Download citation
Download citation
link to html
The structures of two compounds, 3-[1-(2-hydroxy­ethyl­amino)­ethyl­idene]-2-methoxy-3,4-di­hydro-1,2λ5-benz­oxa­phosphinane-2,4-dione, C13H16NO5P, and 3-[1-(2-hydr­oxy-­ethyl­amino)­ethyl­idene]-2-methoxy-6-methyl-3,4-di­hydro-1,2λ5-benz­oxaphosphinane-2,4-dione, C14H18NO5P, have been studied and compared. The oxophosphinane rings have a half-chair conformation and extra six- and five-membered rings are formed by intramolecular N—H...O hydrogen bonds. An intermolecular O—H...O hydrogen bond is also observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101006734/na1518sup1.cif
Contains datablocks X, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101006734/na1518Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101006734/na1518IIsup3.hkl
Contains datablock II

CCDC references: 170181; 170182

Comment top

The aminophosphonic acids are the synthetic analogues of the natural amino acids in which the carboxylic acid group is replaced by phosphonic acid group. The aminophosphonic acids, their esters and salts have very attractive significant attention owing to their synthetic and biological value both as agrochemical (herbicides, pesticides, growth regulator in plants) and medical (antibiotics, antivirals, enzyme inhibitors) products with broad applications (Kalir & Kalir, 1996; Hudson & Pianka, 1996; Kukhar & Hudson, 1999).

In our previous work we described the reaction of the 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate, (Ia), and 2,6-dimethyl-4-oxo-4H-chromen-3-yl-phosphonate, (IIa), with 2-hydroxyethylamine (Budzisz et al., 2001). In this reaction we obtained cyclic 2-aminophosphonic analogues of chromone of 2-methoxy-3-[1(2-hydroxyethylamine)ethylidene]-2,3-dihydro-2,4-dioxo-2λ5– benzo[e][1,2]oxaphosphinane, (I), and 2-methoxy-6-methyl-3-[1(2-hydroxyethyl amine)ethylidene]-2,3-dihydro-2,4-dioxo-2λ5-benzo[e][1,2]oxaphosphinane, (II) general structure (Budzisz & Pastuszko, 1999; Budzisz et al., 2001). The obtained compounds exhibited alkylation properties in the NBS-test (Preussman et al., 1969). \sch

In the series of IR spectra determined in chloroform, the derivatives of benzo[1,2]oxaphosphinane in various concentrations (1 mM to 100 mM) confirm the presence of a strong intramolecular hydrogen bond exhibiting a broad band at ν 3430–3450 cm-1.

The X-ray structural investigation on two derivatives of benzo[1,2]oxaphosphinane has been carried out in continuation of our studies (Budzisz et al., 2001). The titled structures consist of a benzene ring fused with an oxaphosphinane ring. The hydroxyethylamine ethylidyne group is attached at position 3 in both molecules. In (II), the benzene ring is substituted by a methyl group at position 6.

The oxaphosphinane rings have half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are QT = 0.383 (3) Å, ϕ2 = 32.1 (8)°, θ2 = 67.1 (7)° in (I) and QT = 0.360 (2) Å, ϕ2 = 38.7 (5)°, θ2 = 65.8 (7)° in (II), corresponding to the O1—P2—C3—C4—C10—C9 atom sequence, with twofold pseudo-axis passing through the midpoints of P2—O1 and C4—C10 bonds; asymmetry parameters (Nardelli, 1983) Δ2 = 0.009 (2) for (I) and Δ2 = 0.025 (1) for (II).

An intramolecular hydrogen bond, N32—H32···O4 and N32—H32···O35, is observed in both molecules which closes the extra six- and five-membered rings, respectively. The six-membered rings are planar, whereas conformation of the five-membered rings is C34 deformed envelope (I) and N32 twist (II) [asymmetry parameters (Nardelli, 1983a) Δs = 0.04 (1) for (I), and Δ2 = 0.05 (1) for (II). The puckering parameters (Cremer & Pople, 1975) are: q2 = 0.42 (1) Å, ϕ2 = -137 (5)°, in (I) and q2 = 0.49 (1) Å, ϕ2 = -130 (3)°, in (II), corresponding to C33—C34—O35—H32—N32 sequence.

The P atom has a slightly distorted tetrahedral geometry towards trigonal pyramidal with an elongated C3—P2 apical bond.

Bond distances and angles in both molecules are in a good agreement with expected values (Allen et al., 1987). The ORTEP drawings of molecules (I) and (II) with the atomic numbering scheme are given in Figs. 1–2

Related literature top

For related literature, see: Allen et al. (1987); Budzisz & Pastuszko (1999); Budzisz et al. (2001); Cremer & Pople (1975); Hudson & Pianka (1996); Kalir & Kalir (1996); Kukhar & Hudson (1999); Nardelli (1983); Preussman et al. (1969).

Experimental top

To the mixture of the compounds 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate (for I) or 2,6-dimethyl-4-oxo-4H-chromen-3-yl-phosphonate (for II) in methanol was added ethanylamine in methanol. The mixture was left overnight at room temperature. The solvent was removed in vacuo and crude products of (I), and (II) were purified by crystallization. The colourless crystals were obtained by slow evaporation from methanol at room temperature (Budzisz & Pastuszko, 1999; Budzisz et al., 2001). The reaction was carried out at room temperature in anhydrous methanol.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (1989b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEX (Mc Ardle, 1995) for (I); ORTEX (McArdle, 1995) for (II). For both compounds, software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. The perspective view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Symmetry codes are as given in Table 2.
[Figure 2] Fig. 2. The perspective view of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Symmetry codes are as given in Table 4.
(I) 2-methoxy-3-[1(2-hydroxyethylamine)ethylidene]-2,3-dihydro-2,4-dioxo- 2λ5-benzo[e][1,2]oxaphosphinane top
Crystal data top
C13H16NO5PDx = 1.403 Mg m3
Mr = 297.24Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 9.325 (1) Åθ = 26.9–30.5°
b = 9.662 (1) ŵ = 1.92 mm1
c = 15.619 (2) ÅT = 293 K
V = 1407.4 (1) Å3Prism, colourless
Z = 40.2 × 0.1 × 0.1 mm
F(000) = 624
Data collection top
AFC5S Rigaku
diffractometer
1664 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 66.0°, θmin = 5.5°
ω scanh = 1111
Absorption correction: analytical
(De Meulenar & Tompa, 1965)
k = 119
Tmin = 0.712, Tmax = 0.841l = 1818
8498 measured reflections3 standard reflections every 150 min
2402 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064 w = [1.00000exp(3.00(sinθ/λ)2)]/ [σ2(Fo2) + (0.1052P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.051
S = 1.23Δρmax = 0.42 e Å3
2402 reflectionsΔρmin = 0.62 e Å3
224 parametersAbsolute structure: (Flack, 1983)
0 restraintsAbsolute structure parameter: 0.00 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H16NO5PV = 1407.4 (1) Å3
Mr = 297.24Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.325 (1) ŵ = 1.92 mm1
b = 9.662 (1) ÅT = 293 K
c = 15.619 (2) Å0.2 × 0.1 × 0.1 mm
Data collection top
AFC5S Rigaku
diffractometer
1664 reflections with I > 2σ(I)
Absorption correction: analytical
(De Meulenar & Tompa, 1965)
Rint = 0.064
Tmin = 0.712, Tmax = 0.8413 standard reflections every 150 min
8498 measured reflections intensity decay: <2%
2402 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157Δρmax = 0.42 e Å3
S = 1.23Δρmin = 0.62 e Å3
2402 reflectionsAbsolute structure: (Flack, 1983)
224 parametersAbsolute structure parameter: 0.00 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H-atoms from methyl groups constrained to their parent atoms as a rigid body SHELXL97 (Sheldrick, 1997). U(H231)=1.1 Ueqof its parent atom. U(H232)=1.1 Ueqof its parent atom. U(H233)=1.1 Ueqof its parent atom. U(H342)=1.1 Ueqof its parent atom. U(H5)=1.1 Ueqof its parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0085 (4)0.6457 (3)0.47913 (18)0.0567 (8)
P20.99166 (15)0.52449 (13)0.41005 (7)0.0513 (3)
O210.9628 (5)0.3971 (4)0.4561 (2)0.0714 (11)
O221.1366 (4)0.5232 (5)0.3601 (2)0.0696 (11)
C231.2650 (7)0.4675 (9)0.4012 (5)0.101 (2)
H2311.30690.53710.43720.111*
H2321.33290.44040.35810.111*
H2331.23960.38850.43520.111*
C30.8643 (5)0.5872 (5)0.3370 (3)0.0480 (10)
C40.8479 (5)0.7341 (5)0.3302 (3)0.0493 (11)
O40.7573 (4)0.7897 (4)0.2813 (2)0.0639 (10)
C50.9452 (5)0.9682 (6)0.3623 (3)0.0533 (12)
H50.890 (6)0.993 (6)0.324 (3)0.059*
C61.0258 (6)1.0587 (6)0.4111 (4)0.0665 (14)
H61.025 (6)1.154 (6)0.402 (4)0.066 (16)*
C71.0992 (6)1.0096 (6)0.4823 (4)0.0682 (16)
H71.154 (6)1.067 (5)0.509 (3)0.055 (14)*
C81.0935 (6)0.8733 (6)0.5026 (4)0.0619 (13)
H81.155 (7)0.814 (7)0.555 (4)0.09 (2)*
C91.0141 (5)0.7822 (5)0.4541 (3)0.0522 (11)
C100.9371 (5)0.8295 (5)0.3819 (3)0.0454 (10)
C310.7798 (5)0.4932 (5)0.2876 (3)0.0508 (11)
C3110.8019 (6)0.3403 (6)0.2894 (4)0.0624 (13)
H3110.89800.32040.30770.057 (15)*
H3120.78690.30320.23310.12 (3)*
H3130.73510.29910.32850.11 (2)*
N320.6769 (4)0.5415 (5)0.2383 (3)0.0568 (11)
H320.679 (6)0.642 (7)0.235 (4)0.068 (17)*
C330.5784 (6)0.4641 (7)0.1846 (4)0.0642 (14)
H3310.541 (7)0.374 (7)0.214 (4)0.10 (2)*
H3320.640 (5)0.445 (5)0.139 (3)0.043 (12)*
C340.4537 (6)0.5512 (6)0.1608 (4)0.0617 (14)
H3410.384 (5)0.495 (5)0.118 (3)0.047 (12)*
H3420.394 (6)0.571 (5)0.207 (3)0.052*
O350.4923 (5)0.6801 (4)0.1261 (3)0.0689 (10)
H350.541 (7)0.665 (7)0.095 (4)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.067 (2)0.0493 (19)0.0534 (14)0.0048 (19)0.0097 (18)0.0007 (13)
P20.0526 (7)0.0488 (6)0.0523 (5)0.0043 (6)0.0049 (6)0.0009 (5)
O210.087 (3)0.054 (2)0.073 (2)0.0046 (19)0.021 (2)0.0007 (17)
O220.057 (2)0.093 (3)0.0588 (18)0.014 (2)0.0113 (16)0.0076 (19)
C230.059 (4)0.153 (7)0.090 (4)0.031 (4)0.018 (4)0.013 (5)
C30.041 (2)0.053 (3)0.050 (2)0.0034 (19)0.005 (2)0.004 (2)
C40.038 (2)0.064 (3)0.046 (2)0.000 (2)0.0026 (19)0.001 (2)
O40.064 (2)0.057 (2)0.070 (2)0.0018 (18)0.0280 (19)0.0023 (18)
C50.038 (2)0.060 (3)0.062 (2)0.002 (2)0.007 (2)0.002 (2)
C60.058 (3)0.054 (4)0.087 (3)0.005 (2)0.004 (3)0.004 (3)
C70.059 (3)0.060 (4)0.086 (3)0.003 (3)0.022 (3)0.020 (3)
C80.055 (3)0.062 (4)0.069 (3)0.003 (2)0.016 (3)0.010 (3)
C90.040 (2)0.057 (3)0.059 (2)0.007 (2)0.000 (2)0.010 (2)
C100.035 (2)0.047 (3)0.054 (2)0.0024 (18)0.0015 (18)0.0028 (19)
C310.039 (2)0.065 (3)0.049 (2)0.003 (2)0.0044 (18)0.002 (2)
C3110.063 (3)0.057 (4)0.067 (3)0.002 (3)0.003 (3)0.002 (3)
N320.050 (2)0.061 (3)0.059 (2)0.002 (2)0.0097 (18)0.0032 (19)
C330.049 (3)0.078 (4)0.066 (3)0.005 (3)0.010 (2)0.010 (3)
C340.049 (3)0.075 (4)0.061 (3)0.003 (2)0.002 (2)0.006 (3)
O350.071 (3)0.068 (3)0.067 (2)0.001 (2)0.005 (2)0.0045 (18)
Geometric parameters (Å, º) top
O1—C91.377 (6)C7—H70.87 (6)
O1—P21.600 (3)C8—C91.377 (7)
P2—O211.451 (4)C8—H81.16 (7)
P2—O221.561 (4)C9—C101.413 (6)
P2—C31.754 (5)C31—N321.316 (6)
O22—C231.461 (6)C31—C3111.492 (8)
C23—H2310.9600C311—H3110.9600
C23—H2320.9600C311—H3120.9600
C23—H2330.9600C311—H3130.9600
C3—C311.428 (6)N32—C331.451 (6)
C3—C41.432 (7)N32—H320.97 (6)
C4—O41.259 (6)C33—C341.483 (8)
C4—C101.482 (6)C33—H3311.05 (7)
C5—C101.377 (7)C33—H3320.94 (5)
C5—C61.382 (8)C34—O351.405 (7)
C5—H50.82 (6)C34—H3411.09 (5)
C6—C71.389 (8)C34—H3420.93 (5)
C6—H60.93 (6)O35—H350.68 (6)
C7—C81.356 (9)
C9—O1—P2120.9 (3)O1—C9—C8118.5 (5)
O21—P2—O22113.7 (2)O1—C9—C10121.1 (4)
O21—P2—O1107.7 (2)C8—C9—C10120.4 (5)
O22—P2—O1104.9 (2)C5—C10—C9117.7 (4)
O21—P2—C3119.3 (2)C5—C10—C4121.0 (4)
O22—P2—C3105.3 (2)C9—C10—C4121.3 (4)
O1—P2—C3104.6 (2)N32—C31—C3119.6 (5)
C23—O22—P2119.6 (4)N32—C31—C311117.5 (5)
O22—C23—H231109.5C3—C31—C311122.9 (4)
O22—C23—H232109.5C31—C311—H311109.5
H231—C23—H232109.5C31—C311—H312109.5
O22—C23—H233109.5H311—C311—H312109.5
H231—C23—H233109.5C31—C311—H313109.5
H232—C23—H233109.5H311—C311—H313109.5
C31—C3—C4122.0 (4)H312—C311—H313109.5
C31—C3—P2120.4 (4)C31—N32—C33128.1 (5)
C4—C3—P2117.6 (3)C31—N32—H32112 (3)
O4—C4—C3122.7 (4)C33—N32—H32120 (3)
O4—C4—C10116.2 (4)N32—C33—C34110.4 (5)
C3—C4—C10121.0 (4)N32—C33—H331113 (4)
C10—C5—C6121.5 (5)C34—C33—H331109 (4)
C10—C5—H5114 (4)N32—C33—H33299 (3)
C6—C5—H5124 (4)C34—C33—H332113 (3)
C5—C6—C7119.6 (6)H331—C33—H332113 (5)
C5—C6—H6123 (3)O35—C34—C33113.5 (5)
C7—C6—H6117 (3)O35—C34—H341111 (2)
C8—C7—C6120.0 (5)C33—C34—H341110 (2)
C8—C7—H7122 (3)O35—C34—H342106 (3)
C6—C7—H7117 (3)C33—C34—H342113 (3)
C7—C8—C9120.9 (5)H341—C34—H342103 (4)
C7—C8—H8129 (3)C34—O35—H35105 (6)
C9—C8—H8110 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O40.97 (6)1.76 (6)2.601 (6)143 (5)
N32—H32···O350.97 (6)2.46 (6)2.797 (6)100 (4)
O35—H35···O21i0.68 (6)2.25 (7)2.790 (6)137 (7)
Symmetry code: (i) x+3/2, y+1, z1/2.
(II) 6-methyl-2-methoxy-3-[1(2-hydroxyethylamine)ethylidene]-2,3-dihydro-2,4-dioxo- 2λ5-benzo[e][1,2]oxaphosphinane top
Crystal data top
C14H18NO5PDx = 1.359 Mg m3
Mr = 311.26Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 11.071 (1) Åθ = 22.5–28.3°
b = 16.190 (2) ŵ = 1.80 mm1
c = 8.490 (1) ÅT = 293 K
V = 1521.7 (3) Å3Prism, colourless
Z = 40.6 × 0.3 × 0.3 mm
F(000) = 656
Data collection top
AFC5S Rigaku
diffractometer
1450 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 72.7°, θmin = 4.8°
ω scanh = 013
Absorption correction: analytical
(De Meulenar & Tompa, 1965)
k = 020
Tmin = 0.505, Tmax = 0.650l = 010
1669 measured reflections3 standard reflections every 150 min
1669 independent reflections intensity decay: <2%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0636P)2]
where P = (Fo2 + 2Fc2)/3'
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max = 0.021
wR(F2) = 0.097Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.20 e Å3
1669 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
230 parametersExtinction coefficient: 0.0055 (6)
0 restraintsAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Hydrogen site location: difference Fourier map
Crystal data top
C14H18NO5PV = 1521.7 (3) Å3
Mr = 311.26Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 11.071 (1) ŵ = 1.80 mm1
b = 16.190 (2) ÅT = 293 K
c = 8.490 (1) Å0.6 × 0.3 × 0.3 mm
Data collection top
AFC5S Rigaku
diffractometer
1450 reflections with I > 2σ(I)
Absorption correction: analytical
(De Meulenar & Tompa, 1965)
Rint = 0.000
Tmin = 0.505, Tmax = 0.6503 standard reflections every 150 min
1669 measured reflections intensity decay: <2%
1669 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.20 e Å3
1669 reflectionsAbsolute structure: (Flack, 1983)
230 parametersAbsolute structure parameter: 0.01 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H-atoms from methyl groups constrained to their parent atoms as a rigid body SHELXL97 (Sheldrick, 1997). U(H311)=1.1 Ueqof its parent atom. U(H312)=1.1 Ueqof its parent atom. U(H313)=1.1 Ueqof its parent atom. U(H231)=1.1 Ueqof its parent atom. U(H232)=1.1 Ueqof its parent atom. U(H233)=1.1 Ueqof its parent atom. U(H611)=1.1 Ueqof its parent atom. U(H612)=1.1 Ueqof its parent atom. U(H613)=1.1 Ueqof its parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62126 (16)0.46337 (11)1.0008 (3)0.0520 (5)
P20.51983 (7)0.39481 (5)0.97479 (10)0.0496 (2)
O210.40728 (19)0.43808 (15)0.9387 (4)0.0696 (8)
O220.5176 (2)0.34439 (13)1.1327 (3)0.0683 (7)
C230.4646 (5)0.3834 (3)1.2733 (5)0.1046 (18)
H2310.47290.44231.26560.115*
H2330.50590.36411.36560.115*
H2320.38060.36931.28020.115*
C30.5806 (2)0.32639 (18)0.8363 (4)0.0459 (7)
C40.7098 (3)0.32009 (18)0.8266 (4)0.0460 (7)
O40.76227 (18)0.27093 (14)0.7355 (3)0.0573 (6)
C50.9122 (3)0.35940 (19)0.9342 (4)0.0464 (7)
H50.937 (3)0.3134 (19)0.877 (4)0.049 (9)*
C60.9894 (3)0.41038 (18)1.0159 (4)0.0503 (7)
C611.1241 (3)0.3948 (2)1.0197 (5)0.0661 (9)
H6111.14010.33880.98910.073*
H6121.15390.40401.12450.073*
H6131.16380.43180.94810.073*
C70.9408 (3)0.4789 (2)1.0915 (5)0.0595 (9)
H70.993 (3)0.511 (2)1.153 (5)0.069 (11)*
C80.8188 (3)0.4952 (2)1.0885 (5)0.0590 (8)
H80.777 (4)0.546 (2)1.151 (5)0.086 (13)*
C90.7432 (3)0.44233 (18)1.0058 (4)0.0482 (7)
C100.7872 (2)0.37416 (16)0.9268 (4)0.0431 (6)
C310.5046 (3)0.27695 (18)0.7406 (4)0.0478 (7)
C3110.3694 (3)0.2804 (2)0.7469 (5)0.0629 (9)
H3110.33710.22590.73250.069*
H3120.34020.31590.66480.069*
H3130.34440.30160.84730.069*
N320.5524 (2)0.22382 (17)0.6404 (3)0.0519 (7)
H320.647 (4)0.219 (3)0.645 (6)0.112 (16)*
C330.4895 (3)0.1648 (2)0.5389 (4)0.0564 (8)
H3310.419 (4)0.192 (2)0.482 (5)0.090 (13)*
H3320.451 (3)0.119 (2)0.594 (5)0.071 (11)*
C340.5788 (3)0.1299 (2)0.4234 (5)0.0604 (9)
H3410.532 (3)0.0879 (19)0.359 (4)0.057 (10)*
H3420.605 (4)0.185 (3)0.351 (6)0.109 (15)*
O350.6800 (2)0.09472 (16)0.4971 (4)0.0692 (7)
H350.667 (5)0.040 (3)0.528 (6)0.124 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0425 (10)0.0429 (9)0.0707 (15)0.0015 (8)0.0043 (11)0.0085 (11)
P20.0417 (3)0.0473 (4)0.0598 (5)0.0003 (3)0.0053 (4)0.0028 (4)
O210.0401 (10)0.0679 (13)0.101 (2)0.0111 (11)0.0009 (12)0.0173 (14)
O220.0927 (18)0.0556 (12)0.0566 (14)0.0094 (14)0.0192 (14)0.0025 (11)
C230.160 (5)0.088 (3)0.065 (3)0.029 (3)0.048 (3)0.017 (2)
C30.0372 (14)0.0451 (14)0.0553 (19)0.0001 (12)0.0002 (13)0.0016 (14)
C40.0414 (14)0.0430 (14)0.0536 (17)0.0007 (11)0.0000 (13)0.0012 (14)
O40.0423 (11)0.0611 (13)0.0684 (14)0.0006 (10)0.0023 (11)0.0193 (12)
C50.0423 (15)0.0479 (15)0.0491 (19)0.0016 (12)0.0008 (13)0.0020 (13)
C60.0428 (14)0.0606 (16)0.0476 (17)0.0081 (13)0.0010 (13)0.0000 (15)
C610.0422 (15)0.086 (2)0.070 (2)0.0077 (17)0.0034 (16)0.001 (2)
C70.0540 (17)0.066 (2)0.059 (2)0.0140 (16)0.0024 (17)0.0097 (18)
C80.0562 (18)0.0601 (18)0.061 (2)0.0083 (15)0.0024 (16)0.0126 (18)
C90.0417 (13)0.0468 (13)0.0559 (18)0.0003 (12)0.0025 (14)0.0035 (15)
C100.0395 (13)0.0423 (14)0.0474 (16)0.0006 (11)0.0005 (12)0.0016 (12)
C310.0405 (14)0.0495 (14)0.0534 (16)0.0017 (12)0.0028 (13)0.0037 (14)
C3110.0426 (16)0.068 (2)0.078 (3)0.0022 (15)0.0065 (17)0.0070 (19)
N320.0439 (13)0.0566 (14)0.0550 (16)0.0046 (11)0.0041 (12)0.0111 (13)
C330.0525 (17)0.0578 (16)0.059 (2)0.0111 (16)0.0061 (17)0.0067 (16)
C340.066 (2)0.0612 (19)0.054 (2)0.0095 (18)0.0049 (17)0.0082 (17)
O350.0575 (13)0.0641 (14)0.0861 (18)0.0039 (12)0.0028 (13)0.0074 (16)
Geometric parameters (Å, º) top
O1—C91.393 (3)C61—H6130.9600
O1—P21.594 (2)C7—C81.376 (5)
P2—O211.462 (2)C7—H70.94 (4)
P2—O221.570 (2)C8—C91.388 (4)
P2—C31.750 (3)C8—H81.09 (4)
O22—C231.472 (4)C9—C101.380 (4)
C23—H2310.9600C31—N321.320 (4)
C23—H2330.9600C31—C3111.499 (4)
C23—H2320.9600C311—H3110.9600
C3—C311.418 (4)C311—H3120.9600
C3—C41.436 (4)C311—H3130.9600
C4—O41.253 (3)N32—C331.463 (4)
C4—C101.492 (4)N32—H321.05 (5)
C5—C61.375 (4)C33—C341.502 (5)
C5—C101.406 (4)C33—H3311.02 (4)
C5—H50.93 (3)C33—H3320.98 (4)
C6—C71.390 (5)C34—O351.404 (4)
C6—C611.513 (4)C34—H3411.01 (3)
C61—H6110.9600C34—H3421.12 (5)
C61—H6120.9600O35—H350.94 (5)
C9—O1—P2121.11 (17)C7—C8—C9118.9 (3)
O21—P2—O22114.48 (16)C7—C8—H8124 (2)
O21—P2—O1107.20 (12)C9—C8—H8117 (2)
O22—P2—O1104.79 (13)C10—C9—C8121.8 (3)
O21—P2—C3119.37 (16)C10—C9—O1121.5 (3)
O22—P2—C3104.52 (14)C8—C9—O1116.7 (3)
O1—P2—C3105.23 (12)C9—C10—C5117.5 (3)
C23—O22—P2118.4 (2)C9—C10—C4123.0 (2)
O22—C23—H231109.5C5—C10—C4119.4 (3)
O22—C23—H233109.5N32—C31—C3120.0 (3)
H231—C23—H233109.5N32—C31—C311116.6 (3)
O22—C23—H232109.5C3—C31—C311123.5 (3)
H231—C23—H232109.5C31—C311—H311109.5
H233—C23—H232109.5C31—C311—H312109.5
C31—C3—C4121.2 (3)H311—C311—H312109.5
C31—C3—P2120.9 (2)C31—C311—H313109.5
C4—C3—P2117.8 (2)H311—C311—H313109.5
O4—C4—C3122.9 (3)H312—C311—H313109.5
O4—C4—C10117.3 (2)C31—N32—C33127.9 (3)
C3—C4—C10119.8 (3)C31—N32—H32115 (3)
C6—C5—C10122.1 (3)C33—N32—H32116 (3)
C6—C5—H5124 (2)N32—C33—C34108.5 (3)
C10—C5—H5114 (2)N32—C33—H331111 (2)
C5—C6—C7118.1 (3)C34—C33—H331111 (2)
C5—C6—C61121.5 (3)N32—C33—H332115 (2)
C7—C6—C61120.3 (3)C34—C33—H332108 (2)
C6—C61—H611109.5H331—C33—H332103 (3)
C6—C61—H612109.5O35—C34—C33112.8 (3)
H611—C61—H612109.5O35—C34—H341112 (2)
C6—C61—H613109.5C33—C34—H341106 (2)
H611—C61—H613109.5O35—C34—H342111 (3)
H612—C61—H613109.5C33—C34—H342103 (2)
C8—C7—C6121.6 (3)H341—C34—H342111 (3)
C8—C7—H7120 (2)C34—O35—H35113 (3)
C6—C7—H7118 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O41.05 (5)1.71 (5)2.575 (3)136 (4)
N32—H32···O351.05 (5)2.39 (5)2.801 (4)102 (4)
O35—H35···O21i0.94 (5)1.87 (5)2.768 (4)162 (5)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H16NO5PC14H18NO5P
Mr297.24311.26
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)9.325 (1), 9.662 (1), 15.619 (2)11.071 (1), 16.190 (2), 8.490 (1)
V3)1407.4 (1)1521.7 (3)
Z44
Radiation typeCu KαCu Kα
µ (mm1)1.921.80
Crystal size (mm)0.2 × 0.1 × 0.10.6 × 0.3 × 0.3
Data collection
DiffractometerAFC5S Rigaku
diffractometer
AFC5S Rigaku
diffractometer
Absorption correctionAnalytical
(De Meulenar & Tompa, 1965)
Analytical
(De Meulenar & Tompa, 1965)
Tmin, Tmax0.712, 0.8410.505, 0.650
No. of measured, independent and
observed [I > 2σ(I)] reflections
8498, 2402, 1664 1669, 1669, 1450
Rint0.0640.000
(sin θ/λ)max1)0.5930.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.157, 1.23 0.034, 0.097, 1.02
No. of reflections24021669
No. of parameters224230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.620.17, 0.20
Absolute structure(Flack, 1983)(Flack, 1983)
Absolute structure parameter0.00 (5)0.01 (4)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a), MSC/AFC Diffractometer Control Software, TEXSAN (1989b), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (Mc Ardle, 1995), ORTEX (McArdle, 1995), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) for (I) top
O1—C91.377 (6)C4—O41.259 (6)
O1—P21.600 (3)C4—C101.482 (6)
P2—O211.451 (4)C9—C101.413 (6)
P2—O221.561 (4)C31—N321.316 (6)
P2—C31.754 (5)C31—C3111.492 (8)
O22—C231.461 (6)N32—C331.451 (6)
C3—C311.428 (6)C33—C341.483 (8)
C3—C41.432 (7)C34—O351.405 (7)
C9—O1—P2120.9 (3)O4—C4—C3122.7 (4)
O21—P2—O22113.7 (2)O4—C4—C10116.2 (4)
O21—P2—O1107.7 (2)C3—C4—C10121.0 (4)
O22—P2—O1104.9 (2)C9—C10—C4121.3 (4)
O21—P2—C3119.3 (2)N32—C31—C3119.6 (5)
O22—P2—C3105.3 (2)N32—C31—C311117.5 (5)
O1—P2—C3104.6 (2)C3—C31—C311122.9 (4)
C23—O22—P2119.6 (4)C31—N32—C33128.1 (5)
C31—C3—C4122.0 (4)N32—C33—C34110.4 (5)
C31—C3—P2120.4 (4)O35—C34—C33113.5 (5)
C4—C3—P2117.6 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O40.97 (6)1.76 (6)2.601 (6)143 (5)
N32—H32···O350.97 (6)2.46 (6)2.797 (6)100 (4)
O35—H35···O21i0.68 (6)2.25 (7)2.790 (6)137 (7)
Symmetry code: (i) x+3/2, y+1, z1/2.
Selected geometric parameters (Å, º) for (II) top
O1—C91.393 (3)C4—O41.253 (3)
O1—P21.594 (2)C4—C101.492 (4)
P2—O211.462 (2)C9—C101.380 (4)
P2—O221.570 (2)C31—N321.320 (4)
P2—C31.750 (3)C31—C3111.499 (4)
O22—C231.472 (4)N32—C331.463 (4)
C3—C311.418 (4)C33—C341.502 (5)
C3—C41.436 (4)C34—O351.404 (4)
C9—O1—P2121.11 (17)O4—C4—C3122.9 (3)
O21—P2—O22114.48 (16)O4—C4—C10117.3 (2)
O21—P2—O1107.20 (12)C3—C4—C10119.8 (3)
O22—P2—O1104.79 (13)C10—C9—O1121.5 (3)
O21—P2—C3119.37 (16)C9—C10—C4123.0 (2)
O22—P2—C3104.52 (14)N32—C31—C3120.0 (3)
O1—P2—C3105.23 (12)N32—C31—C311116.6 (3)
C23—O22—P2118.4 (2)C3—C31—C311123.5 (3)
C31—C3—C4121.2 (3)C31—N32—C33127.9 (3)
C31—C3—P2120.9 (2)N32—C33—C34108.5 (3)
C4—C3—P2117.8 (2)O35—C34—C33112.8 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O41.05 (5)1.71 (5)2.575 (3)136 (4)
N32—H32···O351.05 (5)2.39 (5)2.801 (4)102 (4)
O35—H35···O21i0.94 (5)1.87 (5)2.768 (4)162 (5)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds