Download citation
Download citation
link to html
Three methoxy­-ether and one methoxy-­ether/crown-ether derivatives of p-tert-butyl­tetrahomodioxa- and p-R-octahomo­tetraoxacalix­[4]­arenes (R = methyl, tert-butyl, H) have been investigated. The first three compounds, 7,15,21,27-tetra-tert-butyl-29,30,31,32-tetra­methoxy-3,11-dioxapenta­cyclo­[23.3.­1.15,9.113,17.119,23]­ditriaconta-1(29),5,7,­9(30),­13,15,-17(31),­19,21,23(32),25,27-dodecaene, C50H68O6, 33,34,35,36-tetra­methoxy-7,15,23,31-tetra­methyl-3,11,19,27-tetra­oxa­penta­cyclo[27.3.1.15,9.113,17.121,25]­hexa­tri­aconta-1(33),5,7,9(34),13,15,­17(35),21,23,25(36),29,31-dodecaene, C40H48O8, and 7,23-di-tert-butyl-33,34,35,36-tetra­methoxy-3,11,19,27-tetraoxapenta­cyclo­[27.3.1.15,9.113,17.121,25]­hexatriaconta-1(33),5,7,9(34),13,15,­17(35),- 21,23,25(36),29,31-dodecaene, C44H56O8, in the partial-cone or 1,2-alternate conformations, present the common feature of methoxy-­ether self-inclusion, while the fourth, 42,43-di­methoxy-7,15,23,31-tetra­methyl-3,11,19,27,34,37,40-heptaoxahexa­cyclo[15.15.9.15,9.121,25.013,41.029,33]­tritetra­conta-5(42),6,8,13(41),­14,16,21(43),22,24,29(33),30,32-dodecaene, C42H50O9, adopts the 1,3-alternate conformation owing to the presence of a 1,3-polyether chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010100823X/na1520sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100823X/na1520Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100823X/na1520IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100823X/na1520IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100823X/na1520IVsup5.hkl
Contains datablock IV

CCDC references: 170203; 170204; 170205; 170206

Comment top

Homooxacalixarenes are expanded calixarenes in which at least one methylene C atom is replaced by an ether –CH2—O—CH2– bridge (Masci, 2001). In the course of our investigation of the crystal structures of homooxacalix[n]arenes (n = 3–8) and of their uranyl ion complexes (Thuéry et al., 1999; Thuéry, Nierlich, Vicens, Masci & Takemura et al., 2001; Thuéry et al., 2001a,b,c) or O-substituted derivatives (Oueslati et al., 2001), we have synthesized four methoxyether and one methoxyether/crown-ether derivatives, the structures of which are reported herein. Two different homooxacalixarene skeletons have been used: tetrahomodioxacalix[4]arene and the larger octahomotetraoxacalix[4]arene, denoted [3.3.1.1]- and [3.3.3.3]-homooxacalixarene, respectively, in the notation of Masci et al. (1998). The three first compounds bear four methoxyether groups, with different homooxacalixarene cores: p-tert-butyltetrahomodioxacalix[4]arene, (I), p-methyloctahomotetraoxacalix[4]arene, (II), and octahomotetraoxacalix[4]arene with two diametrically located p-tert-butyl groups only (III). The last compound, (IV), features two methoxyether groups and a –O-(CH2)2-O-(CH2)2-O– bridge linking two opposite phenolic units of p-methyloctahomotetraoxacalix[4]arene. \sch

The asymmetric unit in (I) is composed of one calixarene molecule, which adopts a partial cone conformation, the three phenolic rings bound by methylene bridges being in cone conformation, and the last one, bound to the others by the ether bridges, being turned upside-down. The definition of a proper reference plane for homooxacalixarene molecules is not as straightforward as in classical small calixarenes. In compound (I), the six C atoms of the bridges define a plane with a highest deviation of 0.311 (3) Å, which can be used as a reference plane. The dihedral angles between this plane and those defined by the four aromatic rings are 80.85 (6), 53.52 (6), 84.87 (6) and 38.36 (6)°, which indicates that the reversed phenolic ring is closer to the mean plane than the three other ones. In the notation of Kanamathareddy & Gutsche (1993), this conformation can be denoted as (u, u, u, do). As a result, the methoxyether substituent bound to this last ring is subject to self-inclusion, being directed towards the cavity centre. Such a self-inclusion phenomenon, which will be encountered also with compounds (II) and (III), has previously been observed with ester substituents in another compound of the same family, tetrahomodioxacalix[6]arene (Oueslati et al., 2001). In calix[6]arene derivatives, the self-inclusion of three 1,3,5-methoxy groups was ascribed to weak CH···π interactions (van Duynhoven et al., 1994). Such interactions have however been questioned in the case of a calix[4]arene derivative presenting a similar self-inclusion (Harrowfield et al., 1994). In the present case, there is no H atom···ring centroid distance shorter than 3.15 Å, which precludes any CH···π interaction (Jeffrey & Saenger, 1994). As previously noted, two kinds of ether links can be distinguished in this family of compounds, corresponding to anti/anti or to anti/gauche C—O—C—C torsion angles (Thuéry et al., 2001 d). Both bridges in (I) are of the second type [80.4 (3) and -174.0 (2)° around O4, 165.9 (2) and -81.2 (3)° around O6].

The centrosymmetric molecule (II), with four ether linkages, is in the 1,2-alternate conformation. The best reference plane in this compound, as well as in the two following ones, is given by the four ether O atoms. The dihedral angles between this plane and the two aromatic rings are 22.77 (7) and 81.97 (5)°, indicating a (u, uo, d, do) conformation. The two methoxyether substituents of the rings closer to the mean plane are self-included, with a shorter distance C8···C13' of 3.727 (3) Å (symmetry code: ' = 1 - x, -y, -z). There is no H atom···ring centroid distance shorter than 3.05 Å. C8 is not equally distant from the two nearest aromatic rings, the distortion of the calixarene being due to different ether bridge conformations. The bridge containing O2 is of the anti/anti type [torsion angles -176.1 (2) and 176.6 (2)°] whereas that containing O4 is of the anti/gauche type [-172.3 (2) and 82.3 (2)°]. The latter brings C8 in closer proximity to the bound aromatic ring than the former.

The main overall shape is encountered in compound (III), in which the molecule does not possess any crystallographic symmetry. The conformation is 1,2-alternate, but even more irregular than in compound (II). The four ether O atoms of the ring define a plane with a maximum deviation of 0.084 (2) Å, which cuts the four planes defined by the aromatic rings with dihedral angles of 81.06 (6), 32.00 (5), 85.45 (6) and 31.74 (5)°. In this case also, the methoxyether groups of the two rings closer to the reference plane (which are those without p-tert-butyl substituent) are self-included, with no H atom···ring centroid distance shorter than 3.13 Å. One of the ether bridges is different from the three other ones, which brokes the pseudo-symmetry centre of the molecule. The bridges associated with O2, O4 and O8 are of the anti/gauche type [torsion angles 72.6 (3) and -174.1 (2)° around O2, 173.0 (2) and -84.4 (3)° around O4, 175.7 (2) and 81.9 (3)° around O8], whereas the bridge containing O6 is of the anti/anti type [-179.7 (2) and -177.4 (3)°]. One of the H atom···ring centroid distance, involving the C36—C41 ring and a methoxy hydrogen atom of a neighbouring molecule, is 2.42 Å and can be considered, on geometrical basis, to indicate a possible CH···π interaction.

The situation in compound (IV) is quite different. This molecule, related to the calixcrown family, for which a lot of structural information has been gathered (Thuéry et al., 2000 and references therein), lacks any symmetry element and is in the 1,3-alternate conformation. The plane defined by the four ether O atoms has a maximum deviation of 0.580 (2) Å, but will be considered as the reference plane in spite of this large value in the absence of any better choice. The dihedral angles between this plane and those defined by the aromatic rings are 48.58 (7), 79.73 (7), 48.97 (6) and 80.56 (8)°, the rings closer to the mean plane being those linked by the polyether bridge O1···O3. The two methoxyether groups are therefore directed away from the cavity. Two out of the four ether bridges, diametrically located, correspond to usual anti/gauche conformations [torsion angles -174.9 (2) and -79.9 (3)° around O4, -177.3 (2) and -72.7 (3)° around O7], but the two other ones correspond to a third type not encountered up to now in this family of compounds, which is gauche/gauche [73.1 (3) and 72.9 (3)° around O6, 78.8 (3) and 70.0 (3)° around O9]. This unusual conformation is likely due to the constraints arising from the O1···O3 polyether link bridging two aromatic rings. A self-inclusion phenomenon, different from the one observed in the previous compounds and involving two molecules related by the symmetry centre, appears in the packing. The p-methyl C atom C30 of each molecule is included between the two polyether-linked aromatic rings of the neighbouring molecule, giving rise to dimers with shortest contacts between C30 and C7'' [3.480 (4) Å, symmetry code: '' = 2 - x, -y, -z] and O1'' [3.419 (4) Å]. However, there is no H atom···ring centroid distance shorter than 3.00 Å. It has been shown that calix[4]arene-mono- or bis-(crown-6) s in the 1,3-alternate conformation were selective extractants for caesium ions (Ungaro et al., 1994; Asfari et al., 1995). However, it is doubtful that, even provided with an adequate polyether link containing six O atoms, compounds like (IV) could be better extractants than the latter compounds, owing to the increased cavity size and flexibility.

Related literature top

For related literature, see: Asfari et al. (1995); Duynhoven et al. (1994); Harrowfield et al. (1994); Jeffrey & Saenger (1994); Kanamathareddy & Gutsche (1993); Masci (2001); Masci & Saccheo (1993); Masci et al. (1998); Oueslati et al. (2001); Thuéry et al. (1999, 2000, 2001); Ungaro et al. (1994).

Experimental top

Compound (I) was synthesized as reported elsewhere (Masci et al., 1998). Compounds (II) and (IV) were also obtained as previously reported (Masci & Saccheo, 1993). Compound (III) was synthesized as reported for (II), from 2,6-bis(bromomethyl)anisole and 2,6-bis(hydroxymethyl)-4-tert-butylanisole (yield 12%, m.p. 475–476 K).

Refinement top

All H atoms were introduced at calculated positions as riding atoms with a displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom.

Computing details top

For all compounds, data collection: Kappa-CCD Software (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecule (I) with the atomic numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecule (II) with the atomic numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level (symmetry code: ' = 1 - x, -y, -z).
[Figure 3] Fig. 3. Molecule (III) with the atomic numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Molecule (IV) with the atomic numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
(I) top
Crystal data top
C50H68O6Z = 2
Mr = 765.04F(000) = 832
Triclinic, P1Dx = 1.118 Mg m3
a = 11.3148 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.2488 (5) ÅCell parameters from 17232 reflections
c = 15.3512 (11) Åθ = 2.7–25.7°
α = 84.280 (4)°µ = 0.07 mm1
β = 69.132 (2)°T = 100 K
γ = 79.683 (4)°Parallelepipedic, colourless
V = 2273.5 (2) Å30.25 × 0.25 × 0.25 mm
Data collection top
Nonius Kappa-CCD
diffractometer
5246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.7°, θmin = 2.7°
Detector resolution: 18 pixels mm-1h = 013
ϕ scansk = 1415
7972 measured reflectionsl = 1718
7972 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.6661P]
where P = (Fo2 + 2Fc2)/3
7972 reflections(Δ/σ)max < 0.001
521 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C50H68O6γ = 79.683 (4)°
Mr = 765.04V = 2273.5 (2) Å3
Triclinic, P1Z = 2
a = 11.3148 (8) ÅMo Kα radiation
b = 14.2488 (5) ŵ = 0.07 mm1
c = 15.3512 (11) ÅT = 100 K
α = 84.280 (4)°0.25 × 0.25 × 0.25 mm
β = 69.132 (2)°
Data collection top
Nonius Kappa-CCD
diffractometer
5246 reflections with I > 2σ(I)
7972 measured reflectionsRint = 0.072
7972 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
7972 reflectionsΔρmin = 0.21 e Å3
521 parameters
Special details top

Experimental. crystal-to-detector distance 28 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and expanded by subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28292 (17)0.94163 (12)0.34605 (12)0.0318 (4)
O20.03724 (16)0.75319 (11)0.43538 (12)0.0268 (4)
O30.32777 (17)0.77399 (12)0.51535 (12)0.0285 (4)
O40.39710 (17)0.98518 (12)0.39958 (12)0.0294 (4)
O50.0965 (2)1.00563 (12)0.21553 (13)0.0389 (5)
O60.12367 (17)1.12625 (12)0.25967 (12)0.0316 (4)
C10.2751 (2)0.98587 (18)0.19222 (18)0.0287 (6)
C20.2807 (2)0.91539 (18)0.26177 (17)0.0262 (6)
C30.2900 (2)0.81941 (17)0.24577 (18)0.0258 (6)
C40.2898 (2)0.79566 (18)0.15980 (18)0.0269 (6)
H40.29320.73190.14940.032*
C50.2845 (2)0.86360 (18)0.08882 (17)0.0273 (6)
C60.2799 (3)0.95836 (18)0.10687 (18)0.0302 (6)
H60.28011.00490.05980.036*
C70.2805 (3)0.83782 (19)0.00448 (18)0.0342 (6)
C80.4039 (3)0.8581 (2)0.0830 (2)0.0539 (9)
H8A0.41010.92460.08520.081*
H8B0.40210.84150.14150.081*
H8C0.47650.82070.07120.081*
C90.1635 (4)0.8991 (2)0.0219 (2)0.0566 (9)
H9A0.17410.96510.02910.085*
H9B0.08740.89070.03020.085*
H9C0.15610.87950.07750.085*
C100.2691 (3)0.7331 (2)0.0064 (2)0.0458 (8)
H10A0.26800.72040.06630.069*
H10B0.19130.71960.04120.069*
H10C0.34090.69360.00470.069*
C110.1597 (3)0.9603 (2)0.41790 (19)0.0353 (7)
H11A0.11361.01940.40300.053*
H11B0.17060.96470.47650.053*
H11C0.11240.90930.42220.053*
C120.3015 (3)0.74117 (17)0.31939 (18)0.0278 (6)
H12A0.39060.71270.30430.033*
H12B0.27370.76960.37970.033*
C130.2226 (2)0.66389 (17)0.32578 (17)0.0262 (6)
C140.0938 (2)0.67313 (17)0.38135 (17)0.0247 (5)
C150.0168 (2)0.60630 (17)0.38159 (17)0.0252 (6)
C160.0739 (2)0.52869 (18)0.32490 (17)0.0275 (6)
H160.02450.48270.32600.033*
C170.2020 (2)0.51653 (17)0.26642 (18)0.0274 (6)
C180.2749 (3)0.58457 (17)0.26968 (17)0.0272 (6)
H180.36130.57700.23330.033*
C190.2561 (3)0.43263 (18)0.20080 (18)0.0305 (6)
C200.3904 (3)0.4396 (2)0.1320 (2)0.0380 (7)
H20A0.38930.49870.09610.057*
H20B0.41850.38720.09100.057*
H20C0.44800.43740.16570.057*
C210.1690 (3)0.4313 (2)0.1440 (2)0.0441 (8)
H21A0.16850.48890.10590.066*
H21B0.08360.42670.18560.066*
H21C0.20050.37730.10480.066*
C220.2599 (3)0.33868 (19)0.2589 (2)0.0410 (7)
H22A0.29840.28640.21790.061*
H22B0.17430.33000.29710.061*
H22C0.30930.34090.29790.061*
C230.0454 (3)0.73828 (19)0.52721 (18)0.0335 (6)
H23A0.01420.68010.55520.050*
H23B0.00560.79080.56490.050*
H23C0.13290.73400.52290.050*
C240.1255 (2)0.62262 (18)0.43510 (18)0.0283 (6)
H24A0.14140.65250.49310.034*
H24B0.15600.56150.45040.034*
C250.1998 (2)0.68551 (17)0.37983 (17)0.0244 (5)
C260.2958 (2)0.76036 (17)0.42077 (17)0.0247 (5)
C270.3660 (2)0.81670 (17)0.36990 (17)0.0252 (6)
C280.3417 (2)0.79333 (17)0.27867 (18)0.0287 (6)
H280.39050.82870.24560.034*
C290.2469 (2)0.71901 (18)0.23475 (18)0.0276 (6)
C300.1763 (2)0.66748 (18)0.28625 (18)0.0278 (6)
H300.11080.61900.25770.033*
C310.2255 (3)0.69654 (19)0.13412 (18)0.0326 (6)
C320.2053 (4)0.7871 (3)0.0714 (2)0.0677 (11)
H32A0.27970.83480.09310.102*
H32B0.19150.77260.00850.102*
H32C0.13200.81070.07330.102*
C330.3439 (3)0.6595 (3)0.1328 (2)0.0559 (9)
H33A0.35850.60440.17440.084*
H33B0.33030.64230.07070.084*
H33C0.41710.70850.15250.084*
C340.1086 (3)0.6208 (3)0.0944 (2)0.0538 (9)
H34A0.03410.64180.09720.081*
H34B0.09680.61100.03070.081*
H34C0.12140.56200.13030.081*
C350.2764 (3)0.85128 (18)0.53627 (19)0.0323 (6)
H35A0.18690.84660.49970.049*
H35B0.28700.84740.60140.049*
H35C0.32090.91120.52170.049*
C360.4611 (2)0.90285 (17)0.41072 (19)0.0288 (6)
H36A0.52400.91630.37980.035*
H36B0.50570.89000.47650.035*
C370.3691 (3)1.02982 (18)0.30819 (18)0.0324 (6)
H37A0.44801.05710.29760.039*
H37B0.32160.98310.26140.039*
C380.2909 (3)1.10710 (18)0.30149 (17)0.0293 (6)
C390.1576 (3)1.09124 (18)0.25720 (18)0.0306 (6)
C400.0862 (3)1.16464 (18)0.24799 (18)0.0294 (6)
C410.1504 (3)1.25292 (18)0.28456 (18)0.0303 (6)
H410.10301.30190.27790.036*
C420.2821 (3)1.27099 (17)0.33056 (18)0.0281 (6)
C430.3503 (3)1.19586 (18)0.33747 (18)0.0287 (6)
H430.43861.20590.36730.034*
C440.3535 (3)1.36743 (18)0.37140 (19)0.0308 (6)
C450.4577 (3)1.4043 (2)0.3288 (3)0.0548 (9)
H45A0.50001.46620.35170.082*
H45B0.51901.36100.34590.082*
H45C0.41941.40880.26210.082*
C460.4164 (3)1.35488 (19)0.4771 (2)0.0391 (7)
H46A0.46531.41450.50210.059*
H46B0.35151.33450.50450.059*
H46C0.47211.30770.49090.059*
C470.2645 (3)1.44206 (19)0.3507 (2)0.0422 (7)
H47A0.22401.45030.28450.063*
H47B0.20031.42110.37880.063*
H47C0.31321.50170.37600.063*
C480.0633 (3)0.93163 (19)0.2781 (2)0.0385 (7)
H48A0.00800.95290.30450.058*
H48B0.02000.87510.24410.058*
H48C0.13970.91780.32710.058*
C490.0552 (3)1.1506 (2)0.19595 (19)0.0348 (6)
H49A0.07771.10010.15230.042*
H49B0.07911.20880.16060.042*
C500.2560 (3)1.09002 (18)0.21264 (19)0.0309 (6)
H50A0.30511.09800.25120.037*
H50B0.28771.12650.15460.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0323 (11)0.0358 (11)0.0310 (10)0.0073 (8)0.0131 (9)0.0067 (8)
O20.0291 (10)0.0269 (9)0.0250 (10)0.0009 (7)0.0107 (8)0.0051 (7)
O30.0310 (11)0.0297 (10)0.0252 (10)0.0053 (7)0.0089 (8)0.0052 (7)
O40.0374 (11)0.0246 (10)0.0286 (10)0.0053 (7)0.0136 (9)0.0020 (7)
O50.0542 (13)0.0266 (10)0.0313 (11)0.0050 (9)0.0137 (10)0.0039 (8)
O60.0314 (11)0.0301 (10)0.0318 (10)0.0043 (8)0.0094 (9)0.0017 (8)
C10.0266 (15)0.0274 (14)0.0317 (15)0.0050 (10)0.0087 (12)0.0028 (11)
C20.0253 (15)0.0296 (15)0.0255 (14)0.0071 (10)0.0089 (11)0.0033 (10)
C30.0199 (14)0.0285 (14)0.0289 (14)0.0053 (10)0.0077 (11)0.0010 (10)
C40.0256 (14)0.0265 (14)0.0292 (14)0.0041 (10)0.0098 (12)0.0018 (10)
C50.0239 (14)0.0294 (15)0.0262 (14)0.0019 (10)0.0060 (11)0.0045 (10)
C60.0296 (16)0.0295 (15)0.0290 (15)0.0040 (11)0.0084 (12)0.0028 (11)
C70.0424 (18)0.0340 (16)0.0251 (15)0.0040 (12)0.0113 (13)0.0010 (11)
C80.066 (2)0.059 (2)0.0282 (17)0.0170 (17)0.0022 (16)0.0042 (14)
C90.074 (3)0.056 (2)0.048 (2)0.0022 (18)0.0363 (19)0.0079 (16)
C100.068 (2)0.0436 (18)0.0318 (17)0.0136 (15)0.0213 (16)0.0058 (13)
C110.0408 (18)0.0361 (16)0.0283 (15)0.0098 (12)0.0083 (13)0.0049 (11)
C120.0274 (15)0.0294 (14)0.0281 (14)0.0044 (11)0.0113 (12)0.0010 (10)
C130.0261 (15)0.0283 (14)0.0259 (14)0.0018 (10)0.0127 (12)0.0016 (10)
C140.0267 (15)0.0248 (14)0.0230 (13)0.0016 (10)0.0097 (11)0.0018 (10)
C150.0252 (14)0.0263 (14)0.0232 (13)0.0022 (10)0.0086 (11)0.0003 (10)
C160.0299 (15)0.0288 (14)0.0257 (14)0.0086 (11)0.0102 (12)0.0001 (10)
C170.0284 (15)0.0270 (14)0.0266 (14)0.0023 (10)0.0105 (12)0.0006 (10)
C180.0241 (14)0.0294 (14)0.0254 (14)0.0017 (10)0.0071 (11)0.0004 (10)
C190.0309 (16)0.0288 (15)0.0316 (15)0.0002 (11)0.0116 (12)0.0065 (11)
C200.0351 (17)0.0345 (16)0.0381 (17)0.0036 (12)0.0036 (14)0.0095 (12)
C210.0433 (19)0.0505 (19)0.0409 (18)0.0031 (14)0.0153 (15)0.0168 (14)
C220.0443 (19)0.0286 (16)0.0480 (19)0.0034 (12)0.0133 (15)0.0062 (12)
C230.0373 (17)0.0391 (16)0.0243 (14)0.0030 (12)0.0117 (13)0.0037 (11)
C240.0297 (15)0.0268 (14)0.0294 (14)0.0060 (11)0.0106 (12)0.0009 (10)
C250.0233 (14)0.0261 (14)0.0231 (13)0.0080 (10)0.0052 (11)0.0003 (10)
C260.0255 (14)0.0277 (14)0.0207 (13)0.0075 (10)0.0055 (11)0.0028 (10)
C270.0249 (14)0.0234 (13)0.0285 (14)0.0075 (10)0.0085 (11)0.0017 (10)
C280.0292 (15)0.0275 (14)0.0325 (15)0.0074 (11)0.0136 (12)0.0012 (11)
C290.0275 (15)0.0280 (14)0.0275 (14)0.0079 (11)0.0079 (12)0.0025 (10)
C300.0280 (15)0.0257 (14)0.0280 (14)0.0054 (10)0.0064 (12)0.0032 (10)
C310.0344 (16)0.0371 (16)0.0257 (15)0.0034 (12)0.0098 (12)0.0035 (11)
C320.098 (3)0.061 (2)0.0349 (19)0.010 (2)0.015 (2)0.0069 (16)
C330.051 (2)0.084 (3)0.0401 (19)0.0127 (18)0.0182 (17)0.0200 (17)
C340.053 (2)0.074 (2)0.0312 (17)0.0056 (17)0.0151 (16)0.0162 (16)
C350.0367 (17)0.0312 (15)0.0337 (16)0.0046 (11)0.0159 (13)0.0089 (11)
C360.0302 (15)0.0247 (14)0.0332 (15)0.0062 (11)0.0115 (12)0.0019 (11)
C370.0426 (17)0.0291 (15)0.0298 (15)0.0090 (12)0.0168 (13)0.0015 (11)
C380.0393 (17)0.0267 (14)0.0236 (14)0.0046 (11)0.0137 (12)0.0002 (10)
C390.0414 (17)0.0269 (14)0.0232 (14)0.0005 (11)0.0129 (13)0.0013 (10)
C400.0301 (15)0.0318 (15)0.0233 (14)0.0003 (11)0.0086 (12)0.0014 (10)
C410.0367 (17)0.0281 (15)0.0279 (15)0.0077 (11)0.0133 (13)0.0036 (10)
C420.0330 (16)0.0268 (14)0.0268 (14)0.0032 (11)0.0146 (12)0.0020 (10)
C430.0303 (15)0.0297 (14)0.0269 (14)0.0040 (11)0.0119 (12)0.0015 (10)
C440.0313 (16)0.0257 (14)0.0361 (16)0.0033 (11)0.0134 (13)0.0001 (11)
C450.062 (2)0.0365 (18)0.080 (3)0.0086 (15)0.049 (2)0.0063 (16)
C460.0383 (18)0.0294 (16)0.0406 (17)0.0010 (12)0.0036 (14)0.0056 (12)
C470.0431 (19)0.0282 (16)0.0490 (19)0.0054 (12)0.0073 (15)0.0054 (13)
C480.0440 (19)0.0273 (15)0.0427 (18)0.0007 (12)0.0167 (15)0.0027 (12)
C490.0345 (17)0.0352 (16)0.0314 (16)0.0026 (12)0.0093 (13)0.0018 (11)
C500.0286 (15)0.0264 (14)0.0362 (16)0.0057 (11)0.0082 (13)0.0034 (11)
Geometric parameters (Å, º) top
O1—C21.392 (3)C16—C171.397 (4)
O1—C111.436 (3)C17—C181.395 (3)
O2—C141.396 (3)C17—C191.535 (3)
O2—C231.438 (3)C19—C201.524 (4)
O3—C261.390 (3)C19—C211.535 (4)
O3—C351.445 (3)C19—C221.535 (4)
O4—C371.432 (3)C24—C251.522 (3)
O4—C361.451 (3)C25—C261.395 (3)
O5—C391.383 (3)C25—C301.406 (3)
O5—C481.445 (3)C26—C271.405 (3)
O6—C491.433 (3)C27—C281.390 (3)
O6—C501.434 (3)C27—C361.502 (3)
C1—C61.385 (4)C28—C291.395 (4)
C1—C21.401 (3)C29—C301.388 (4)
C1—C501.509 (3)C29—C311.534 (4)
C2—C31.392 (3)C31—C341.528 (4)
C3—C41.396 (3)C31—C321.532 (4)
C3—C121.529 (3)C31—C331.532 (4)
C4—C51.394 (3)C37—C381.506 (4)
C5—C61.393 (4)C38—C431.388 (3)
C5—C71.532 (4)C38—C391.402 (4)
C7—C101.524 (4)C39—C401.399 (4)
C7—C81.536 (4)C40—C411.396 (4)
C7—C91.542 (4)C40—C491.498 (4)
C12—C131.512 (3)C41—C421.391 (4)
C13—C141.391 (4)C42—C431.402 (4)
C13—C181.400 (3)C42—C441.532 (4)
C14—C151.400 (3)C44—C461.528 (4)
C15—C161.390 (3)C44—C471.528 (4)
C15—C241.511 (4)C44—C451.534 (4)
C2—O1—C11114.9 (2)C22—C19—C17109.3 (2)
C14—O2—C23112.24 (18)C15—C24—C25112.1 (2)
C26—O3—C35114.83 (19)C26—C25—C30117.9 (2)
C37—O4—C36112.89 (19)C26—C25—C24121.4 (2)
C39—O5—C48114.2 (2)C30—C25—C24120.6 (2)
C49—O6—C50111.9 (2)O3—C26—C25118.7 (2)
C6—C1—C2118.8 (2)O3—C26—C27120.1 (2)
C6—C1—C50120.9 (2)C25—C26—C27121.1 (2)
C2—C1—C50120.2 (2)C28—C27—C26118.4 (2)
O1—C2—C3119.9 (2)C28—C27—C36120.3 (2)
O1—C2—C1119.3 (2)C26—C27—C36121.3 (2)
C3—C2—C1120.7 (2)C27—C28—C29122.6 (2)
C2—C3—C4118.3 (2)C30—C29—C28117.2 (2)
C2—C3—C12121.5 (2)C30—C29—C31122.8 (2)
C4—C3—C12120.3 (2)C28—C29—C31120.0 (2)
C5—C4—C3122.7 (2)C29—C30—C25122.7 (2)
C6—C5—C4116.9 (2)C34—C31—C32107.9 (3)
C6—C5—C7120.4 (2)C34—C31—C33108.4 (3)
C4—C5—C7122.7 (2)C32—C31—C33109.8 (3)
C1—C6—C5122.5 (2)C34—C31—C29112.4 (2)
C10—C7—C5112.6 (2)C32—C31—C29109.8 (2)
C10—C7—C8108.3 (2)C33—C31—C29108.5 (2)
C5—C7—C8109.2 (2)O4—C36—C27110.6 (2)
C10—C7—C9108.0 (3)O4—C37—C38108.2 (2)
C5—C7—C9108.9 (2)C43—C38—C39119.0 (2)
C8—C7—C9109.8 (3)C43—C38—C37120.3 (2)
C13—C12—C3112.5 (2)C39—C38—C37120.6 (2)
C14—C13—C18118.1 (2)O5—C39—C40119.1 (2)
C14—C13—C12121.2 (2)O5—C39—C38120.4 (2)
C18—C13—C12120.5 (2)C40—C39—C38120.3 (2)
C13—C14—O2119.6 (2)C41—C40—C39118.6 (2)
C13—C14—C15121.8 (2)C41—C40—C49120.5 (2)
O2—C14—C15118.5 (2)C39—C40—C49120.9 (2)
C16—C15—C14117.6 (2)C42—C41—C40122.9 (2)
C16—C15—C24121.2 (2)C41—C42—C43116.7 (2)
C14—C15—C24120.9 (2)C41—C42—C44123.4 (2)
C15—C16—C17123.1 (2)C43—C42—C44119.9 (2)
C18—C17—C16116.9 (2)C38—C43—C42122.5 (3)
C18—C17—C19122.9 (2)C46—C44—C47108.7 (2)
C16—C17—C19120.2 (2)C46—C44—C42109.5 (2)
C17—C18—C13122.4 (2)C47—C44—C42112.1 (2)
C20—C19—C21107.6 (2)C46—C44—C45109.0 (3)
C20—C19—C22108.9 (2)C47—C44—C45108.4 (2)
C21—C19—C22109.1 (2)C42—C44—C45109.0 (2)
C20—C19—C17112.6 (2)O6—C49—C40110.3 (2)
C21—C19—C17109.3 (2)O6—C50—C1111.7 (2)
(II) top
Crystal data top
C40H48O8F(000) = 704
Mr = 656.78Dx = 1.271 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6466 (5) ÅCell parameters from 6275 reflections
b = 11.0343 (7) Åθ = 2.7–25.7°
c = 15.1801 (7) ŵ = 0.09 mm1
β = 105.842 (3)°T = 100 K
V = 1715.59 (16) Å3Platelet, colourless
Z = 20.25 × 0.25 × 0.15 mm
Data collection top
Nonius Kappa-CCD
diffractometer
2366 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.7°, θmin = 2.7°
Detector resolution: 18 pixels mm-1h = 1212
ϕ scansk = 1313
6275 measured reflectionsl = 1818
3245 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4886P]
where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C40H48O8V = 1715.59 (16) Å3
Mr = 656.78Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.6466 (5) ŵ = 0.09 mm1
b = 11.0343 (7) ÅT = 100 K
c = 15.1801 (7) Å0.25 × 0.25 × 0.15 mm
β = 105.842 (3)°
Data collection top
Nonius Kappa-CCD
diffractometer
2366 reflections with I > 2σ(I)
6275 measured reflectionsRint = 0.041
3245 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
3245 reflectionsΔρmin = 0.20 e Å3
221 parameters
Special details top

Experimental. crystal-to-detector distance 28 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and expanded by subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48703 (13)0.20399 (12)0.15015 (8)0.0304 (3)
O20.35428 (12)0.02455 (11)0.19787 (9)0.0274 (3)
O30.07761 (12)0.10932 (11)0.03507 (8)0.0263 (3)
O40.16657 (12)0.24430 (11)0.21024 (8)0.0254 (3)
C10.66194 (18)0.24430 (16)0.28619 (12)0.0246 (4)
C20.54091 (18)0.19191 (17)0.24381 (12)0.0246 (4)
C30.46767 (17)0.13384 (16)0.29515 (12)0.0243 (4)
C40.51658 (17)0.13036 (16)0.38979 (12)0.0243 (4)
H40.46740.09350.42430.029*
C50.63753 (18)0.18068 (16)0.43462 (12)0.0243 (4)
C60.70858 (18)0.23539 (16)0.38107 (12)0.0243 (4)
H60.79040.26730.40970.029*
C70.68400 (19)0.18219 (18)0.53770 (12)0.0295 (4)
H7A0.63810.24390.56090.044*
H7B0.77600.19890.55670.044*
H7C0.66760.10470.56110.044*
C80.53714 (19)0.11934 (19)0.09557 (13)0.0324 (5)
H8A0.63080.12240.11340.049*
H8B0.50490.14040.03200.049*
H8C0.50900.03890.10500.049*
C90.33634 (18)0.07981 (17)0.24933 (13)0.0268 (4)
H9A0.29260.05670.29510.032*
H9B0.28240.13900.20890.032*
C100.23144 (18)0.07321 (18)0.14874 (13)0.0283 (4)
H10A0.17990.01120.10990.034*
H10B0.18410.10050.19130.034*
C110.25307 (17)0.17825 (16)0.09083 (12)0.0239 (4)
C120.17501 (17)0.19360 (16)0.00152 (12)0.0228 (4)
C130.18848 (17)0.29514 (16)0.05008 (12)0.0228 (4)
C140.28193 (17)0.38197 (17)0.00989 (12)0.0250 (4)
H140.28960.45120.04290.030*
C150.36447 (18)0.36782 (16)0.07878 (12)0.0255 (4)
C160.34825 (18)0.26472 (17)0.12743 (12)0.0256 (4)
H160.40270.25330.18620.031*
C170.46534 (19)0.46138 (18)0.12167 (13)0.0324 (5)
H17A0.54900.42310.14360.049*
H17B0.46940.52160.07690.049*
H17C0.44200.49920.17190.049*
C180.12308 (19)0.00917 (17)0.07863 (14)0.0316 (5)
H18A0.20220.02230.03850.047*
H18B0.05780.05330.09190.047*
H18C0.13950.03620.13460.047*
C190.10757 (18)0.30683 (18)0.14816 (12)0.0272 (4)
H19A0.09770.39190.16470.033*
H19B0.02130.27370.15400.033*
C200.26531 (19)0.31715 (17)0.23216 (13)0.0289 (4)
H20A0.22520.38700.26760.035*
H20B0.32590.34610.17620.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (7)0.0359 (8)0.0224 (6)0.0068 (6)0.0060 (6)0.0001 (6)
O20.0206 (6)0.0276 (7)0.0327 (7)0.0008 (5)0.0049 (5)0.0093 (6)
O30.0217 (6)0.0254 (7)0.0313 (7)0.0004 (5)0.0063 (5)0.0040 (6)
O40.0240 (7)0.0298 (7)0.0239 (6)0.0009 (6)0.0089 (5)0.0023 (6)
C10.0263 (10)0.0208 (9)0.0293 (10)0.0018 (8)0.0118 (8)0.0005 (8)
C20.0280 (10)0.0229 (9)0.0228 (9)0.0063 (8)0.0068 (8)0.0003 (8)
C30.0233 (9)0.0220 (9)0.0273 (9)0.0023 (8)0.0062 (8)0.0030 (8)
C40.0247 (9)0.0227 (9)0.0276 (9)0.0012 (8)0.0105 (8)0.0027 (8)
C50.0245 (9)0.0219 (9)0.0266 (9)0.0028 (8)0.0073 (8)0.0030 (8)
C60.0210 (9)0.0231 (9)0.0283 (9)0.0008 (8)0.0060 (7)0.0036 (8)
C70.0289 (10)0.0325 (10)0.0267 (10)0.0026 (9)0.0069 (8)0.0050 (9)
C80.0336 (11)0.0394 (11)0.0258 (10)0.0014 (9)0.0108 (8)0.0058 (9)
C90.0251 (9)0.0267 (10)0.0282 (9)0.0017 (8)0.0064 (8)0.0066 (8)
C100.0216 (9)0.0325 (10)0.0290 (10)0.0038 (8)0.0040 (8)0.0064 (9)
C110.0217 (9)0.0243 (9)0.0264 (9)0.0042 (8)0.0079 (8)0.0009 (8)
C120.0189 (9)0.0224 (9)0.0272 (9)0.0015 (7)0.0065 (7)0.0032 (8)
C130.0217 (9)0.0253 (9)0.0226 (9)0.0055 (8)0.0080 (7)0.0007 (8)
C140.0262 (9)0.0234 (9)0.0261 (9)0.0035 (8)0.0083 (8)0.0013 (8)
C150.0251 (9)0.0243 (9)0.0270 (9)0.0022 (8)0.0068 (8)0.0032 (8)
C160.0242 (9)0.0291 (10)0.0221 (9)0.0029 (8)0.0040 (7)0.0011 (8)
C170.0326 (10)0.0299 (11)0.0325 (10)0.0038 (9)0.0052 (9)0.0033 (9)
C180.0282 (10)0.0270 (10)0.0401 (11)0.0013 (9)0.0099 (9)0.0084 (9)
C190.0255 (9)0.0332 (10)0.0238 (9)0.0045 (8)0.0080 (8)0.0001 (8)
C200.0320 (10)0.0263 (9)0.0316 (10)0.0010 (8)0.0138 (9)0.0001 (8)
Geometric parameters (Å, º) top
O1—C21.387 (2)C4—C51.397 (2)
O1—C81.444 (2)C5—C61.390 (3)
O2—C101.422 (2)C5—C71.507 (2)
O2—C91.433 (2)C10—C111.510 (3)
O3—C121.391 (2)C11—C161.392 (3)
O3—C181.438 (2)C11—C121.394 (2)
O4—C201.433 (2)C12—C131.397 (3)
O4—C191.443 (2)C13—C141.396 (3)
C1—C61.393 (3)C13—C191.508 (2)
C1—C21.398 (3)C14—C151.401 (3)
C1—C20i1.505 (3)C15—C161.393 (3)
C2—C31.399 (3)C15—C171.504 (3)
C3—C41.389 (2)C20—C1i1.505 (3)
C3—C91.504 (2)
C2—O1—C8114.33 (14)O2—C9—C3108.97 (14)
C10—O2—C9110.41 (13)O2—C10—C11109.30 (15)
C12—O3—C18112.93 (13)C16—C11—C12118.73 (16)
C20—O4—C19111.17 (14)C16—C11—C10120.25 (16)
C6—C1—C2118.04 (16)C12—C11—C10120.96 (16)
C6—C1—C20i120.65 (17)O3—C12—C11119.27 (16)
C2—C1—C20i121.11 (17)O3—C12—C13119.47 (15)
O1—C2—C1120.21 (16)C11—C12—C13121.18 (16)
O1—C2—C3118.53 (16)C14—C13—C12118.39 (16)
C1—C2—C3121.11 (16)C14—C13—C19121.30 (17)
C4—C3—C2118.71 (16)C12—C13—C19120.25 (16)
C4—C3—C9120.40 (17)C13—C14—C15121.92 (17)
C2—C3—C9120.86 (16)C16—C15—C14117.68 (17)
C3—C4—C5121.90 (17)C16—C15—C17120.57 (16)
C6—C5—C4117.65 (17)C14—C15—C17121.74 (17)
C6—C5—C7121.70 (16)C11—C16—C15122.03 (17)
C4—C5—C7120.53 (17)O4—C19—C13111.75 (14)
C5—C6—C1122.54 (17)O4—C20—C1i110.25 (15)
Symmetry code: (i) x+1, y, z.
(III) top
Crystal data top
C44H56O8F(000) = 1536
Mr = 712.89Dx = 1.218 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.2320 (15) ÅCell parameters from 14012 reflections
b = 9.0186 (3) Åθ = 2.6–25.7°
c = 19.6065 (12) ŵ = 0.08 mm1
β = 108.819 (2)°T = 100 K
V = 3888.4 (4) Å3Platelet, colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Nonius Kappa-CCD
diffractometer
4351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 25.7°, θmin = 2.6°
Detector resolution: 18 pixels mm-1h = 2828
ϕ scansk = 1010
14012 measured reflectionsl = 2323
7332 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2708P]
where P = (Fo2 + 2Fc2)/3
7332 reflections(Δ/σ)max < 0.001
479 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C44H56O8V = 3888.4 (4) Å3
Mr = 712.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.2320 (15) ŵ = 0.08 mm1
b = 9.0186 (3) ÅT = 100 K
c = 19.6065 (12) Å0.20 × 0.20 × 0.10 mm
β = 108.819 (2)°
Data collection top
Nonius Kappa-CCD
diffractometer
4351 reflections with I > 2σ(I)
14012 measured reflectionsRint = 0.078
7332 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
7332 reflectionsΔρmin = 0.25 e Å3
479 parameters
Special details top

Experimental. crystal-to-detector distance 28 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and expanded by subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43294 (8)0.04567 (17)0.28686 (9)0.0255 (4)
O20.29018 (8)0.17842 (18)0.11931 (10)0.0262 (4)
O30.17952 (8)0.02473 (18)0.23447 (9)0.0285 (4)
O40.04145 (8)0.17132 (17)0.14758 (9)0.0260 (4)
O50.07096 (8)0.53076 (18)0.20765 (9)0.0259 (4)
O60.22175 (8)0.58706 (17)0.36035 (10)0.0279 (4)
O70.31230 (8)0.57545 (18)0.27421 (9)0.0281 (4)
O80.45064 (8)0.33465 (17)0.34068 (9)0.0255 (4)
C10.43874 (11)0.1892 (3)0.23045 (14)0.0230 (6)
C20.41519 (11)0.0452 (3)0.22629 (14)0.0223 (6)
C30.37796 (11)0.0124 (3)0.16137 (14)0.0232 (6)
C40.36291 (12)0.0768 (3)0.10007 (14)0.0242 (6)
H40.33740.03890.05680.029*
C50.38483 (11)0.2207 (3)0.10152 (14)0.0236 (6)
C60.42365 (11)0.2730 (3)0.16792 (14)0.0247 (6)
H60.43990.36780.17000.030*
C70.36610 (12)0.3250 (3)0.03596 (14)0.0292 (6)
C80.42193 (14)0.4000 (3)0.02556 (16)0.0382 (7)
H8A0.40890.47240.01220.057*
H8B0.44510.44800.06960.057*
H8C0.44670.32680.01280.057*
C90.33129 (15)0.2431 (3)0.03371 (15)0.0419 (8)
H9A0.35630.16520.04230.063*
H9B0.29470.20130.02910.063*
H9C0.32110.31140.07340.063*
C100.32417 (13)0.4439 (3)0.05038 (16)0.0356 (7)
H10A0.30820.50470.00830.053*
H10B0.29120.39680.06160.053*
H10C0.34680.50440.09030.053*
C110.40012 (13)0.0200 (3)0.33636 (15)0.0310 (7)
H11A0.35790.04300.31340.047*
H11B0.41630.08190.37800.047*
H11C0.40410.08220.35080.047*
C120.35423 (11)0.1704 (3)0.15494 (14)0.0246 (6)
H12A0.36370.21280.20280.030*
H12B0.37490.22900.12840.030*
C130.25837 (12)0.1238 (3)0.16511 (14)0.0275 (6)
H13A0.26580.18830.20660.033*
H13B0.27330.02570.18220.033*
C140.19116 (12)0.1163 (3)0.12568 (14)0.0232 (6)
C150.15297 (12)0.0612 (3)0.16231 (14)0.0235 (6)
C160.09013 (12)0.0504 (3)0.12908 (14)0.0248 (6)
C170.06619 (13)0.1004 (3)0.05842 (15)0.0294 (6)
H170.02440.09670.03560.035*
C180.10290 (12)0.1556 (3)0.02116 (15)0.0298 (6)
H18A0.08580.18810.02610.036*
C190.16552 (12)0.1621 (3)0.05455 (14)0.0277 (6)
H190.19030.19730.02920.033*
C200.19399 (13)0.1301 (3)0.24721 (16)0.0338 (7)
H20A0.15740.18760.23040.051*
H20B0.21300.14650.29790.051*
H20C0.22130.15930.22190.051*
C210.05009 (12)0.0164 (3)0.16761 (15)0.0292 (6)
H21A0.06910.00700.21930.035*
H21B0.01120.03430.15390.035*
C220.00956 (11)0.2499 (3)0.18859 (14)0.0258 (6)
H22A0.01110.33480.16100.031*
H22B0.02100.18520.19650.031*
C230.05182 (11)0.3025 (3)0.26055 (14)0.0238 (6)
C240.08344 (11)0.4364 (3)0.26692 (14)0.0230 (6)
C250.12378 (11)0.4819 (3)0.33309 (14)0.0232 (6)
C260.13298 (11)0.3899 (3)0.39277 (15)0.0248 (6)
H260.16030.41960.43680.030*
C270.10292 (11)0.2555 (3)0.38901 (14)0.0232 (6)
C280.06159 (11)0.2152 (3)0.32194 (14)0.0252 (6)
H280.04000.12720.31830.030*
C290.11606 (12)0.1486 (3)0.45335 (15)0.0271 (6)
C300.15609 (12)0.2203 (3)0.52375 (14)0.0319 (7)
H30A0.13560.30520.53450.048*
H30B0.16370.14980.56230.048*
H30C0.19400.25060.51840.048*
C310.15024 (13)0.0146 (3)0.43609 (16)0.0340 (7)
H31A0.16050.05340.47590.051*
H31B0.12470.03440.39360.051*
H31C0.18670.04820.42800.051*
C320.05693 (12)0.0953 (3)0.46476 (15)0.0327 (7)
H32A0.03900.17560.48300.049*
H32B0.02900.06210.41970.049*
H32C0.06590.01500.49870.049*
C330.11251 (13)0.5170 (3)0.16785 (16)0.0351 (7)
H33A0.10880.42010.14670.053*
H33B0.10330.59070.13050.053*
H33C0.15330.53110.19960.053*
C340.15881 (11)0.6248 (3)0.34180 (15)0.0266 (6)
H34A0.15190.68470.37950.032*
H34B0.14590.68100.29720.032*
C350.25910 (11)0.7165 (3)0.36956 (15)0.0265 (6)
H35A0.24880.77140.32470.032*
H35B0.25220.78030.40600.032*
C360.32464 (11)0.6709 (2)0.39219 (14)0.0228 (6)
C370.34932 (12)0.6009 (2)0.34482 (13)0.0219 (6)
C380.41099 (12)0.5640 (2)0.36478 (14)0.0228 (6)
C390.44777 (12)0.6014 (3)0.43424 (15)0.0274 (6)
H390.48920.58090.44810.033*
C400.42437 (12)0.6679 (3)0.48289 (15)0.0293 (6)
H40A0.44950.69000.52930.035*
C410.36292 (12)0.7015 (3)0.46167 (15)0.0273 (6)
H410.34690.74540.49450.033*
C420.29034 (13)0.4251 (3)0.26117 (16)0.0329 (7)
H42A0.26410.40460.28910.049*
H42B0.26810.41280.21090.049*
H42C0.32420.35790.27480.049*
C430.43839 (12)0.4856 (3)0.31529 (15)0.0269 (6)
H43A0.47580.53420.31580.032*
H43B0.41040.48690.26640.032*
C440.48138 (11)0.2503 (3)0.30041 (14)0.0245 (6)
H44A0.51130.31320.28990.029*
H44B0.50290.16860.32990.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0326 (11)0.0233 (9)0.0205 (10)0.0032 (8)0.0083 (8)0.0040 (7)
O20.0249 (10)0.0252 (9)0.0263 (10)0.0002 (8)0.0053 (8)0.0036 (8)
O30.0316 (11)0.0265 (9)0.0243 (11)0.0016 (8)0.0047 (9)0.0011 (8)
O40.0281 (10)0.0213 (9)0.0281 (11)0.0005 (8)0.0084 (8)0.0006 (8)
O50.0252 (10)0.0261 (9)0.0259 (11)0.0040 (7)0.0077 (8)0.0056 (8)
O60.0224 (10)0.0187 (9)0.0408 (12)0.0014 (7)0.0078 (9)0.0000 (8)
O70.0320 (11)0.0237 (9)0.0236 (11)0.0016 (8)0.0021 (9)0.0015 (7)
O80.0334 (10)0.0192 (8)0.0236 (10)0.0002 (8)0.0086 (8)0.0005 (7)
C10.0210 (13)0.0213 (12)0.0260 (15)0.0004 (10)0.0065 (11)0.0018 (11)
C20.0242 (14)0.0220 (12)0.0219 (14)0.0041 (10)0.0091 (12)0.0026 (10)
C30.0244 (14)0.0202 (12)0.0252 (15)0.0003 (11)0.0083 (12)0.0004 (11)
C40.0258 (14)0.0238 (13)0.0213 (15)0.0004 (11)0.0052 (12)0.0019 (11)
C50.0260 (14)0.0220 (12)0.0228 (15)0.0016 (11)0.0078 (12)0.0001 (11)
C60.0275 (15)0.0197 (12)0.0280 (16)0.0012 (11)0.0104 (12)0.0024 (11)
C70.0369 (16)0.0247 (13)0.0235 (16)0.0028 (12)0.0064 (13)0.0035 (11)
C80.0429 (18)0.0375 (16)0.0339 (18)0.0017 (14)0.0118 (15)0.0104 (13)
C90.061 (2)0.0303 (15)0.0263 (17)0.0015 (14)0.0023 (15)0.0026 (12)
C100.0374 (17)0.0263 (14)0.0383 (18)0.0004 (12)0.0058 (14)0.0057 (12)
C110.0405 (17)0.0289 (14)0.0258 (16)0.0014 (12)0.0137 (13)0.0029 (12)
C120.0196 (13)0.0245 (13)0.0280 (15)0.0005 (11)0.0053 (12)0.0010 (11)
C130.0281 (15)0.0289 (14)0.0242 (15)0.0011 (11)0.0067 (12)0.0009 (11)
C140.0273 (14)0.0173 (12)0.0225 (14)0.0018 (10)0.0043 (12)0.0029 (10)
C150.0284 (15)0.0194 (12)0.0212 (14)0.0020 (10)0.0058 (12)0.0000 (10)
C160.0295 (15)0.0175 (12)0.0267 (15)0.0005 (11)0.0083 (12)0.0030 (11)
C170.0257 (15)0.0258 (13)0.0302 (16)0.0013 (11)0.0001 (13)0.0023 (11)
C180.0331 (16)0.0238 (13)0.0284 (16)0.0016 (12)0.0041 (13)0.0021 (11)
C190.0318 (16)0.0239 (13)0.0264 (15)0.0005 (11)0.0079 (13)0.0029 (11)
C200.0367 (17)0.0286 (14)0.0339 (17)0.0027 (12)0.0083 (14)0.0089 (12)
C210.0309 (15)0.0232 (13)0.0328 (17)0.0008 (11)0.0092 (13)0.0037 (11)
C220.0232 (14)0.0240 (13)0.0268 (16)0.0019 (11)0.0035 (12)0.0005 (11)
C230.0196 (13)0.0255 (13)0.0264 (15)0.0012 (10)0.0073 (12)0.0019 (11)
C240.0224 (14)0.0229 (13)0.0239 (15)0.0044 (10)0.0079 (12)0.0020 (11)
C250.0217 (13)0.0204 (12)0.0279 (15)0.0024 (10)0.0088 (12)0.0008 (11)
C260.0216 (14)0.0247 (13)0.0253 (15)0.0025 (11)0.0035 (11)0.0020 (11)
C270.0211 (13)0.0229 (13)0.0262 (15)0.0016 (10)0.0085 (12)0.0012 (11)
C280.0243 (14)0.0201 (12)0.0306 (16)0.0004 (11)0.0081 (12)0.0006 (11)
C290.0290 (15)0.0226 (13)0.0284 (16)0.0006 (11)0.0076 (12)0.0009 (11)
C300.0344 (16)0.0313 (14)0.0269 (16)0.0011 (12)0.0059 (13)0.0019 (12)
C310.0396 (17)0.0273 (14)0.0348 (17)0.0087 (12)0.0115 (14)0.0044 (12)
C320.0336 (16)0.0307 (14)0.0317 (17)0.0037 (12)0.0078 (13)0.0062 (12)
C330.0422 (18)0.0326 (15)0.0351 (17)0.0051 (13)0.0189 (15)0.0074 (13)
C340.0252 (15)0.0242 (13)0.0299 (16)0.0008 (11)0.0084 (12)0.0012 (11)
C350.0259 (14)0.0194 (12)0.0336 (16)0.0013 (10)0.0089 (12)0.0008 (11)
C360.0248 (14)0.0147 (11)0.0279 (15)0.0015 (10)0.0072 (12)0.0012 (10)
C370.0268 (14)0.0186 (12)0.0195 (14)0.0034 (10)0.0063 (12)0.0011 (10)
C380.0267 (15)0.0170 (12)0.0242 (15)0.0002 (10)0.0075 (12)0.0028 (10)
C390.0210 (14)0.0244 (13)0.0320 (16)0.0003 (11)0.0020 (12)0.0005 (11)
C400.0301 (15)0.0261 (13)0.0261 (16)0.0007 (12)0.0013 (12)0.0027 (11)
C410.0318 (15)0.0224 (13)0.0285 (16)0.0011 (11)0.0107 (13)0.0001 (11)
C420.0343 (16)0.0262 (14)0.0331 (17)0.0052 (12)0.0038 (13)0.0083 (12)
C430.0321 (15)0.0194 (12)0.0309 (16)0.0017 (11)0.0126 (13)0.0037 (11)
C440.0241 (14)0.0217 (13)0.0264 (15)0.0013 (11)0.0066 (12)0.0014 (11)
Geometric parameters (Å, º) top
O1—C21.392 (3)C13—C141.504 (4)
O1—C111.433 (3)C14—C191.391 (3)
O2—C131.422 (3)C14—C151.401 (4)
O2—C121.427 (3)C15—C161.397 (4)
O3—C151.388 (3)C16—C171.391 (4)
O3—C201.439 (3)C16—C211.501 (4)
O4—C221.443 (3)C17—C181.382 (4)
O4—C211.447 (3)C18—C191.391 (4)
O5—C241.394 (3)C22—C231.512 (3)
O5—C331.429 (3)C23—C281.394 (4)
O6—C341.429 (3)C23—C241.397 (3)
O6—C351.431 (3)C24—C251.395 (3)
O7—C371.393 (3)C25—C261.394 (4)
O7—C421.442 (3)C25—C341.504 (3)
O8—C441.441 (3)C26—C271.389 (3)
O8—C431.446 (3)C27—C281.403 (3)
C1—C61.386 (4)C27—C291.538 (3)
C1—C21.401 (3)C29—C301.536 (4)
C1—C441.513 (3)C29—C321.538 (4)
C2—C31.388 (3)C29—C311.542 (3)
C3—C41.394 (3)C35—C361.500 (3)
C3—C121.518 (3)C36—C371.390 (4)
C4—C51.390 (3)C36—C411.393 (4)
C5—C61.405 (3)C37—C381.398 (4)
C5—C71.538 (3)C38—C391.396 (4)
C7—C81.534 (4)C38—C431.498 (4)
C7—C91.534 (4)C39—C401.379 (4)
C7—C101.535 (4)C40—C411.385 (4)
C2—O1—C11113.99 (19)C17—C18—C19119.8 (3)
C13—O2—C12110.21 (19)C18—C19—C14120.3 (3)
C15—O3—C20114.13 (19)O4—C21—C16107.8 (2)
C22—O4—C21112.0 (2)O4—C22—C23112.2 (2)
C24—O5—C33114.01 (19)C28—C23—C24118.4 (2)
C34—O6—C35111.51 (18)C28—C23—C22120.3 (2)
C37—O7—C42113.63 (19)C24—C23—C22121.2 (2)
C44—O8—C43112.68 (19)O5—C24—C25119.5 (2)
C6—C1—C2118.1 (2)O5—C24—C23119.4 (2)
C6—C1—C44120.5 (2)C25—C24—C23120.9 (2)
C2—C1—C44121.3 (2)C26—C25—C24118.7 (2)
C3—C2—O1119.2 (2)C26—C25—C34118.9 (2)
C3—C2—C1121.1 (2)C24—C25—C34122.3 (2)
O1—C2—C1119.6 (2)C27—C26—C25122.5 (2)
C2—C3—C4118.9 (2)C26—C27—C28117.1 (2)
C2—C3—C12122.0 (2)C26—C27—C29122.7 (2)
C4—C3—C12119.1 (2)C28—C27—C29120.1 (2)
C5—C4—C3122.2 (2)C23—C28—C27122.3 (2)
C4—C5—C6117.0 (2)C30—C29—C32108.1 (2)
C4—C5—C7123.4 (2)C30—C29—C27112.0 (2)
C6—C5—C7119.5 (2)C32—C29—C27111.4 (2)
C1—C6—C5122.7 (2)C30—C29—C31108.8 (2)
C8—C7—C9108.6 (2)C32—C29—C31109.5 (2)
C8—C7—C10109.3 (2)C27—C29—C31106.9 (2)
C9—C7—C10108.5 (2)O6—C34—C25107.22 (19)
C8—C7—C5111.0 (2)O6—C35—C36109.27 (19)
C9—C7—C5112.1 (2)C37—C36—C41118.2 (2)
C10—C7—C5107.4 (2)C37—C36—C35121.7 (2)
O2—C12—C3112.45 (19)C41—C36—C35120.1 (2)
O2—C13—C14110.8 (2)C36—C37—O7118.9 (2)
C19—C14—C15118.8 (2)C36—C37—C38121.8 (2)
C19—C14—C13122.7 (2)O7—C37—C38119.2 (2)
C15—C14—C13118.5 (2)C39—C38—C37117.7 (2)
O3—C15—C16120.9 (2)C39—C38—C43119.4 (2)
O3—C15—C14117.4 (2)C37—C38—C43122.8 (2)
C16—C15—C14121.7 (2)C40—C39—C38121.8 (2)
C17—C16—C15117.7 (3)C39—C40—C41119.0 (3)
C17—C16—C21121.2 (2)C40—C41—C36121.4 (3)
C15—C16—C21121.1 (2)O8—C43—C38107.4 (2)
C18—C17—C16121.8 (3)O8—C44—C1113.2 (2)
(IV) top
Crystal data top
C42H50O9Z = 2
Mr = 698.82F(000) = 748
Triclinic, P1Dx = 1.287 Mg m3
a = 8.6669 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.7665 (11) ÅCell parameters from 13815 reflections
c = 16.8072 (9) Åθ = 2.7–25.7°
α = 113.671 (4)°µ = 0.09 mm1
β = 94.723 (4)°T = 100 K
γ = 97.119 (3)°Parallelepipedic, colourless
V = 1803.1 (2) Å30.30 × 0.30 × 0.20 mm
Data collection top
Nonius Kappa-CCD
diffractometer
4286 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.7°, θmin = 2.7°
Detector resolution: 18 pixels mm-1h = 010
ϕ scansk = 1616
6346 measured reflectionsl = 2019
6346 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.2698P]
where P = (Fo2 + 2Fc2)/3
6346 reflections(Δ/σ)max < 0.001
466 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C42H50O9γ = 97.119 (3)°
Mr = 698.82V = 1803.1 (2) Å3
Triclinic, P1Z = 2
a = 8.6669 (6) ÅMo Kα radiation
b = 13.7665 (11) ŵ = 0.09 mm1
c = 16.8072 (9) ÅT = 100 K
α = 113.671 (4)°0.30 × 0.30 × 0.20 mm
β = 94.723 (4)°
Data collection top
Nonius Kappa-CCD
diffractometer
4286 reflections with I > 2σ(I)
6346 measured reflectionsRint = 0.063
6346 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
6346 reflectionsΔρmin = 0.25 e Å3
466 parameters
Special details top

Experimental. crystal-to-detector distance 28 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and expanded by subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93668 (19)0.03106 (14)0.34728 (11)0.0287 (4)
O20.5790 (2)0.04427 (16)0.28296 (12)0.0336 (5)
O30.7303 (2)0.01658 (14)0.13467 (11)0.0282 (4)
O41.1515 (2)0.17797 (14)0.33189 (11)0.0293 (4)
O51.1002 (2)0.27544 (15)0.09373 (12)0.0343 (5)
O60.6537 (2)0.33091 (14)0.04754 (12)0.0330 (4)
O70.7328 (2)0.22424 (14)0.09683 (11)0.0311 (4)
O81.0482 (2)0.35417 (14)0.28074 (12)0.0320 (4)
O91.0047 (2)0.34056 (14)0.52388 (11)0.0310 (4)
C10.8319 (3)0.0500 (2)0.35962 (17)0.0284 (6)
H1A0.78570.01720.41270.034*
H1B0.88950.10340.36550.034*
C20.7048 (3)0.1026 (2)0.28149 (17)0.0291 (6)
H2A0.75200.11320.22890.035*
H2B0.66150.17320.27740.035*
C30.6097 (3)0.0480 (2)0.26381 (17)0.0303 (6)
H3A0.71620.08500.29000.036*
H3B0.53900.09690.29120.036*
C40.5910 (3)0.0227 (2)0.16736 (17)0.0308 (6)
H4A0.49850.03160.13670.037*
H4B0.57920.08690.15840.037*
C51.0974 (3)0.1678 (2)0.47622 (16)0.0265 (6)
C61.0790 (3)0.0690 (2)0.40369 (16)0.0261 (6)
C71.2038 (3)0.0125 (2)0.38249 (16)0.0245 (6)
C81.3487 (3)0.0579 (2)0.43506 (16)0.0268 (6)
H81.43250.02090.42160.032*
C91.3724 (3)0.1569 (2)0.50722 (16)0.0271 (6)
C101.2450 (3)0.2105 (2)0.52708 (16)0.0266 (6)
H101.25880.27650.57550.032*
C111.5311 (3)0.2051 (2)0.56245 (18)0.0351 (7)
H11A1.54700.28190.58260.053*
H11B1.61130.17700.52800.053*
H11C1.53620.18700.61200.053*
C121.1847 (3)0.0930 (2)0.30316 (17)0.0280 (6)
H12A1.09900.09800.26000.034*
H12B1.28020.09880.27650.034*
C131.1444 (3)0.2827 (2)0.26254 (17)0.0317 (6)
H13A1.16130.33330.28790.038*
H13B1.22830.28010.22820.038*
C140.9888 (3)0.3226 (2)0.20257 (17)0.0281 (6)
C150.9706 (3)0.3175 (2)0.12135 (17)0.0287 (6)
C160.8250 (3)0.3495 (2)0.06788 (17)0.0289 (6)
C170.6961 (3)0.3873 (2)0.09806 (17)0.0298 (6)
H170.59840.40890.06320.036*
C180.7087 (3)0.3939 (2)0.17870 (17)0.0280 (6)
C190.8559 (3)0.3616 (2)0.22998 (17)0.0284 (6)
H190.86620.36600.28390.034*
C200.5647 (3)0.4312 (2)0.21081 (18)0.0339 (6)
H20A0.50150.37560.22840.051*
H20B0.59660.44650.26000.051*
H20C0.50470.49510.16440.051*
C211.1840 (4)0.3559 (2)0.0412 (2)0.0405 (7)
H21A1.22610.39070.07530.061*
H21B1.26840.32260.02210.061*
H21C1.11380.40820.00910.061*
C220.8090 (3)0.3404 (2)0.01948 (18)0.0347 (7)
H22A0.88170.27800.01440.042*
H22B0.83820.40360.06380.042*
C230.6166 (3)0.2272 (2)0.00261 (18)0.0315 (6)
H23A0.64470.20940.06450.038*
H23B0.50390.23070.00830.038*
C240.6983 (3)0.1383 (2)0.01740 (16)0.0256 (6)
C250.7411 (3)0.0338 (2)0.04815 (16)0.0257 (6)
C260.8068 (3)0.0508 (2)0.02899 (16)0.0264 (6)
C270.8336 (3)0.0287 (2)0.05658 (17)0.0279 (6)
H270.87640.08480.06980.033*
C280.7982 (3)0.0750 (2)0.12275 (16)0.0260 (6)
C290.7298 (3)0.1569 (2)0.10173 (17)0.0273 (6)
H290.70410.22650.14560.033*
C300.8354 (3)0.0977 (2)0.21405 (17)0.0338 (6)
H30A0.84270.17250.24400.051*
H30B0.93360.05430.21030.051*
H30C0.75350.08090.24590.051*
C310.8543 (3)0.1632 (2)0.09953 (17)0.0286 (6)
H31A0.87020.16100.15660.034*
H31B0.95220.19690.09030.034*
C320.7742 (4)0.3341 (2)0.16010 (17)0.0347 (7)
H32A0.70270.37620.14670.042*
H32B0.87950.36280.15550.042*
C330.7682 (3)0.3460 (2)0.25276 (17)0.0303 (6)
C340.9009 (3)0.3538 (2)0.30889 (17)0.0291 (6)
C350.8907 (3)0.3572 (2)0.39237 (17)0.0281 (6)
C360.7432 (3)0.3549 (2)0.41930 (17)0.0305 (6)
H360.73490.35730.47490.037*
C370.6076 (3)0.3491 (2)0.36598 (18)0.0310 (6)
C380.6236 (3)0.3439 (2)0.28330 (18)0.0326 (6)
H380.53390.33870.24640.039*
C390.4496 (3)0.3473 (3)0.3975 (2)0.0422 (7)
H39A0.37370.35740.35780.063*
H39B0.45740.40420.45510.063*
H39C0.41710.27930.39970.063*
C401.1261 (3)0.4600 (2)0.2962 (2)0.0389 (7)
H40A1.06710.48750.26140.058*
H40B1.22970.45630.28030.058*
H40C1.13330.50710.35730.058*
C411.0377 (3)0.3623 (2)0.45033 (17)0.0308 (6)
H41A1.09890.31050.41560.037*
H41B1.10100.43340.47130.037*
C420.9611 (3)0.2275 (2)0.49944 (17)0.0307 (6)
H42A0.87820.19770.44940.037*
H42B0.91970.21660.54770.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (9)0.0333 (11)0.0303 (10)0.0023 (8)0.0006 (8)0.0177 (8)
O20.0250 (10)0.0432 (12)0.0393 (11)0.0064 (8)0.0069 (8)0.0233 (9)
O30.0250 (9)0.0369 (11)0.0264 (10)0.0097 (8)0.0068 (8)0.0153 (8)
O40.0335 (10)0.0261 (10)0.0301 (10)0.0013 (8)0.0017 (8)0.0152 (8)
O50.0320 (10)0.0320 (11)0.0411 (11)0.0026 (8)0.0075 (9)0.0179 (9)
O60.0350 (11)0.0282 (11)0.0325 (10)0.0007 (8)0.0038 (8)0.0127 (8)
O70.0344 (10)0.0271 (10)0.0307 (10)0.0115 (8)0.0015 (8)0.0099 (8)
O80.0322 (10)0.0297 (11)0.0380 (11)0.0071 (8)0.0121 (8)0.0164 (8)
O90.0340 (10)0.0306 (11)0.0256 (10)0.0069 (8)0.0051 (8)0.0083 (8)
C10.0256 (14)0.0318 (15)0.0305 (14)0.0007 (11)0.0059 (11)0.0168 (12)
C20.0274 (14)0.0287 (15)0.0322 (15)0.0037 (11)0.0057 (11)0.0137 (12)
C30.0277 (14)0.0326 (16)0.0308 (15)0.0101 (12)0.0067 (12)0.0117 (12)
C40.0238 (14)0.0394 (17)0.0335 (15)0.0109 (12)0.0095 (12)0.0169 (13)
C50.0262 (14)0.0313 (15)0.0270 (14)0.0042 (11)0.0074 (11)0.0168 (12)
C60.0247 (13)0.0299 (15)0.0265 (14)0.0002 (11)0.0035 (11)0.0160 (11)
C70.0261 (13)0.0260 (14)0.0258 (14)0.0034 (11)0.0054 (11)0.0153 (11)
C80.0274 (14)0.0300 (15)0.0293 (14)0.0064 (11)0.0077 (11)0.0176 (12)
C90.0280 (14)0.0301 (15)0.0264 (14)0.0027 (11)0.0040 (11)0.0157 (11)
C100.0269 (14)0.0291 (15)0.0240 (14)0.0023 (11)0.0048 (11)0.0118 (11)
C110.0285 (15)0.0395 (17)0.0329 (15)0.0044 (12)0.0024 (12)0.0113 (13)
C120.0273 (14)0.0297 (15)0.0298 (14)0.0015 (11)0.0038 (11)0.0161 (12)
C130.0332 (15)0.0262 (15)0.0354 (15)0.0061 (12)0.0026 (12)0.0128 (12)
C140.0293 (14)0.0213 (14)0.0327 (15)0.0035 (11)0.0023 (11)0.0109 (11)
C150.0273 (14)0.0228 (14)0.0365 (15)0.0041 (11)0.0078 (12)0.0123 (12)
C160.0325 (15)0.0217 (14)0.0317 (15)0.0033 (11)0.0044 (12)0.0109 (11)
C170.0291 (14)0.0248 (14)0.0330 (15)0.0048 (11)0.0017 (12)0.0100 (11)
C180.0287 (14)0.0221 (14)0.0329 (15)0.0074 (11)0.0075 (12)0.0098 (11)
C190.0312 (14)0.0247 (14)0.0305 (14)0.0073 (11)0.0035 (12)0.0123 (11)
C200.0342 (15)0.0278 (15)0.0408 (16)0.0049 (12)0.0085 (13)0.0149 (12)
C210.0406 (17)0.0426 (18)0.0467 (18)0.0115 (14)0.0171 (14)0.0241 (15)
C220.0354 (16)0.0342 (16)0.0378 (16)0.0067 (13)0.0054 (13)0.0182 (13)
C230.0285 (14)0.0317 (16)0.0366 (16)0.0044 (12)0.0022 (12)0.0172 (12)
C240.0218 (13)0.0281 (15)0.0291 (14)0.0060 (11)0.0001 (11)0.0143 (11)
C250.0226 (13)0.0300 (15)0.0273 (14)0.0075 (11)0.0041 (11)0.0139 (11)
C260.0225 (13)0.0275 (14)0.0305 (14)0.0076 (11)0.0016 (11)0.0129 (11)
C270.0243 (13)0.0292 (15)0.0359 (15)0.0071 (11)0.0044 (11)0.0185 (12)
C280.0247 (13)0.0312 (15)0.0244 (14)0.0081 (11)0.0018 (11)0.0135 (11)
C290.0262 (14)0.0253 (14)0.0293 (14)0.0034 (11)0.0022 (11)0.0118 (11)
C300.0389 (16)0.0351 (16)0.0288 (15)0.0081 (13)0.0050 (12)0.0143 (12)
C310.0255 (14)0.0305 (15)0.0316 (15)0.0089 (11)0.0048 (11)0.0136 (12)
C320.0440 (17)0.0252 (15)0.0346 (16)0.0095 (13)0.0053 (13)0.0111 (12)
C330.0372 (16)0.0216 (14)0.0322 (15)0.0085 (12)0.0042 (12)0.0104 (11)
C340.0303 (15)0.0207 (14)0.0341 (15)0.0067 (11)0.0094 (12)0.0078 (11)
C350.0299 (14)0.0230 (14)0.0306 (15)0.0040 (11)0.0048 (11)0.0103 (11)
C360.0334 (15)0.0270 (15)0.0310 (15)0.0038 (12)0.0061 (12)0.0120 (12)
C370.0289 (15)0.0271 (15)0.0353 (15)0.0034 (12)0.0033 (12)0.0119 (12)
C380.0307 (15)0.0282 (15)0.0357 (16)0.0041 (12)0.0014 (12)0.0116 (12)
C390.0340 (16)0.047 (2)0.0469 (18)0.0054 (14)0.0058 (14)0.0219 (15)
C400.0388 (17)0.0320 (17)0.0485 (18)0.0027 (13)0.0108 (14)0.0196 (14)
C410.0284 (14)0.0286 (15)0.0360 (16)0.0035 (12)0.0051 (12)0.0145 (12)
C420.0305 (15)0.0351 (16)0.0302 (15)0.0051 (12)0.0068 (12)0.0172 (12)
Geometric parameters (Å, º) top
O1—C61.394 (3)C9—C111.504 (3)
O1—C11.441 (3)C13—C141.512 (3)
O2—C21.429 (3)C14—C151.392 (4)
O2—C31.431 (3)C14—C191.400 (4)
O3—C251.389 (3)C15—C161.397 (4)
O3—C41.444 (3)C16—C171.392 (4)
O4—C131.435 (3)C16—C221.519 (4)
O4—C121.441 (3)C17—C181.391 (4)
O5—C151.398 (3)C18—C191.392 (3)
O5—C211.433 (3)C18—C201.512 (4)
O6—C221.429 (3)C23—C241.505 (4)
O6—C231.430 (3)C24—C291.392 (3)
O7—C321.434 (3)C24—C251.396 (4)
O7—C311.435 (3)C25—C261.398 (4)
O8—C341.398 (3)C26—C271.391 (4)
O8—C401.439 (3)C26—C311.502 (4)
O9—C411.426 (3)C27—C281.389 (4)
O9—C421.432 (3)C28—C291.391 (4)
C1—C21.504 (3)C28—C301.509 (3)
C3—C41.505 (3)C32—C331.505 (4)
C5—C101.394 (3)C33—C341.390 (4)
C5—C61.394 (4)C33—C381.394 (4)
C5—C421.511 (4)C34—C351.396 (4)
C6—C71.397 (4)C35—C361.392 (4)
C7—C81.388 (3)C35—C411.515 (4)
C7—C121.505 (3)C36—C371.391 (4)
C8—C91.390 (4)C37—C381.382 (4)
C9—C101.393 (4)C37—C391.510 (4)
C6—O1—C1114.92 (18)C17—C18—C19118.2 (2)
C2—O2—C3117.04 (19)C17—C18—C20120.5 (2)
C25—O3—C4115.48 (18)C19—C18—C20121.2 (2)
C13—O4—C12112.4 (2)C18—C19—C14121.8 (2)
C15—O5—C21113.4 (2)O6—C22—C16113.1 (2)
C22—O6—C23112.2 (2)O6—C23—C24114.1 (2)
C32—O7—C31111.9 (2)C29—C24—C25118.1 (2)
C34—O8—C40113.1 (2)C29—C24—C23121.3 (2)
C41—O9—C42111.52 (19)C25—C24—C23120.6 (2)
O1—C1—C2108.7 (2)O3—C25—C24118.8 (2)
O2—C2—C1115.1 (2)O3—C25—C26119.9 (2)
O2—C3—C4114.3 (2)C24—C25—C26121.0 (2)
O3—C4—C3107.4 (2)C27—C26—C25118.7 (2)
C10—C5—C6118.4 (2)C27—C26—C31120.0 (2)
C10—C5—C42120.6 (2)C25—C26—C31121.2 (2)
C6—C5—C42121.0 (2)C28—C27—C26121.7 (2)
O1—C6—C5118.8 (2)C27—C28—C29117.9 (2)
O1—C6—C7119.6 (2)C27—C28—C30120.7 (2)
C5—C6—C7121.4 (2)C29—C28—C30121.4 (2)
C8—C7—C6118.3 (2)C28—C29—C24122.4 (2)
C8—C7—C12120.4 (2)O7—C31—C26109.1 (2)
C6—C7—C12121.4 (2)O7—C32—C33112.6 (2)
C7—C8—C9122.1 (2)C34—C33—C38117.7 (2)
C8—C9—C10118.1 (2)C34—C33—C32122.7 (3)
C8—C9—C11121.1 (2)C38—C33—C32119.5 (2)
C10—C9—C11120.7 (2)C33—C34—C35121.6 (2)
C9—C10—C5121.7 (2)C33—C34—O8119.9 (2)
O4—C12—C7107.7 (2)C35—C34—O8118.4 (2)
O4—C13—C14112.5 (2)C36—C35—C34118.0 (2)
C15—C14—C19118.1 (2)C36—C35—C41122.1 (2)
C15—C14—C13121.9 (2)C34—C35—C41119.9 (2)
C19—C14—C13119.9 (2)C37—C36—C35122.3 (2)
C14—C15—O5119.2 (2)C38—C37—C36117.4 (3)
C14—C15—C16121.9 (2)C38—C37—C39121.7 (2)
O5—C15—C16118.8 (2)C36—C37—C39120.9 (2)
C17—C16—C15118.0 (2)C37—C38—C33122.9 (2)
C17—C16—C22121.6 (2)O9—C41—C35113.0 (2)
C15—C16—C22120.4 (2)O9—C42—C5112.6 (2)
C18—C17—C16122.1 (2)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC50H68O6C40H48O8C44H56O8C42H50O9
Mr765.04656.78712.89698.82
Crystal system, space groupTriclinic, P1Monoclinic, P21/nMonoclinic, P21/cTriclinic, P1
Temperature (K)100100100100
a, b, c (Å)11.3148 (8), 14.2488 (5), 15.3512 (11)10.6466 (5), 11.0343 (7), 15.1801 (7)23.2320 (15), 9.0186 (3), 19.6065 (12)8.6669 (6), 13.7665 (11), 16.8072 (9)
α, β, γ (°)84.280 (4), 69.132 (2), 79.683 (4)90, 105.842 (3), 9090, 108.819 (2), 90113.671 (4), 94.723 (4), 97.119 (3)
V3)2273.5 (2)1715.59 (16)3888.4 (4)1803.1 (2)
Z2242
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.070.090.080.09
Crystal size (mm)0.25 × 0.25 × 0.250.25 × 0.25 × 0.150.20 × 0.20 × 0.100.30 × 0.30 × 0.20
Data collection
DiffractometerNonius Kappa-CCD
diffractometer
Nonius Kappa-CCD
diffractometer
Nonius Kappa-CCD
diffractometer
Nonius Kappa-CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7972, 7972, 5246 6275, 3245, 2366 14012, 7332, 4351 6346, 6346, 4286
Rint0.0720.0410.0780.063
(sin θ/λ)max1)0.6100.6100.6100.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.158, 1.02 0.045, 0.112, 1.02 0.057, 0.144, 1.01 0.055, 0.135, 1.02
No. of reflections7972324573326346
No. of parameters521221479466
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.210.19, 0.200.24, 0.250.21, 0.25

Computer programs: Kappa-CCD Software (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999), SHELXTL and PARST97 (Nardelli, 1995).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds