0, 34.3, 67.5, 68.8; 19F NMR (CDCl3, 188.3 MHz,δ, p.p.m.): -73.58 (br s, 6 F), -76.82 (s, 6 F); 31P NMR (CDCl3, 81 MHz, δ, p.p.m.): 103.5 (s, 2P); IR (cm-1): 3054, 1265; MS (CI) m/z: 861 [100%, (M+NH4+)], 844 (24.4%), 774 (9.3%), 436 (14.2%), 397 (93.6%). Analysis calculated for C17H23F12N5O8P2S4: C 24.35, N 8.10, H 2.46%; found: C 24,19, N 8,30, H 2.72%.

Refinement top

Compounds (IIIa) and (IIIb) were analyzed in racemic form and compound (IV) as the (R,R)-enantiomer. H atoms were placed in calculated positions and not refined. In compound (IV), the loss of symmetry from P21/m to P21 and the high disorder of the co-crystallized CHCl3 molecule were responsible for the relatively rough R factors observed for this structure. The treatment for this disorder was as follows. The occupancy factor of the site of the solvent molecule was first refined and then fixed at 0.982756. The three Cl atoms were statistically spread over five different sites. The sum of the five occupancy factors was then set to three times the occupancy factor of the site of the solvent molecule, i.e. 3*0.983 = 2.949. The loss of symmetry arises from the fact that the pseudo mirror plane exists neither for the highly disordered solvent molecule nor for the cyclohexyl group, which would become a phenyl group in contradiction with the chemical nature of the compound. Space group P21 has a twofold screw axis. The heaviest atom might be choosen as an origin and its coordinate along this twofold screw axis might then be fixed and not refined. Here, the heaviest atom is Cl, but since it is part of a severe disordered solvent molecule we prefered to choose as origin an S atom on the main molecule, which is far less disordered, and an S atom is not much lighter than a Cl atom. Doing this, we could reach a better refinement of the molecular structure.

Computing details top

For all compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992-1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular view of compound (IIIa) with displacement ellipsoids shown at the 25% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular view of compound (IIIb) with displacement ellipsoids shown at the 25% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular view of compound (IV) with displacement ellipsoids shown at the 25% probability level. H atoms and the disordered solvent molecule have been omitted for clarity.
(IIIa) [(4RS,5RS)-1,3-bis(trifluoromethanesulfonyl)perhydro-1,3,2-benzodiaza- phosphol-2-yl]diethylamine top
Crystal data top
C12H20F6N3O4PS2Z = 2
Mr = 479.39F(000) = 492.00
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 8.657 (2) ÅCell parameters from 25 reflections
b = 10.352 (2) Åθ = 10.0–11.1°
c = 12.859 (3) ŵ = 0.41 mm1
α = 104.81 (1)°T = 293 K
β = 93.08 (2)°Prism, colourless
γ = 111.21 (2)°0.20 × 0.20 × 0.15 mm
V = 1024.9 (5) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.025
Radiation source: X-ray tubeθmax = 30.0°, θmin = 2.2°
Graphite monochromatorh = 1212
ω/2θ scansk = 1414
6193 measured reflectionsl = 018
5947 independent reflections2 standard reflections every 120 reflections
3678 reflections with I > 3σ(I) intensity decay: 2.0%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.044H-atom parameters not refined
wR(F2) = 0.063Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00063|Fo|2]
S = 1.95(Δ/σ)max = 0.005
3678 reflectionsΔρmax = 0.43 e Å3
253 parametersΔρmin = 0.34 e Å3
Crystal data top
C12H20F6N3O4PS2γ = 111.21 (2)°
Mr = 479.39V = 1024.9 (5) Å3
Triclinic, P1Z = 2
a = 8.657 (2) ÅMo Kα radiation
b = 10.352 (2) ŵ = 0.41 mm1
c = 12.859 (3) ÅT = 293 K
α = 104.81 (1)°0.20 × 0.20 × 0.15 mm
β = 93.08 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.025
6193 measured reflections2 standard reflections every 120 reflections
5947 independent reflections intensity decay: 2.0%
3678 reflections with I > 3σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.063H-atom parameters not refined
S = 1.95Δρmax = 0.43 e Å3
3678 reflectionsΔρmin = 0.34 e Å3
253 parameters
Special details top

Refinement. For compound (IIIb), in order to have angle values closer to those of compound (IIIa), we chose the following cell parameters: a = 8.972 (2), b = 9.116 (6) and c = 12.990 (7) Å, and α = 97.40 (4), β = 104.03 (4) and γ = 60.58 (4)°. This was in preference to the three-acute cell, with a' = 8.972 (2), b' = 9.116 (6) and c' = 12.990 (7) Å, and α' = 82.60 (4), β' = 75.97 (4) and γ' = 60.58 (4)°. There was also a possibility for a monoclinic C cell, with a'' = 8.972, b'' = 15.881 and c'' = 12.990 Å, and α'' = 89.38, β'' = 104.03 and γ'' = 89.94°, but the α'' value is too far from 90° and the symmetry relations were not respected.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S131.02144 (7)1.06656 (5)0.86241 (4)0.0538 (1)
S140.72711 (6)0.47601 (6)0.73474 (4)0.0544 (1)
P20.78330 (6)0.77520 (5)0.75681 (4)0.0426 (1)
F191.2412 (2)1.1270 (2)0.7305 (1)0.1060 (5)
F201.1711 (3)1.2993 (2)0.8086 (2)0.1290 (7)
F211.0036 (3)1.1208 (2)0.6764 (1)0.1135 (6)
F220.8234 (2)0.4536 (3)0.9221 (2)0.1616 (7)
F230.6296 (3)0.5291 (3)0.9226 (1)0.1379 (8)
F240.5796 (3)0.3098 (2)0.8486 (2)0.1576 (8)
O151.1439 (2)1.1296 (2)0.9574 (1)0.0695 (4)
O160.8643 (2)1.0794 (2)0.8634 (1)0.0736 (4)
O170.7955 (2)0.3775 (2)0.6799 (2)0.0844 (5)
O180.5710 (2)0.4722 (2)0.6912 (1)0.0720 (5)
N10.9950 (2)0.9007 (1)0.8061 (1)0.0412 (3)
N30.8608 (2)0.6395 (2)0.7673 (1)0.0427 (3)
N100.7636 (2)0.7717 (2)0.6287 (1)0.0522 (4)
C41.0443 (2)0.6837 (2)0.7771 (1)0.0445 (4)
C51.1137 (2)0.8403 (2)0.8437 (1)0.0443 (4)
C61.2977 (2)0.9119 (2)0.8390 (2)0.0626 (6)
C71.3904 (3)0.8326 (3)0.8832 (2)0.0759 (7)
C81.3157 (3)0.6715 (3)0.8295 (2)0.0724 (6)
C91.1277 (3)0.6027 (2)0.8264 (2)0.0594 (5)
C111.1162 (4)1.1589 (3)0.7636 (2)0.0785 (7)
C120.6911 (3)0.4392 (3)0.8656 (2)0.0830 (7)
C250.8855 (3)0.7697 (3)0.5546 (2)0.0633 (6)
C260.8523 (4)0.6232 (3)0.4787 (2)0.0871 (8)
C270.5944 (3)0.7499 (3)0.5791 (2)0.0765 (7)
C280.5895 (4)0.8825 (4)0.5532 (3)0.131 (1)
H11.07280.67940.70630.053*
H21.10400.84290.91730.053*
H31.31300.90680.76560.075*
H41.33981.01050.88200.075*
H51.50370.86970.87190.091*
H61.38720.85030.95920.091*
H71.36820.62780.86850.087*
H81.33780.65320.75680.087*
H91.10430.60780.89840.071*
H101.08590.50400.78330.071*
H110.88450.83240.51220.076*
H120.99350.80490.59710.076*
H130.93280.63140.43080.105*
H140.86010.56060.51950.105*
H150.74280.58450.43740.105*
H160.55980.67190.51350.092*
H170.51880.72600.62860.092*
H180.61800.95990.61870.157*
H190.66760.90960.50580.157*
H200.47970.86150.51870.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S130.0782 (3)0.0469 (2)0.0446 (2)0.0345 (2)0.0133 (2)0.0115 (2)
S140.0510 (3)0.0480 (2)0.0549 (3)0.0107 (2)0.0008 (2)0.0139 (2)
P20.0439 (2)0.0575 (2)0.0365 (2)0.0281 (2)0.0094 (2)0.0178 (2)
F190.122 (1)0.095 (1)0.130 (1)0.0456 (8)0.0656 (9)0.0666 (8)
F200.202 (2)0.0496 (7)0.135 (2)0.0399 (9)0.036 (1)0.0369 (8)
F210.144 (1)0.124 (1)0.0819 (9)0.039 (1)0.0170 (9)0.0656 (7)
F220.089 (1)0.271 (2)0.151 (1)0.032 (1)0.0050 (9)0.1656 (9)
F230.160 (2)0.185 (2)0.092 (1)0.068 (1)0.061 (1)0.070 (1)
F240.130 (2)0.126 (1)0.194 (2)0.018 (1)0.022 (1)0.109 (1)
O150.094 (1)0.0529 (7)0.0509 (8)0.0299 (7)0.0007 (7)0.0012 (6)
O160.0982 (9)0.0778 (7)0.0757 (9)0.0647 (6)0.0254 (7)0.0264 (7)
O170.080 (1)0.0516 (8)0.104 (1)0.0209 (7)0.009 (1)0.0013 (9)
O180.0510 (8)0.074 (1)0.074 (1)0.0080 (7)0.0124 (7)0.0211 (8)
N10.0488 (7)0.0423 (6)0.0368 (6)0.0233 (5)0.0079 (5)0.0104 (5)
N30.0391 (6)0.0464 (7)0.0461 (7)0.0180 (5)0.0047 (5)0.0174 (6)
N100.0565 (8)0.0709 (9)0.0374 (7)0.0318 (6)0.0041 (6)0.0197 (6)
C40.0404 (8)0.0466 (8)0.0494 (9)0.0198 (6)0.0098 (7)0.0144 (7)
C50.0442 (8)0.0485 (8)0.0417 (8)0.0243 (6)0.0046 (7)0.0070 (7)
C60.0434 (9)0.054 (1)0.080 (1)0.0137 (8)0.0081 (9)0.012 (1)
C70.0413 (9)0.078 (1)0.095 (2)0.0272 (9)0.003 (1)0.001 (1)
C80.054 (1)0.078 (1)0.097 (2)0.0421 (8)0.012 (1)0.021 (1)
C90.0553 (9)0.0549 (9)0.074 (1)0.0307 (7)0.0011 (9)0.0165 (9)
C110.114 (2)0.055 (1)0.077 (1)0.034 (1)0.024 (1)0.0324 (9)
C120.065 (1)0.093 (2)0.091 (1)0.010 (1)0.009 (1)0.058 (1)
C250.076 (1)0.086 (1)0.0378 (8)0.037 (1)0.0162 (8)0.0272 (8)
C260.107 (2)0.104 (2)0.052 (1)0.050 (1)0.017 (1)0.011 (1)
C270.074 (1)0.107 (2)0.059 (1)0.045 (1)0.007 (1)0.030 (1)
C280.128 (2)0.155 (2)0.156 (3)0.089 (1)0.003 (2)0.077 (2)
Geometric parameters (Å, º) top
P2—N11.783 (2)C5—H20.95
P2—N31.792 (2)C6—C71.519 (4)
P2—N101.637 (2)C6—H30.95
S13—O151.412 (2)C6—H40.95
S13—O161.414 (2)C7—C81.503 (3)
S13—N11.608 (1)C7—H50.95
S13—C111.834 (3)C7—H60.95
S14—O171.415 (2)C8—C91.516 (3)
S14—O181.418 (2)C8—H70.95
S14—N31.596 (1)C8—H80.95
S14—C121.837 (3)C9—H90.95
F19—C111.303 (3)C9—H100.95
F20—C111.309 (3)C25—C261.494 (4)
F21—C111.320 (3)C25—H110.95
F22—C121.262 (3)C25—H120.95
F23—C121.318 (4)C26—H130.95
F24—C121.291 (3)C26—H140.95
N1—C51.499 (2)C26—H150.95
N3—C41.474 (2)C27—C281.507 (4)
N10—C251.461 (3)C27—H160.95
N10—C271.480 (3)C27—H170.95
C4—C51.501 (2)C28—H180.95
C4—C91.513 (3)C28—H190.95
C4—H10.95C28—H200.95
C5—C61.506 (3)
F19···F24i2.917 (3)
N1—P2—N385.47 (7)C7—C8—C9113.7 (2)
N1—P2—N10101.42 (8)C7—C8—H7108.4
N3—P2—N10107.71 (8)C7—C8—H8108.4
O15—S13—O16120.8 (1)C9—C8—H7108.4
O15—S13—N1111.24 (9)C9—C8—H8108.4
O15—S13—C11105.4 (1)H7—C8—H8109.5
O16—S13—N1110.12 (8)C4—C9—C8109.0 (2)
O16—S13—C11104.0 (1)C4—C9—H9109.6
N1—S13—C11103.4 (1)C4—C9—H10109.6
O17—S14—O18121.3 (1)C8—C9—H9109.6
O17—S14—N3111.5 (1)C8—C9—H10109.6
O17—S14—C12105.9 (1)H9—C9—H10109.5
O18—S14—N3108.26 (9)S13—C11—F19112.8 (2)
O18—S14—C12103.8 (1)S13—C11—F20109.1 (2)
N3—S14—C12104.5 (1)S13—C11—F21110.1 (2)
S13—N1—P2116.20 (9)F19—C11—F20108.4 (2)
S13—N1—C5120.3 (1)F19—C11—F21107.0 (2)
P2—N1—C5115.9 (1)F20—C11—F21109.3 (2)
S14—N3—P2117.01 (9)S14—C12—F22112.8 (2)
S14—N3—C4125.2 (1)S14—C12—F23109.5 (2)
P2—N3—C4115.8 (1)S14—C12—F24109.6 (2)
P2—N10—C25127.9 (1)F22—C12—F23108.2 (3)
P2—N10—C27115.4 (1)F22—C12—F24109.7 (3)
C25—N10—C27116.2 (2)F23—C12—F24106.8 (3)
N3—C4—C5104.2 (1)N10—C25—C26114.4 (2)
N3—C4—C9119.5 (2)N10—C25—H11108.2
N3—C4—H1107.7N10—C25—H12108.2
C5—C4—C9109.5 (1)C26—C25—H11108.2
C5—C4—H1107.7C26—C25—H12108.2
C9—C4—H1107.7H11—C25—H12109.5
N1—C5—C4104.8 (1)C25—C26—H13109.5
N1—C5—C6118.9 (2)C25—C26—H14109.5
N1—C5—H2107.3C25—C26—H15109.5
C4—C5—C6110.8 (2)H13—C26—H14109.5
C4—C5—H2107.3H13—C26—H15109.5
C6—C5—H2107.3H14—C26—H15109.5
C5—C6—C7108.5 (2)N10—C27—C28112.8 (2)
C5—C6—H3109.7N10—C27—H16108.6
C5—C6—H4109.7N10—C27—H17108.6
C7—C6—H3109.7C28—C27—H16108.6
C7—C6—H4109.7C28—C27—H17108.6
H3—C6—H4109.5H16—C27—H17109.5
C6—C7—C8113.1 (2)C27—C28—H18109.5
C6—C7—H5108.6C27—C28—H19109.5
C6—C7—H6108.6C27—C28—H20109.5
C8—C7—H5108.6H18—C28—H19109.5
C8—C7—H6108.6H18—C28—H20109.5
H5—C7—H6109.5H19—C28—H20109.5
Symmetry code: (i) x+1, y+1, z.
(IIIb) [(4RS,5RS)-1,3-bis(trifluoromethanesulfonyl)perhydro-1,3,2-benzodiaza- phosphol-2-yl]dimethylamine top
Crystal data top
C10H16F6N3O4PS2Z = 2
Mr = 451.34F(000) = 460.00
Triclinic, P1Dx = 1.670 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 8.972 (2) ÅCell parameters from 25 reflections
b = 9.116 (6) Åθ = 10.0–12.3°
c = 12.990 (7) ŵ = 0.47 mm1
α = 97.40 (4)°T = 293 K
β = 104.03 (4)°Prism, colourless
γ = 60.58 (4)°0.25 × 0.18 × 0.18 mm
V = 897.8 (9) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: X-ray tubeθmax = 30.0°, θmin = 2.6°
Graphite monochromatorh = 1212
ω scansk = 1212
5444 measured reflectionsl = 018
5227 independent reflections2 standard reflections every 120 reflections
3076 reflections with I > 3σ(I) intensity decay: 10.8%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.049H-atom parameters not refined
wR(F2) = 0.070Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00090|Fo|2]
S = 1.91(Δ/σ)max = 0.008
3076 reflectionsΔρmax = 0.53 e Å3
235 parametersΔρmin = 0.39 e Å3
Crystal data top
C10H16F6N3O4PS2γ = 60.58 (4)°
Mr = 451.34V = 897.8 (9) Å3
Triclinic, P1Z = 2
a = 8.972 (2) ÅMo Kα radiation
b = 9.116 (6) ŵ = 0.47 mm1
c = 12.990 (7) ÅT = 293 K
α = 97.40 (4)°0.25 × 0.18 × 0.18 mm
β = 104.03 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.022
5444 measured reflections2 standard reflections every 120 reflections
5227 independent reflections intensity decay: 10.8%
3076 reflections with I > 3σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.070H-atom parameters not refined
S = 1.91Δρmax = 0.53 e Å3
3076 reflectionsΔρmin = 0.39 e Å3
235 parameters
Special details top

Refinement. For compound (IIIb), in order to have angle values closer to those of compound (IIIa), we chose the following cell parameters: a = 8.972 (2), b = 9.116 (6) and c = 12.990 (7) Å, and α = 97.40 (4), β = 104.03 (4) and γ = 60.58 (4)°. This was in preference to the three-acute cell, with a' = 8.972 (2), b' = 9.116 (6) and c' = 12.990 (7) Å, and α' = 82.60 (4), β' = 75.97 (4) and γ' = 60.58 (4)°. There was also a possibility for a monoclinic C cell, with a'' = 8.972, b'' = 15.881 and c'' = 12.990 Å, and α'' = 89.38, β'' = 104.03 and γ'' = 89.94°, but the α'' value is too far from 90° and the symmetry relations were not respected.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S130.74601 (8)0.16281 (9)0.39594 (5)0.0601 (2)
S140.42988 (7)0.24040 (7)0.05433 (4)0.0455 (1)
P20.64602 (6)0.10912 (7)0.25814 (4)0.0432 (1)
F190.9284 (3)0.3171 (3)0.2516 (2)0.1114 (6)
F200.9839 (3)0.4718 (3)0.3810 (2)0.1248 (7)
F210.7511 (3)0.4036 (3)0.2609 (2)0.1072 (7)
F220.3710 (3)0.5333 (2)0.1387 (2)0.1034 (6)
F230.1438 (2)0.5052 (2)0.0915 (2)0.0979 (6)
F240.2557 (3)0.5384 (2)0.0252 (2)0.1002 (6)
O150.8729 (3)0.1095 (3)0.4379 (2)0.0968 (7)
O160.6789 (3)0.2161 (3)0.4634 (2)0.0848 (6)
O170.5926 (2)0.2232 (2)0.0475 (1)0.0630 (4)
O180.3334 (2)0.1879 (2)0.0298 (1)0.0604 (4)
N10.5956 (2)0.0295 (2)0.3110 (1)0.0469 (4)
N30.4450 (2)0.1696 (2)0.1659 (1)0.0392 (4)
N100.5951 (2)0.2767 (3)0.3356 (2)0.0548 (5)
C40.3478 (3)0.0784 (3)0.1738 (2)0.0522 (5)
C50.4108 (3)0.0112 (3)0.2830 (2)0.0587 (6)
C60.3521 (3)0.1130 (4)0.2951 (2)0.0701 (7)
C70.1599 (4)0.0387 (4)0.2577 (3)0.0901 (9)
C80.0835 (4)0.0506 (5)0.1541 (3)0.0904 (9)
C90.1549 (3)0.1622 (4)0.1371 (3)0.0736 (8)
C110.8579 (4)0.3486 (4)0.3174 (3)0.0799 (8)
C120.2909 (4)0.4689 (3)0.0667 (2)0.0683 (7)
C250.7401 (4)0.2975 (4)0.4020 (3)0.0914 (9)
C260.4288 (4)0.3851 (4)0.3688 (2)0.0682 (7)
H10.39080.01790.12900.063*
H20.35340.10470.32680.070*
H30.38250.14180.36780.084*
H40.40850.21140.25440.084*
H50.13130.12740.25130.108*
H60.10660.03970.31020.108*
H70.10420.03200.09900.109*
H80.03900.11850.14940.109*
H90.12610.18600.06370.088*
H100.10420.26450.17580.088*
H110.75880.26460.47240.110*
H120.84300.22920.37470.110*
H130.71300.41220.40200.110*
H140.42820.34090.43090.082*
H150.33540.38920.31360.082*
H160.41500.49540.38320.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S130.0560 (3)0.0686 (3)0.0410 (3)0.0195 (3)0.0007 (2)0.0165 (2)
S140.0511 (2)0.0442 (2)0.0376 (2)0.0182 (2)0.0107 (2)0.0035 (2)
P20.0343 (2)0.0513 (3)0.0429 (3)0.0196 (2)0.0057 (2)0.0027 (2)
F190.097 (1)0.110 (1)0.107 (1)0.013 (1)0.0565 (9)0.020 (1)
F200.096 (1)0.088 (1)0.121 (2)0.017 (1)0.015 (1)0.049 (1)
F210.104 (1)0.073 (1)0.118 (2)0.025 (1)0.023 (1)0.017 (1)
F220.133 (1)0.0543 (8)0.105 (1)0.0425 (8)0.002 (1)0.0085 (9)
F230.079 (1)0.061 (1)0.126 (1)0.0008 (8)0.0442 (9)0.011 (1)
F240.120 (1)0.0702 (9)0.092 (1)0.0258 (9)0.011 (1)0.0413 (8)
O150.078 (1)0.114 (2)0.079 (1)0.046 (1)0.035 (1)0.029 (1)
O160.085 (1)0.101 (1)0.058 (1)0.0288 (9)0.0160 (8)0.0325 (9)
O170.0647 (8)0.0729 (9)0.0634 (9)0.0350 (6)0.0235 (7)0.0084 (7)
O180.0711 (9)0.0685 (9)0.0375 (8)0.0327 (7)0.0044 (7)0.0014 (7)
N10.0419 (8)0.0531 (9)0.0417 (9)0.0202 (6)0.0014 (7)0.0101 (7)
N30.0358 (7)0.0458 (8)0.0348 (8)0.0178 (6)0.0068 (6)0.0033 (6)
N100.0562 (9)0.065 (1)0.049 (1)0.0367 (7)0.0076 (8)0.0077 (8)
C40.0467 (9)0.078 (1)0.041 (1)0.0378 (8)0.0013 (8)0.0080 (9)
C50.0415 (9)0.067 (1)0.068 (1)0.0230 (8)0.0075 (9)0.019 (1)
C60.079 (1)0.091 (1)0.065 (1)0.0585 (9)0.009 (1)0.011 (1)
C70.063 (1)0.106 (2)0.121 (2)0.047 (1)0.026 (1)0.019 (2)
C80.064 (1)0.151 (2)0.082 (2)0.073 (1)0.005 (1)0.009 (2)
C90.037 (1)0.081 (2)0.093 (2)0.020 (1)0.001 (1)0.025 (2)
C110.061 (2)0.068 (2)0.077 (2)0.002 (1)0.018 (1)0.024 (1)
C120.081 (2)0.047 (1)0.062 (1)0.019 (1)0.010 (1)0.007 (1)
C250.083 (2)0.108 (2)0.089 (2)0.062 (1)0.003 (2)0.025 (2)
C260.080 (1)0.074 (1)0.062 (1)0.044 (1)0.030 (1)0.024 (1)
Geometric parameters (Å, º) top
P2—N11.791 (2)C4—C91.483 (3)
P2—N31.771 (2)C4—H10.95
P2—N101.642 (2)C5—C61.502 (4)
S13—O151.416 (2)C5—H20.95
S13—O161.421 (2)C6—C71.483 (4)
S13—N11.590 (2)C6—H30.95
S13—C111.816 (3)C6—H40.95
S14—O171.414 (2)C7—C81.494 (5)
S14—O181.409 (2)C7—H50.95
S14—N31.611 (2)C7—H60.95
S14—C121.838 (3)C8—C91.504 (5)
F19—C111.310 (4)C8—H70.95
F20—C111.327 (3)C8—H80.95
F21—C111.321 (4)C9—H90.95
F22—C121.298 (4)C9—H100.95
F23—C121.307 (4)C25—H110.95
F24—C121.319 (3)C25—H120.95
N1—C51.469 (3)C25—H130.95
N3—C41.496 (3)C26—H140.95
N10—C251.459 (4)C26—H150.95
N10—C261.463 (3)C26—H160.95
C4—C51.484 (3)
F19···F23i2.947 (3)
N1—P2—N386.05 (8)C6—C7—C8116.7 (3)
N1—P2—N10107.3 (1)C6—C7—H5107.6
N3—P2—N10100.80 (8)C6—C7—H6107.6
O15—S13—O16121.2 (1)C8—C7—H5107.6
O15—S13—N1108.7 (1)C8—C7—H6107.6
O15—S13—C11103.8 (2)H5—C7—H6109.5
O16—S13—N1112.5 (1)C7—C8—C9115.6 (3)
O16—S13—C11104.6 (2)C7—C8—H7107.9
N1—S13—C11104.3 (1)C7—C8—H8107.9
O17—S14—O18121.1 (1)C9—C8—H7107.9
O17—S14—N3110.3 (1)C9—C8—H8107.9
O17—S14—C12104.0 (1)H7—C8—H8109.5
O18—S14—N3110.9 (1)C4—C9—C8110.6 (2)
O18—S14—C12105.2 (1)C4—C9—H9109.2
N3—S14—C12103.5 (1)C4—C9—H10109.2
S13—N1—P2117.1 (1)C8—C9—H9109.2
S13—N1—C5126.9 (2)C8—C9—H10109.2
P2—N1—C5115.2 (1)H9—C9—H10109.5
S14—N3—P2116.2 (1)S13—C11—F19111.0 (3)
S14—N3—C4121.3 (1)S13—C11—F20109.7 (2)
P2—N3—C4115.7 (1)S13—C11—F21112.1 (2)
P2—N10—C25116.8 (2)F19—C11—F20108.4 (3)
P2—N10—C26128.0 (2)F19—C11—F21107.8 (3)
C25—N10—C26113.0 (2)F20—C11—F21107.8 (3)
N3—C4—C5106.7 (2)S14—C12—F22110.7 (2)
N3—C4—C9119.3 (2)S14—C12—F23111.7 (2)
N3—C4—H1105.1S14—C12—F24108.5 (2)
C5—C4—C9114.3 (2)F22—C12—F23108.5 (3)
C5—C4—H1105.1F22—C12—F24108.6 (3)
C9—C4—H1105.1F23—C12—F24108.7 (2)
N1—C5—C4104.8 (2)N10—C25—H11109.5
N1—C5—C6122.3 (2)N10—C25—H12109.5
N1—C5—H2105.4N10—C25—H13109.5
C4—C5—C6112.2 (2)H11—C25—H12109.5
C4—C5—H2105.4H11—C25—H13109.5
C6—C5—H2105.4H12—C25—H13109.5
C5—C6—C7110.2 (2)N10—C26—H14109.5
C5—C6—H3109.3N10—C26—H15109.5
C5—C6—H4109.3N10—C26—H16109.5
C7—C6—H3109.3H14—C26—H15109.5
C7—C6—H4109.3H14—C26—H16109.5
H3—C6—H4109.5H15—C26—H16109.5
Symmetry code: (i) x+1, y1, z.
(IV) bis[(4R,5R)-1,3-bis(trifluoromethanesulfonyl)perhydro-1,3,2- benzodiazaphosphol-2-yl]methylamine chloroform solvate top
Crystal data top
C17H23F12N5O8P2S4·0.98(CHCl3)F(000) = 954.06
Mr = 960.65Dx = 1.767 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.812 (4) Åθ = 10.0–11.6°
b = 13.897 (3) ŵ = 0.68 mm1
c = 14.728 (6) ÅT = 293 K
β = 90.21 (3)°Monoclinic prism, colourless
V = 1803 (1) Å30.22 × 0.20 × 0.15 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.031
Radiation source: X-ray tubeθmax = 30.9°, θmin = 2.0°
Graphite monochromatorh = 1212
ω/2θ scansk = 020
5666 measured reflectionsl = 020
5519 independent reflections2 standard reflections every 120 reflections
4855 reflections with I > 0 intensity decay: 7.0%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.086H-atom parameters not refined
wR(F2) = 0.051Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00013|Fo|2]
S = 1.88(Δ/σ)max = 0.007
4855 reflectionsΔρmax = 0.46 e Å3
486 parametersΔρmin = 0.61 e Å3
Crystal data top
C17H23F12N5O8P2S4·0.98(CHCl3)V = 1803 (1) Å3
Mr = 960.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.812 (4) ŵ = 0.68 mm1
b = 13.897 (3) ÅT = 293 K
c = 14.728 (6) Å0.22 × 0.20 × 0.15 mm
β = 90.21 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.031
5666 measured reflections2 standard reflections every 120 reflections
5519 independent reflections intensity decay: 7.0%
4855 reflections with I > 0
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.051H-atom parameters not refined
S = 1.88Δρmax = 0.46 e Å3
4855 reflectionsΔρmin = 0.61 e Å3
486 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl500.2039 (3)0.2634 (3)0.1674 (1)0.1483 (8)0.908
Cl510.3289 (8)0.3505 (5)0.3153 (4)0.161 (2)0.387
Cl520.0720 (3)0.2825 (3)0.3473 (2)0.188 (1)0.844
Cl530.3574 (7)0.2083 (7)0.3307 (4)0.191 (3)0.378
Cl540.3230 (9)0.1652 (4)0.3031 (5)0.156 (2)0.431
S130.6893 (1)0.44710.89379 (8)0.0458 (3)
S140.6784 (1)0.06162 (7)0.90237 (8)0.0472 (3)
S370.3134 (1)0.45383 (8)0.68345 (8)0.0470 (3)
S380.3120 (1)0.07042 (8)0.68187 (8)0.0447 (3)
P20.59560 (9)0.2537 (1)0.85283 (5)0.0365 (2)
P270.30204 (8)0.2614 (1)0.75138 (5)0.0351 (2)
F190.9742 (4)0.4147 (3)0.9363 (3)0.116 (1)
F200.9415 (4)0.5221 (3)0.8400 (3)0.126 (2)
F210.9170 (4)0.3732 (3)0.8046 (3)0.095 (1)
F220.9652 (4)0.0878 (4)0.9360 (3)0.129 (2)
F230.8970 (4)0.1358 (3)0.8106 (3)0.147 (2)
F240.9197 (4)0.0113 (3)0.8322 (3)0.116 (1)
F430.0802 (4)0.5269 (3)0.6043 (3)0.115 (1)
F440.0758 (4)0.3751 (3)0.6114 (3)0.105 (1)
F450.2175 (5)0.4408 (3)0.5178 (2)0.113 (1)
F460.0683 (4)0.1542 (3)0.6164 (3)0.104 (1)
F470.2051 (4)0.0826 (3)0.5168 (2)0.101 (1)
F480.0675 (4)0.0029 (3)0.6055 (3)0.106 (1)
O150.6774 (4)0.5183 (2)0.9628 (2)0.062 (1)
O160.6180 (4)0.4567 (2)0.8080 (2)0.066 (1)
O170.6796 (4)0.0057 (2)0.9730 (2)0.066 (1)
O180.5975 (4)0.0460 (2)0.8218 (2)0.071 (1)
O390.2368 (4)0.4646 (2)0.7668 (2)0.0580 (9)
O400.4152 (4)0.5242 (2)0.6494 (2)0.0586 (9)
O410.2405 (4)0.0602 (2)0.7674 (2)0.0560 (9)
O420.4068 (4)0.0002 (2)0.6451 (2)0.062 (1)
N10.6486 (4)0.3429 (2)0.9305 (2)0.047 (1)
N30.6352 (4)0.1692 (2)0.9385 (2)0.0355 (8)
N100.4050 (3)0.2558 (3)0.8490 (1)0.0348 (6)
N260.3882 (4)0.3479 (2)0.6824 (2)0.0393 (9)
N280.3887 (4)0.1749 (2)0.6810 (2)0.0399 (9)
C40.7007 (5)0.2083 (3)1.0235 (3)0.044 (1)
C50.6446 (5)0.3113 (3)1.0299 (3)0.039 (1)
C60.7332 (6)0.3646 (3)1.0995 (3)0.063 (1)
C70.7094 (9)0.3166 (4)1.1909 (4)0.084 (2)
C80.7287 (8)0.2097 (4)1.1904 (4)0.081 (2)
C90.6571 (7)0.1555 (3)1.1118 (3)0.068 (1)
C110.8937 (6)0.4378 (4)0.8648 (4)0.074 (2)
C120.8778 (6)0.0704 (3)0.8673 (4)0.059 (1)
C250.3078 (4)0.2537 (5)0.9312 (2)0.0491 (9)
C290.4747 (5)0.2130 (3)0.6014 (3)0.044 (1)
C300.5200 (4)0.3134 (3)0.6302 (3)0.040 (1)
C310.5769 (6)0.3702 (3)0.5492 (3)0.057 (1)
C320.7148 (6)0.3170 (4)0.5147 (3)0.069 (2)
C330.6876 (7)0.2118 (4)0.4906 (4)0.079 (2)
C340.6146 (6)0.1584 (4)0.5716 (3)0.068 (1)
C350.1624 (6)0.4472 (4)0.6015 (4)0.067 (2)
C360.1522 (6)0.0782 (4)0.5997 (4)0.075 (2)
C490.222 (1)0.256 (1)0.2864 (6)0.272 (5)0.983
H10.80810.20891.01830.053*
H20.54160.30981.04870.046*
H30.69950.42941.10210.075*
H40.83790.36321.08430.075*
H50.78050.34301.23270.101*
H60.60940.33071.21060.101*
H70.83450.19651.18980.098*
H80.68580.18541.24490.098*
H90.69410.09131.11030.082*
H100.54980.15471.11820.082*
H110.33520.20020.96790.059*
H120.20440.24800.91350.059*
H130.32160.31140.96470.059*
H140.40720.21780.55120.053*
H150.60250.30720.67160.047*
H160.60380.43360.56710.068*
H170.50090.37310.50330.068*
H180.79100.31950.56040.083*
H190.74990.34910.46180.083*
H200.62160.20830.43960.095*
H210.78170.18230.47620.095*
H220.68500.15500.62050.081*
H230.58680.09520.55360.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl500.183 (2)0.175 (2)0.087 (1)0.022 (3)0.005 (1)0.020 (2)
Cl510.194 (5)0.190 (5)0.098 (3)0.116 (4)0.013 (4)0.041 (3)
Cl520.138 (2)0.276 (4)0.149 (2)0.095 (2)0.003 (2)0.076 (2)
Cl530.111 (4)0.35 (1)0.112 (4)0.080 (5)0.009 (3)0.057 (5)
Cl540.187 (5)0.116 (3)0.163 (5)0.070 (3)0.007 (4)0.037 (3)
S130.0437 (6)0.0333 (5)0.0602 (7)0.0036 (4)0.0035 (5)0.0059 (5)
S140.0489 (6)0.0333 (5)0.0593 (7)0.0048 (5)0.0072 (5)0.0067 (5)
S370.0510 (6)0.0328 (5)0.0571 (6)0.0033 (5)0.0080 (5)0.0019 (5)
S380.0555 (6)0.0330 (5)0.0456 (6)0.0087 (5)0.0047 (5)0.0014 (5)
P20.0358 (4)0.0361 (4)0.0375 (4)0.0021 (6)0.0028 (3)0.0008 (6)
P270.0347 (4)0.0340 (4)0.0367 (4)0.0024 (6)0.0028 (3)0.0004 (7)
F190.050 (2)0.163 (4)0.135 (3)0.018 (2)0.013 (2)0.001 (3)
F200.079 (2)0.074 (2)0.224 (5)0.032 (2)0.048 (3)0.009 (3)
F210.077 (2)0.088 (2)0.121 (2)0.013 (2)0.040 (2)0.038 (2)
F220.048 (2)0.175 (4)0.164 (4)0.011 (2)0.019 (2)0.026 (3)
F230.094 (2)0.153 (3)0.196 (4)0.045 (2)0.080 (2)0.089 (3)
F240.086 (2)0.089 (2)0.174 (4)0.023 (2)0.026 (2)0.043 (2)
F430.098 (3)0.093 (2)0.155 (3)0.036 (2)0.042 (2)0.024 (2)
F440.091 (2)0.098 (2)0.126 (3)0.029 (2)0.053 (2)0.025 (2)
F450.118 (3)0.140 (3)0.083 (2)0.011 (3)0.044 (2)0.017 (2)
F460.086 (2)0.091 (2)0.135 (3)0.023 (2)0.060 (2)0.023 (2)
F470.105 (2)0.148 (3)0.050 (2)0.034 (2)0.023 (2)0.001 (2)
F480.095 (2)0.095 (2)0.129 (3)0.052 (2)0.041 (2)0.001 (2)
O150.065 (2)0.034 (2)0.088 (2)0.003 (1)0.002 (2)0.005 (2)
O160.077 (2)0.058 (2)0.061 (2)0.007 (2)0.015 (2)0.021 (2)
O170.086 (2)0.040 (2)0.071 (2)0.011 (2)0.011 (2)0.006 (2)
O180.075 (2)0.053 (2)0.084 (2)0.013 (2)0.028 (2)0.028 (2)
O390.068 (2)0.045 (2)0.062 (2)0.009 (2)0.000 (2)0.011 (2)
O400.062 (2)0.036 (1)0.078 (2)0.003 (1)0.008 (2)0.012 (2)
O410.061 (2)0.050 (2)0.058 (2)0.012 (2)0.008 (2)0.007 (2)
O420.079 (2)0.038 (2)0.068 (2)0.003 (2)0.002 (2)0.008 (2)
N10.065 (2)0.034 (2)0.041 (2)0.009 (2)0.017 (2)0.007 (2)
N30.036 (2)0.032 (2)0.039 (2)0.008 (1)0.003 (1)0.001 (1)
N100.037 (1)0.033 (1)0.034 (1)0.000 (2)0.000 (1)0.002 (2)
N260.045 (2)0.037 (2)0.036 (2)0.002 (1)0.002 (2)0.007 (1)
N280.048 (2)0.028 (1)0.043 (2)0.004 (1)0.004 (2)0.004 (1)
C40.045 (2)0.040 (2)0.048 (2)0.008 (2)0.008 (2)0.000 (2)
C50.048 (2)0.032 (2)0.037 (2)0.000 (2)0.002 (2)0.001 (2)
C60.093 (3)0.039 (2)0.056 (3)0.003 (2)0.028 (2)0.008 (2)
C70.158 (6)0.051 (3)0.043 (3)0.015 (3)0.025 (3)0.009 (2)
C80.135 (5)0.060 (3)0.049 (3)0.019 (3)0.028 (3)0.002 (3)
C90.112 (4)0.049 (2)0.043 (2)0.017 (3)0.018 (2)0.010 (2)
C110.044 (3)0.074 (3)0.103 (4)0.020 (3)0.009 (3)0.011 (3)
C120.061 (3)0.045 (2)0.072 (3)0.006 (2)0.005 (3)0.002 (2)
C250.043 (2)0.066 (2)0.039 (2)0.000 (3)0.002 (1)0.009 (3)
C290.051 (2)0.043 (2)0.037 (2)0.009 (2)0.001 (2)0.003 (2)
C300.039 (2)0.038 (2)0.042 (2)0.002 (2)0.001 (2)0.003 (2)
C310.072 (3)0.045 (2)0.053 (2)0.003 (2)0.016 (2)0.012 (2)
C320.074 (3)0.069 (3)0.066 (3)0.010 (3)0.035 (2)0.003 (3)
C330.102 (4)0.068 (3)0.068 (3)0.007 (3)0.048 (3)0.003 (3)
C340.081 (3)0.052 (3)0.070 (3)0.007 (2)0.031 (3)0.022 (2)
C350.062 (3)0.066 (3)0.073 (3)0.005 (3)0.005 (3)0.022 (3)
C360.082 (3)0.058 (3)0.085 (3)0.025 (3)0.049 (3)0.008 (3)
C490.208 (8)0.46 (2)0.149 (6)0.20 (1)0.058 (6)0.156 (9)
Geometric parameters (Å, º) top
P2—N11.749 (4)N3—C41.480 (5)
P2—N31.758 (3)N10—C251.485 (4)
P2—N101.681 (2)N26—C301.475 (5)
P27—N101.699 (2)N28—C291.495 (5)
P27—N261.749 (3)C4—C51.517 (5)
P27—N281.763 (3)C4—C91.544 (6)
S13—O151.423 (3)C4—H10.95
S13—O161.416 (3)C5—C61.484 (6)
S13—N11.588 (3)C5—H20.95
S13—C111.857 (5)C6—C71.518 (7)
Cl50—C491.762 (9)C6—H30.95
Cl51—C491.67 (2)C6—H40.95
Cl52—C491.64 (1)C7—C81.495 (6)
Cl53—C491.51 (1)C7—H50.95
Cl54—C491.57 (2)C7—H60.95
S14—O171.399 (4)C8—C91.518 (7)
S14—O181.399 (4)C8—H70.95
S14—N31.632 (3)C8—H80.95
S14—C121.837 (5)C9—H90.95
S37—O391.411 (3)C9—H100.95
S37—O401.420 (3)C25—H110.95
S37—N261.613 (4)C25—H120.95
S37—C351.796 (6)C25—H130.95
S38—O411.418 (3)C29—C301.511 (5)
S38—O421.399 (3)C29—C341.514 (7)
S38—N281.601 (3)C29—H140.95
S38—C361.856 (5)C30—C311.518 (6)
F19—C111.309 (7)C30—H150.95
F20—C111.298 (6)C31—C321.512 (7)
F21—C111.278 (6)C31—H160.95
F22—C121.293 (6)C31—H170.95
F23—C121.247 (6)C32—C331.523 (7)
F24—C121.301 (6)C32—H180.95
F43—C351.324 (6)C32—H190.95
F44—C351.267 (6)C33—C341.548 (7)
F45—C351.329 (6)C33—H200.95
F46—C361.313 (6)C33—H210.95
F47—C361.310 (7)C34—H220.95
F48—C361.288 (6)C34—H230.95
N1—C51.528 (5)
F20···O39i2.931 (5)
N1—P2—N387.3 (1)C4—C9—H9109.9
N1—P2—N10105.9 (2)C4—C9—H10109.9
N3—P2—N10103.3 (2)C8—C9—H9109.9
N10—P27—N26106.9 (2)C8—C9—H10109.9
N10—P27—N28103.6 (2)H9—C9—H10109.5
N26—P27—N2886.4 (1)S13—C11—F19110.8 (4)
P2—N10—P27124.0 (1)S13—C11—F20108.5 (4)
O15—S13—O16122.6 (2)S13—C11—F21111.6 (4)
O15—S13—N1111.9 (2)F19—C11—F20105.8 (5)
O15—S13—C11106.7 (2)F19—C11—F21107.4 (5)
O16—S13—N1106.8 (2)F20—C11—F21112.7 (5)
O16—S13—C11103.2 (3)S14—C12—F22111.1 (4)
N1—S13—C11103.6 (2)S14—C12—F23111.7 (4)
O17—S14—O18122.0 (2)S14—C12—F24109.1 (4)
O17—S14—N3111.8 (2)F22—C12—F23107.8 (5)
O17—S14—C12104.4 (2)F22—C12—F24107.8 (5)
O18—S14—N3107.5 (2)F23—C12—F24109.3 (5)
O18—S14—C12104.9 (2)N10—C25—H11109.5
N3—S14—C12104.8 (2)N10—C25—H12109.5
O39—S37—O40122.6 (2)N10—C25—H13109.5
O39—S37—N26107.6 (2)H11—C25—H12109.5
O39—S37—C35103.5 (2)H11—C25—H13109.5
O40—S37—N26111.5 (2)H12—C25—H13109.5
O40—S37—C35105.4 (2)N28—C29—C30104.0 (3)
N26—S37—C35104.4 (2)N28—C29—C34117.7 (4)
O41—S38—O42122.8 (2)N28—C29—H14108.5
O41—S38—N28106.7 (2)C30—C29—C34109.2 (4)
O41—S38—C36104.3 (2)C30—C29—H14108.5
O42—S38—N28112.3 (2)C34—C29—H14108.5
O42—S38—C36103.9 (2)N26—C30—C29103.8 (3)
N28—S38—C36105.2 (2)N26—C30—C31120.3 (3)
S13—N1—P2118.9 (2)N26—C30—H15107.3
S13—N1—C5126.5 (3)C29—C30—C31110.3 (3)
P2—N1—C5114.6 (2)C29—C30—H15107.3
S14—N3—P2115.1 (2)C31—C30—H15107.3
S14—N3—C4121.4 (3)C30—C31—C32106.2 (4)
P2—N3—C4115.9 (2)C30—C31—H16110.3
P2—N3—H1112.7C30—C31—H17110.3
P2—N10—C25123.5 (2)C32—C31—H16110.3
P27—N10—C25112.5 (2)C32—C31—H17110.3
S37—N26—P27116.3 (2)H16—C31—H17109.5
S37—N26—C30128.6 (3)C31—C32—C33114.9 (5)
S37—N26—H15130.7C31—C32—H18108.1
P27—N26—C30115.1 (2)C31—C32—H19108.1
S38—N28—P27115.4 (2)C33—C32—H18108.1
S38—N28—C29122.9 (3)C33—C32—H19108.1
P27—N28—C29116.2 (2)H18—C32—H19109.5
N3—C4—C5105.9 (3)C32—C33—C34110.3 (4)
N3—C4—C9116.1 (3)C32—C33—H20109.3
N3—C4—H1108.8C32—C33—H21109.3
C5—C4—C9108.3 (4)C34—C33—H20109.3
C5—C4—H1108.8C34—C33—H21109.3
C9—C4—H1108.8H20—C33—H21109.5
N1—C5—C4101.7 (3)C29—C34—C33108.9 (4)
N1—C5—C6120.3 (3)C29—C34—H22109.6
N1—C5—H2108.1C29—C34—H23109.6
C4—C5—C6110.1 (4)C33—C34—H22109.6
C4—C5—H2108.1C33—C34—H23109.6
C6—C5—H2108.1H22—C34—H23109.5
C5—C6—C7108.6 (4)S37—C35—F43109.9 (4)
C5—C6—H3109.7S37—C35—F44114.1 (4)
C5—C6—H4109.7S37—C35—F45110.7 (4)
C7—C6—H3109.7F43—C35—F44109.2 (5)
C7—C6—H4109.7F43—C35—F45106.6 (5)
H2—C6—H396.4F44—C35—F45106.1 (5)
H2—C6—H4136.5S38—C36—F46110.5 (4)
H3—C6—H4109.5S38—C36—F47109.8 (4)
C6—C7—C8114.6 (5)S38—C36—F48110.4 (4)
C6—C7—H5108.2F46—C36—F47109.8 (5)
C6—C7—H6108.2F46—C36—F48108.3 (5)
C6—C7—H8140.2F47—C36—F48107.9 (5)
C8—C7—H5108.2Cl50—C49—Cl51105 (1)
C8—C7—H6108.2Cl50—C49—Cl52117.5 (6)
H5—C7—H6109.5Cl50—C49—Cl53121.5 (6)
C7—C8—C9116.7 (5)Cl50—C49—Cl54104.6 (6)
C7—C8—H7107.6Cl51—C49—Cl5298.1 (8)
C7—C8—H8107.6Cl51—C49—Cl5378.0 (7)
C9—C8—H7107.6Cl51—C49—Cl54105.9 (6)
C9—C8—H8107.6Cl52—C49—Cl53119.8 (7)
H7—C8—H8109.5Cl52—C49—Cl54124 (1)
C4—C9—C8107.6 (4)Cl53—C49—Cl5429.4 (5)
Symmetry code: (i) x+1, y, z.

Experimental details

(IIIa)(IIIb)(IV)
Crystal data
Chemical formulaC12H20F6N3O4PS2C10H16F6N3O4PS2C17H23F12N5O8P2S4·0.98(CHCl3)
Mr479.39451.34960.65
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21
Temperature (K)293293293
a, b, c (Å)8.657 (2), 10.352 (2), 12.859 (3)8.972 (2), 9.116 (6), 12.990 (7)8.812 (4), 13.897 (3), 14.728 (6)
α, β, γ (°)104.81 (1), 93.08 (2), 111.21 (2)97.40 (4), 104.03 (4), 60.58 (4)90, 90.21 (3), 90
V3)1024.9 (5)897.8 (9)1803 (1)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.410.470.68
Crystal size (mm)0.20 × 0.20 × 0.150.25 × 0.18 × 0.180.22 × 0.20 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed reflections
6193, 5947, 3678 [I > 3σ(I)]5444, 5227, 3076 [I > 3σ(I)]5666, 5519, 4855 (I > 0)
Rint0.0250.0220.031
(sin θ/λ)max1)0.7030.7030.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.063, 1.95 0.049, 0.070, 1.91 0.086, 0.051, 1.88
No. of reflections367830764855
No. of parameters253235486
H-atom treatmentH-atom parameters not refinedH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.43, 0.340.53, 0.390.46, 0.61

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, TEXSAN (Molecular Structure Corporation, 1992-1997), SIR92 (Altomare et al., 1993), TEXSAN, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (IIIa) top
P2—N11.783 (2)P2—N101.637 (2)
P2—N31.792 (2)
N1—P2—N385.47 (7)N3—P2—N10107.71 (8)
N1—P2—N10101.42 (8)
Selected geometric parameters (Å, º) for (IIIb) top
P2—N11.791 (2)P2—N101.642 (2)
P2—N31.771 (2)
N1—P2—N386.05 (8)N3—P2—N10100.80 (8)
N1—P2—N10107.3 (1)
Selected geometric parameters (Å, º) for (IV) top
P2—N11.749 (4)P27—N101.699 (2)
P2—N31.758 (3)P27—N261.749 (3)
P2—N101.681 (2)P27—N281.763 (3)
N1—P2—N387.3 (1)N10—P27—N28103.6 (2)
N1—P2—N10105.9 (2)N26—P27—N2886.4 (1)
N3—P2—N10103.3 (2)P2—N10—P27124.0 (1)
N10—P27—N26106.9 (2)
Comparisons of selected parameters between the three compounds (°, Å) top
(IIIa)(IIIb)(IV)
S distances from ring planes
S13-0.298 (1)0.387 (1)0.667 (1)
S14-0.321 (1)0.553 (1)0.460 (1)
S370.774 (1)
S380.373 (1)
Bonded torsion angles
N10-P2-N1-S1394.9 (1)-89.8 (1)-94.6 (2)
N10-P2-N3-S14-80.5 (1)99.0 (1)99.2 (2)
N10-P27-N26-S37-98.1 (2)
N10-P27-N28-S3894.9 (2)
Non-bonded torsion angles
S13-N1···N3-S1451.5 (5)30.9 (5)5.4 (9)
S13-N1···N26-S37-43.5 (2)
S37-N26···N28-S38-1.9 (9)
S14-N3···N28-S3843.8 (2)
N distances from surrounding planes
N1···(P2/C5/S13)0.260 (1)0.080 (2)0.019 (4)
N3···(P2/C4/S14)0.132 (1)0.246 (2)0.258 (4)
N26···(P27/C30/S37)0.004 (3)
N28···(P27/C29/S38)0.220 (3)
N-P distances
P2-N11.783 (2)1.791 (2)1.749 (4)
P2-N31.792 (2)1.771 (2)1.758 (3)
P2-N101.637 (2)1.642 (2)1.681 (2)
P27-N261.749 (3)
P27-N281.763 (3)
P27-N101.699 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds