Download citation
Download citation
link to html
The title compound, tetrakis(μ-2,3-di­methoxy­benzoato)-κ4O:O′;κ6O,O′:O′-bis[(2,2′-bi­pyridine-N,N′)(2,3-di­methoxy­benzoato-O,O′)lanthanum(III)], [La2(2,3-DMOBA)6(2,2′-bpy)2], where 2,3-DMOBA is 2,3-di­methoxy­benzoate (C9H9O4) and 2,2′-bpy is 2,2′-bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea-coordinated and has a distorted monocapped square-antiprism geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009337/na1525sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009337/na1525Isup2.hkl
Contains datablock I

CCDC reference: 173355

Comment top

Lanthanoid(III) carboxylates have been widely studied in recent years due to the variety of structural types and their potential uses as fluorescent sensors. In ennea-coordinated lanthanoid(III) complexes, the central metal atom is in a monocapped square antiprism or a tricapped trigonal prism geometry. The geometries of the complexes are thought to depend on the size of the ligand compared with that of the metal atom, as well as on the substituted groups of the carboxylate. Herein, we report the preparation and crystal structure of the title compound, (I). \sch

Complex (I) is a centrosymmetric dimer, with a centre of inversion between the metal atoms, bridged by four carboxylate ligands (Fig. 1). Each La atom is coordinated with seven O atoms of five different carboxylate ligands and two N atoms of one 2,2'-bipyridine ligand. They adopt a distorted monocapped square antiprism arrangement; atoms O22, O31, O32 and N2, and O12, O21i, O32i and N1, form lower and upper square planes with mean deviations of 0.0041 (4) and 0.1832 (4) Å, respectively, with a dihedral angle between them of 6.32 (3)°; atom O11 caps the upper plane (Fig. 2) [symmetry code (i): 1 - x, -y, -z]. A similar coordination environment has been previously observed for lanthanoid(III) complexes such as Pr2(pivalate)6(2,2'-bpy)2 (Pisaresky et al., 1995), La2(propionato)6(2,2'-bpy)2 (Brodkin et al., 1996), Ce2(CH3COO)6(phen)2 (phen is phenanthroline?; Panagiotopoulos et al., 1995) and Sm2(PhCOO)6(phen)2 (Niu et al., 1999).

The carboxylate ligands adopt three different coordination modes in the crystal of (I): O11—C11—O12 groups are in a chelating mode in which two O atoms coordinate to the same La atom, forming a four-membered ring, O21—C21—O22 groups are in a bridging mode in which two O atoms coordinate to two different La atoms, forming a conventional carboxylate bridge, and O31—C31—O32 groups are in a bridging-chelating mode in which two O atoms chelate one La atom and one of the two O atoms is also linked to another La atom at the same time, to form a tridentate bridge.

In the chelating mode, the two C—O bond lengths of the carboxylate (C11—O11 and C11—O12) are not significantly different; the longer C—O bond has the longer La—O bond length (La1—O11), while the double-bonded O atom of the carboxyl group bonds with the La atom more strongly (La1—O12).

In the bridging mode, the two C—O bond lengths of the carboxylate (C21—O21 and C21—O22) are also not significantly different; the longer C—O bond has the shorter La—O bond length (La1—O21i), and this single-bonded O atom of the carboxyl group bonds with the La atom more strongly.

In the bridging-chelating mode, the two C—O bond lengths of the carboxylate (C31—O31 and C31—O32) are significantly different. This shows that the C—O double bond is localized. The O atom of the longer C—O bond bridges two La atoms (La1—O32 and La1i—O32), the O atom of the shorter C—O bond coordinates to one of the La atoms to form a chelating ring (La1—O31), and the single-bonded O atom of the carboxyl group (O32) bonds with the La atom more (not less?) strongly.

The 2,2'-bipyridine ligand chelates to the La atom to form a five-membered ring. The two pyrindine ring planes are not coplanar, the dihedral angle being 9.9 (3)°. The La—N bond lengths are comparable with the corresponding values found in the analogous complexes La2(propionato)6(2,2'-bpy)2 (Brodkin et al., 1996) and La2(Cl3CCOO)6(2,2'-bpy)2 (Cheng et al., 1994).

Experimental top

2,3-Dimethoxybenzonic acid (3 mmol, 510 mg) and 2,2'-bpy (1 mmol, 156 mg) were dissolved in ethanol (25 ml). The pH of the solution was adjusted to 7 with 2M NaOH solution. To the resulting solution was added La(NO3)3·6H2O (1 mmol, 433 mg) in water (5 ml). The reaction was stirred for 4 h at 343 K. A white precipitate was formed. Crystals of (I) suitable for X-ray analysis were obtained from the mother liquor at room temperature after a few days. Analysis found: C 52.61, H 4.34, N 3.14%; calculated for C74H76La2N4O24: C 52.99, H 4.57, N 3.34%.

Refinement top

H atoms were placed at calculated positions and refined in riding mode, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C). Final difference Fourier maps showed the highest and lowest electron densities to be 1.519 and -1.665 e Å-3, respectively, which were too close to the La atom position to be suitable for the accommodation of any additional atoms.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A schematic representation of the coordination geometry of the La atom [symmetry code (i): 1 - x, -y, -z].
tetrakis(µ-2,3-dimethoxybenzoato)-κ4O:O';κ6O,O':O'- bis[(2,2'-bipyridine-N,N')(2,3-dimethoxybenzoato-O,O')lanthanum(III)] top
Crystal data top
[La2(C10H8N2)2(C9H9O4)6]Z = 1
Mr = 1677.16F(000) = 848
Triclinic, P1Dx = 1.531 Mg m3
a = 11.0203 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2390 (13) ÅCell parameters from 25 reflections
c = 15.3540 (15) Åθ = 5–16°
α = 66.785 (7)°µ = 1.24 mm1
β = 83.551 (5)°T = 293 K
γ = 72.854 (8)°Block, colourless
V = 1818.6 (3) Å30.60 × 0.45 × 0.28 mm
Data collection top
Siemens P4
diffractometer
5830 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 113
Absorption correction: empirical (using intensity measurements) via ψ scans
(North et al., 1968)
k = 1313
Tmin = 0.521, Tmax = 0.707l = 1818
7311 measured reflections3 standard reflections every 97 reflections
6235 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.353P]
where P = (Fo2 + 2Fc2)/3
6235 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 1.67 e Å3
Crystal data top
[La2(C10H8N2)2(C9H9O4)6]γ = 72.854 (8)°
Mr = 1677.16V = 1818.6 (3) Å3
Triclinic, P1Z = 1
a = 11.0203 (11) ÅMo Kα radiation
b = 12.2390 (13) ŵ = 1.24 mm1
c = 15.3540 (15) ÅT = 293 K
α = 66.785 (7)°0.60 × 0.45 × 0.28 mm
β = 83.551 (5)°
Data collection top
Siemens P4
diffractometer
5830 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) via ψ scans
(North et al., 1968)
Rint = 0.016
Tmin = 0.521, Tmax = 0.7073 standard reflections every 97 reflections
7311 measured reflections intensity decay: none
6235 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.07Δρmax = 1.52 e Å3
6235 reflectionsΔρmin = 1.67 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.392754 (15)0.130686 (13)0.050872 (11)0.03542 (9)
O110.1572 (2)0.1418 (3)0.08551 (17)0.0538 (6)
O120.2742 (2)0.1012 (3)0.20616 (18)0.0714 (8)
O130.0606 (3)0.2505 (3)0.2879 (2)0.0793 (9)
O140.1218 (5)0.1942 (5)0.4136 (3)0.1263 (17)
O210.6797 (2)0.1708 (2)0.10864 (16)0.0516 (6)
O220.5609 (2)0.0300 (2)0.16341 (16)0.0510 (6)
O230.6269 (2)0.0892 (2)0.34954 (16)0.0515 (6)
O240.6438 (3)0.2674 (3)0.52023 (18)0.0780 (9)
O310.5387 (3)0.2592 (3)0.0579 (3)0.0864 (11)
O320.6066 (2)0.0718 (2)0.05300 (18)0.0519 (6)
O330.6586 (2)0.3322 (3)0.26066 (18)0.0610 (7)
O340.8765 (3)0.3893 (3)0.3227 (2)0.0878 (10)
N10.2689 (3)0.3697 (2)0.00326 (19)0.0453 (6)
N20.4664 (3)0.2671 (3)0.1267 (2)0.0487 (7)
C10.1733 (4)0.4179 (4)0.0585 (3)0.0558 (9)
H1A0.15350.36670.08290.067*
C20.1025 (4)0.5391 (4)0.0881 (3)0.0635 (10)
H2A0.03840.56980.13300.076*
C30.1281 (5)0.6137 (4)0.0502 (3)0.0728 (12)
H3A0.08010.69560.06740.087*
C40.2262 (5)0.5655 (4)0.0140 (3)0.0664 (11)
H4A0.24460.61470.04110.080*
C50.2977 (3)0.4433 (3)0.0383 (2)0.0468 (8)
C60.4103 (3)0.3885 (3)0.1024 (2)0.0455 (7)
C70.4588 (4)0.4613 (4)0.1314 (3)0.0583 (9)
H7A0.41780.54500.11420.070*
C80.5665 (5)0.4098 (4)0.1852 (3)0.0687 (11)
H8A0.59980.45790.20480.082*
C90.6247 (4)0.2865 (4)0.2099 (3)0.0695 (11)
H9A0.69880.24920.24610.083*
C100.5711 (4)0.2182 (4)0.1799 (3)0.0609 (10)
H10A0.61010.13400.19770.073*
C110.1711 (3)0.1145 (3)0.1718 (2)0.0448 (7)
C120.0610 (3)0.0917 (3)0.2372 (2)0.0501 (8)
C130.0172 (4)0.1529 (4)0.2972 (3)0.0601 (9)
C140.0824 (5)0.1210 (5)0.3619 (3)0.0814 (15)
C150.1307 (5)0.0290 (6)0.3619 (4)0.0948 (18)
H15A0.19320.00520.40530.114*
C160.0888 (5)0.0266 (6)0.2999 (5)0.0988 (19)
H16A0.12450.08650.29960.119*
C170.0049 (4)0.0036 (5)0.2379 (4)0.0754 (12)
H17A0.03210.03530.19520.090*
C180.1453 (7)0.2272 (7)0.3607 (5)0.128 (3)
H18A0.17090.30040.34870.192*
H18B0.21880.16090.36170.192*
H18C0.10330.20480.42090.192*
C190.2107 (9)0.1593 (9)0.4864 (5)0.204 (6)
H19A0.23230.21580.51840.306*
H19B0.17400.07720.53090.306*
H19C0.28590.16120.45910.306*
C210.6309 (3)0.1357 (3)0.1747 (2)0.0422 (7)
C220.6542 (3)0.2332 (3)0.2739 (2)0.0446 (7)
C230.6430 (3)0.2068 (3)0.3551 (2)0.0457 (7)
C240.6562 (4)0.3031 (4)0.4446 (3)0.0572 (9)
C250.6805 (5)0.4234 (4)0.4523 (3)0.0738 (12)
H25A0.68640.48650.51190.089*
C260.6963 (5)0.4511 (4)0.3719 (3)0.0752 (12)
H26A0.71610.53290.37750.090*
C270.6825 (4)0.3568 (3)0.2831 (3)0.0610 (10)
H27A0.69200.37550.22920.073*
C280.5037 (5)0.0302 (4)0.3748 (3)0.0712 (12)
H28A0.50120.05150.36880.107*
H28B0.48580.07740.43910.107*
H28C0.44130.02510.33350.107*
C290.6109 (6)0.3504 (6)0.6092 (3)0.0993 (18)
H29A0.60500.31590.65640.149*
H29B0.67510.42820.62760.149*
H29C0.53070.36290.60350.149*
C310.6227 (3)0.1762 (3)0.0729 (2)0.0437 (7)
C320.7491 (3)0.1985 (3)0.1083 (2)0.0424 (7)
C330.7610 (3)0.2793 (3)0.2003 (2)0.0470 (8)
C340.8759 (4)0.3082 (4)0.2305 (3)0.0553 (9)
C350.9772 (4)0.2562 (4)0.1689 (3)0.0613 (10)
H35A1.05360.27590.18870.074*
C360.9658 (4)0.1752 (4)0.0779 (3)0.0611 (10)
H36A1.03470.14030.03660.073*
C370.8536 (4)0.1456 (3)0.0476 (3)0.0548 (9)
H37A0.84720.09000.01380.066*
C380.6579 (5)0.2670 (5)0.3188 (3)0.0834 (14)
H38A0.58460.30800.35940.125*
H38B0.65550.18420.27970.125*
H38C0.73340.26470.35670.125*
C390.9903 (6)0.4249 (7)0.3561 (5)0.139 (3)
H39A0.97920.48150.42100.209*
H39B1.05880.35300.35140.209*
H39C1.00950.46440.31830.209*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02989 (12)0.03774 (12)0.03722 (12)0.00840 (8)0.00257 (7)0.01405 (8)
O110.0339 (12)0.0808 (16)0.0447 (13)0.0154 (11)0.0010 (10)0.0217 (12)
O120.0375 (14)0.132 (3)0.0482 (15)0.0278 (16)0.0036 (11)0.0356 (16)
O130.079 (2)0.084 (2)0.079 (2)0.0082 (17)0.0095 (17)0.0432 (17)
O140.120 (4)0.153 (4)0.081 (2)0.002 (3)0.035 (2)0.056 (3)
O210.0490 (14)0.0546 (13)0.0434 (13)0.0035 (11)0.0013 (10)0.0181 (10)
O220.0505 (14)0.0508 (13)0.0433 (12)0.0001 (11)0.0086 (10)0.0171 (10)
O230.0513 (14)0.0611 (14)0.0457 (13)0.0206 (11)0.0004 (11)0.0201 (11)
O240.097 (2)0.094 (2)0.0357 (13)0.0362 (19)0.0011 (14)0.0100 (13)
O310.077 (2)0.0551 (15)0.136 (3)0.0353 (15)0.065 (2)0.0508 (18)
O320.0451 (14)0.0456 (12)0.0670 (15)0.0164 (11)0.0043 (11)0.0218 (11)
O330.0366 (13)0.0829 (18)0.0520 (15)0.0112 (12)0.0042 (11)0.0165 (13)
O340.0512 (17)0.111 (2)0.0688 (19)0.0337 (17)0.0125 (14)0.0037 (17)
N10.0361 (15)0.0445 (14)0.0511 (16)0.0052 (12)0.0016 (12)0.0185 (12)
N20.0488 (17)0.0477 (15)0.0501 (16)0.0145 (13)0.0065 (13)0.0163 (12)
C10.043 (2)0.061 (2)0.058 (2)0.0055 (17)0.0048 (16)0.0220 (17)
C20.047 (2)0.063 (2)0.065 (2)0.0000 (18)0.0091 (18)0.0165 (19)
C30.070 (3)0.048 (2)0.081 (3)0.0094 (19)0.008 (2)0.020 (2)
C40.075 (3)0.049 (2)0.071 (3)0.006 (2)0.006 (2)0.0263 (19)
C50.0476 (19)0.0434 (16)0.0460 (18)0.0101 (15)0.0089 (15)0.0176 (14)
C60.0486 (19)0.0444 (16)0.0448 (17)0.0175 (15)0.0077 (14)0.0167 (14)
C70.072 (3)0.053 (2)0.056 (2)0.0261 (19)0.0051 (19)0.0214 (17)
C80.082 (3)0.077 (3)0.064 (2)0.043 (2)0.001 (2)0.030 (2)
C90.067 (3)0.085 (3)0.064 (2)0.033 (2)0.016 (2)0.023 (2)
C100.062 (2)0.054 (2)0.064 (2)0.0160 (18)0.0175 (19)0.0147 (17)
C110.0324 (17)0.0559 (18)0.0461 (18)0.0120 (14)0.0032 (14)0.0203 (15)
C120.0318 (17)0.064 (2)0.0465 (18)0.0086 (15)0.0031 (14)0.0174 (16)
C130.047 (2)0.071 (2)0.051 (2)0.0023 (18)0.0034 (16)0.0198 (18)
C140.058 (3)0.105 (4)0.053 (2)0.012 (3)0.009 (2)0.028 (2)
C150.055 (3)0.099 (4)0.097 (4)0.019 (3)0.024 (3)0.012 (3)
C160.060 (3)0.102 (4)0.133 (5)0.038 (3)0.030 (3)0.040 (4)
C170.051 (2)0.087 (3)0.096 (3)0.029 (2)0.014 (2)0.039 (3)
C180.135 (6)0.148 (6)0.129 (5)0.022 (5)0.045 (5)0.081 (5)
C190.190 (9)0.225 (10)0.097 (5)0.030 (8)0.087 (6)0.042 (6)
C210.0351 (16)0.0499 (17)0.0413 (17)0.0108 (14)0.0054 (13)0.0164 (14)
C220.0338 (16)0.0498 (17)0.0452 (17)0.0102 (14)0.0024 (13)0.0132 (14)
C230.0360 (17)0.0557 (18)0.0419 (17)0.0151 (14)0.0023 (13)0.0124 (14)
C240.049 (2)0.070 (2)0.0426 (18)0.0196 (18)0.0038 (16)0.0084 (16)
C250.077 (3)0.062 (2)0.055 (2)0.017 (2)0.007 (2)0.0074 (19)
C260.086 (3)0.052 (2)0.072 (3)0.019 (2)0.002 (2)0.0073 (19)
C270.064 (2)0.054 (2)0.061 (2)0.0126 (18)0.0018 (19)0.0185 (17)
C280.071 (3)0.080 (3)0.059 (2)0.012 (2)0.011 (2)0.031 (2)
C290.105 (4)0.119 (4)0.048 (2)0.034 (4)0.014 (3)0.007 (3)
C310.0488 (19)0.0414 (16)0.0419 (17)0.0176 (15)0.0079 (14)0.0153 (13)
C320.0430 (18)0.0430 (16)0.0455 (17)0.0162 (14)0.0050 (14)0.0192 (13)
C330.0318 (17)0.0589 (19)0.0481 (18)0.0135 (15)0.0011 (14)0.0170 (15)
C340.0375 (19)0.066 (2)0.056 (2)0.0195 (17)0.0047 (16)0.0139 (17)
C350.0373 (19)0.067 (2)0.082 (3)0.0175 (17)0.0016 (18)0.028 (2)
C360.046 (2)0.065 (2)0.075 (3)0.0022 (18)0.0210 (19)0.033 (2)
C370.061 (2)0.0510 (18)0.0491 (19)0.0092 (17)0.0064 (17)0.0181 (15)
C380.067 (3)0.128 (4)0.061 (3)0.033 (3)0.008 (2)0.034 (3)
C390.072 (4)0.161 (6)0.129 (5)0.056 (4)0.034 (4)0.010 (5)
Geometric parameters (Å, º) top
La1—O112.565 (2)C21—C221.512 (4)
La1—O122.534 (3)C22—C231.391 (5)
La1—O21i2.477 (2)C22—C271.403 (5)
La1—O222.486 (2)C23—C241.402 (5)
La1—O312.582 (3)C24—C251.375 (6)
La1—O322.770 (2)C25—C261.384 (7)
La1—O32i2.463 (2)C26—C271.384 (6)
La1—N12.672 (3)C31—C321.499 (5)
La1—N22.710 (3)C32—C331.388 (5)
La1—La1i4.1125 (5)C32—C371.393 (5)
O11—C111.248 (4)C33—C341.395 (5)
O12—C111.246 (4)C34—C351.375 (6)
O13—C131.366 (5)C35—C361.375 (6)
O13—C181.424 (6)C36—C371.371 (6)
O14—C141.371 (6)C1—H1A0.9300
O14—C191.419 (8)C2—H2A0.9300
O21—C211.259 (4)C3—H3A0.9300
O21—La1i2.477 (2)C4—H4A0.9300
O22—C211.251 (4)C7—H7A0.9300
O23—C231.366 (4)C8—H8A0.9300
O23—C281.428 (5)C9—H9A0.9300
O24—C241.374 (5)C10—H10A0.9300
O24—C291.429 (5)C15—H15A0.9300
O31—C311.233 (4)C16—H16A0.9300
O32—C311.253 (4)C17—H17A0.9300
O32—La1i2.463 (2)C18—H18A0.9600
O33—C331.372 (4)C18—H18B0.9600
O33—C381.414 (6)C18—H18C0.9600
O34—C341.372 (5)C19—H19A0.9600
O34—C391.424 (6)C19—H19B0.9600
N1—C11.332 (5)C19—H19C0.9600
N1—C51.338 (4)C25—H25A0.9300
N2—C101.332 (5)C26—H26A0.9300
N2—C61.342 (4)C27—H27A0.9300
C1—C21.372 (5)C28—H28A0.9600
C2—C31.363 (6)C28—H28B0.9600
C3—C41.376 (6)C28—H28C0.9600
C4—C51.388 (5)C29—H29A0.9600
C5—C61.490 (5)C29—H29B0.9600
C6—C71.387 (5)C29—H29C0.9600
C7—C81.362 (6)C35—H35A0.9300
C8—C91.366 (7)C36—H36A0.9300
C9—C101.384 (5)C37—H37A0.9300
C11—C121.505 (5)C38—H38A0.9600
C12—C131.367 (5)C38—H38B0.9600
C12—C171.389 (6)C38—H38C0.9600
C13—C141.430 (6)C39—H39A0.9600
C14—C151.379 (8)C39—H39B0.9600
C15—C161.345 (9)C39—H39C0.9600
C16—C171.355 (7)
O32i—La1—O21i74.06 (8)C12—C13—C14119.1 (4)
O32i—La1—O2272.13 (8)O14—C14—C15128.4 (5)
O21i—La1—O22135.31 (8)O14—C14—C13112.8 (5)
O32i—La1—O1293.87 (10)C15—C14—C13118.8 (4)
O21i—La1—O12131.05 (8)C16—C15—C14120.9 (5)
O22—La1—O1279.79 (9)C15—C16—C17120.7 (6)
O32i—La1—O1180.62 (8)C16—C17—C12121.0 (5)
O21i—La1—O1180.34 (8)O22—C21—O21125.0 (3)
O22—La1—O11121.10 (8)O22—C21—C22118.9 (3)
O12—La1—O1150.73 (8)O21—C21—C22116.0 (3)
O32i—La1—O31122.89 (8)C23—C22—C27119.2 (3)
O21i—La1—O3178.20 (11)C23—C22—C21123.9 (3)
O22—La1—O3196.62 (11)C27—C22—C21116.9 (3)
O12—La1—O31140.34 (11)O23—C23—C22121.2 (3)
O11—La1—O31141.26 (10)O23—C23—C24119.0 (3)
O32i—La1—N1147.22 (9)C22—C23—C24119.7 (3)
O21i—La1—N182.14 (8)O24—C24—C25124.5 (3)
O22—La1—N1139.01 (8)O24—C24—C23115.2 (4)
O12—La1—N184.92 (10)C25—C24—C23120.3 (4)
O11—La1—N173.33 (9)C24—C25—C26120.4 (4)
O31—La1—N172.07 (9)C25—C26—C27119.9 (4)
O32i—La1—N2150.22 (9)C26—C27—C22120.5 (4)
O21i—La1—N2134.07 (8)O31—C31—O32121.0 (3)
O22—La1—N278.79 (8)O31—C31—C32118.9 (3)
O12—La1—N274.50 (9)O32—C31—C32119.9 (3)
O11—La1—N2110.04 (9)O31—C31—La156.80 (18)
O31—La1—N266.13 (10)O32—C31—La165.59 (18)
N1—La1—N260.47 (8)C32—C31—La1163.4 (2)
O32i—La1—O3276.58 (8)C33—C32—C37119.1 (3)
O21i—La1—O3272.50 (8)C33—C32—C31120.1 (3)
O22—La1—O3271.91 (8)C37—C32—C31120.6 (3)
O12—La1—O32151.67 (9)O33—C33—C32119.6 (3)
O11—La1—O32148.33 (8)O33—C33—C34120.4 (3)
O31—La1—O3247.55 (8)C32—C33—C34120.0 (3)
N1—La1—O32117.49 (8)O34—C34—C35125.3 (3)
N2—La1—O32100.59 (8)O34—C34—C33114.9 (3)
O32i—La1—C1186.06 (9)C35—C34—C33119.9 (3)
O21i—La1—C11105.70 (9)C34—C35—C36120.2 (4)
O22—La1—C11100.24 (9)C37—C36—C35120.5 (3)
O12—La1—C1125.34 (9)C36—C37—C32120.3 (3)
O11—La1—C1125.43 (8)N1—C1—H1A118.3
O31—La1—C11150.01 (9)C2—C1—H1A118.3
N1—La1—C1178.95 (9)C3—C2—H2A120.7
N2—La1—C1193.03 (9)C1—C2—H2A120.7
O32—La1—C11162.40 (9)C2—C3—H3A120.6
O32i—La1—C31100.78 (8)C4—C3—H3A120.6
O21i—La1—C3176.90 (9)C3—C4—H4A120.0
O22—La1—C3181.62 (9)C5—C4—H4A120.0
O12—La1—C31151.48 (9)C8—C7—H7A120.1
O11—La1—C31155.78 (9)C6—C7—H7A120.1
O31—La1—C3123.56 (9)C7—C8—H8A120.5
N1—La1—C3195.28 (8)C9—C8—H8A120.5
N2—La1—C3180.82 (9)C8—C9—H9A120.8
O32—La1—C3124.33 (8)C10—C9—H9A120.8
C11—La1—C31173.15 (9)N2—C10—H10A118.3
O32i—La1—La1i40.94 (6)C9—C10—H10A118.3
O21i—La1—La1i68.46 (5)C16—C15—H15A119.6
O22—La1—La1i66.85 (5)C14—C15—H15A119.6
O12—La1—La1i129.30 (8)C15—C16—H16A119.7
O11—La1—La1i118.41 (6)C17—C16—H16A119.7
O31—La1—La1i82.57 (6)C16—C17—H17A119.5
N1—La1—La1i144.55 (6)C12—C17—H17A119.5
N2—La1—La1i130.07 (6)O13—C18—H18A109.5
O32—La1—La1i35.64 (5)O13—C18—H18B109.5
C11—La1—La1i126.93 (7)H18A—C18—H18B109.5
C31—La1—La1i59.88 (6)O13—C18—H18C109.5
C11—O11—La192.64 (19)H18A—C18—H18C109.5
C11—O12—La194.1 (2)H18B—C18—H18C109.5
C13—O13—C18115.0 (4)O14—C19—H19A109.5
C14—O14—C19115.8 (7)O14—C19—H19B109.5
C21—O21—La1i134.4 (2)H19A—C19—H19B109.5
C21—O22—La1137.4 (2)O14—C19—H19C109.5
C23—O23—C28115.3 (3)H19A—C19—H19C109.5
C24—O24—C29116.9 (4)H19B—C19—H19C109.5
C31—O31—La199.6 (2)C24—C25—H25A119.8
C31—O32—La1i165.3 (2)C26—C25—H25A119.8
C31—O32—La190.1 (2)C25—C26—H26A120.1
La1i—O32—La1103.42 (8)C27—C26—H26A120.1
C33—O33—C38113.0 (3)C26—C27—H27A119.8
C34—O34—C39117.1 (4)C22—C27—H27A119.8
C1—N1—C5118.4 (3)O23—C28—H28A109.5
C1—N1—La1118.2 (2)O23—C28—H28B109.5
C5—N1—La1123.5 (2)H28A—C28—H28B109.5
C10—N2—C6117.7 (3)O23—C28—H28C109.5
C10—N2—La1119.9 (2)H28A—C28—H28C109.5
C6—N2—La1121.8 (2)H28B—C28—H28C109.5
N1—C1—C2123.5 (4)O24—C29—H29A109.5
C3—C2—C1118.6 (4)O24—C29—H29B109.5
C2—C3—C4118.8 (4)H29A—C29—H29B109.5
C3—C4—C5119.9 (4)O24—C29—H29C109.5
N1—C5—C4120.8 (4)H29A—C29—H29C109.5
N1—C5—C6116.9 (3)H29B—C29—H29C109.5
C4—C5—C6122.3 (3)C34—C35—H35A119.9
N2—C6—C7121.6 (3)C36—C35—H35A119.9
N2—C6—C5117.1 (3)C37—C36—H36A119.7
C7—C6—C5121.2 (3)C35—C36—H36A119.7
C8—C7—C6119.8 (4)C36—C37—H37A119.8
C7—C8—C9119.1 (4)C32—C37—H37A119.8
C8—C9—C10118.5 (4)O33—C38—H38A109.5
N2—C10—C9123.3 (4)O33—C38—H38B109.5
O12—C11—O11122.3 (3)H38A—C38—H38B109.5
O12—C11—C12118.8 (3)O33—C38—H38C109.5
O11—C11—C12118.8 (3)H38A—C38—H38C109.5
O12—C11—La160.53 (18)H38B—C38—H38C109.5
O11—C11—La161.93 (17)O34—C39—H39A109.5
C12—C11—La1174.0 (2)O34—C39—H39B109.5
C13—C12—C17119.5 (4)H39A—C39—H39B109.5
C13—C12—C11122.0 (4)O34—C39—H39C109.5
C17—C12—C11118.6 (4)H39A—C39—H39C109.5
O13—C13—C12119.4 (4)H39B—C39—H39C109.5
O13—C13—C14121.2 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[La2(C10H8N2)2(C9H9O4)6]
Mr1677.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.0203 (11), 12.2390 (13), 15.3540 (15)
α, β, γ (°)66.785 (7), 83.551 (5), 72.854 (8)
V3)1818.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.60 × 0.45 × 0.28
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements) via ψ scans
(North et al., 1968)
Tmin, Tmax0.521, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
7311, 6235, 5830
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.07
No. of reflections6235
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.52, 1.67

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXTL (Siemens, 1995).

Selected geometric parameters (Å, º) top
La1—O112.565 (2)La1—N22.710 (3)
La1—O122.534 (3)O11—C111.248 (4)
La1—O21i2.477 (2)O12—C111.246 (4)
La1—O222.486 (2)O21—C211.259 (4)
La1—O312.582 (3)O22—C211.251 (4)
La1—O322.770 (2)O31—C311.233 (4)
La1—O32i2.463 (2)O32—C311.253 (4)
La1—N12.672 (3)
O32i—La1—O21i74.06 (8)O12—La1—N184.92 (10)
O32i—La1—O2272.13 (8)O11—La1—N173.33 (9)
O21i—La1—O22135.31 (8)O31—La1—N172.07 (9)
O32i—La1—O1293.87 (10)O32i—La1—N2150.22 (9)
O21i—La1—O12131.05 (8)O21i—La1—N2134.07 (8)
O22—La1—O1279.79 (9)O22—La1—N278.79 (8)
O32i—La1—O1180.62 (8)O12—La1—N274.50 (9)
O21i—La1—O1180.34 (8)O11—La1—N2110.04 (9)
O22—La1—O11121.10 (8)O31—La1—N266.13 (10)
O12—La1—O1150.73 (8)N1—La1—N260.47 (8)
O32i—La1—O31122.89 (8)O32i—La1—O3276.58 (8)
O21i—La1—O3178.20 (11)O21i—La1—O3272.50 (8)
O22—La1—O3196.62 (11)O22—La1—O3271.91 (8)
O12—La1—O31140.34 (11)O12—La1—O32151.67 (9)
O11—La1—O31141.26 (10)O11—La1—O32148.33 (8)
O32i—La1—N1147.22 (9)O31—La1—O3247.55 (8)
O21i—La1—N182.14 (8)N1—La1—O32117.49 (8)
O22—La1—N1139.01 (8)N2—La1—O32100.59 (8)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds