Download citation
Download citation
link to html
In the title compound, C24H18ClNO2, the phenyl ring and the tetralone moiety are approximately orthogonal to the isoxazoline ring. The isoxazoline ring adopts an envelope conformation, while the cyclo­hexenone ring of the tetralone moiety has an intermediate sofa/half-chair conformation. In this structure, one C—H...N intermolecular and two C—H...O intramolecular hydrogen bonds occur; the H...A distances are 2.60, and 2.35 and 2.57 Å, respectively. The mol­ecules are held together by an intermolecular C—H...N hydrogen bond, forming a one-dimensional chain along the [100] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003997/na1498sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003997/na1498Isup2.hkl
Contains datablock I

CCDC reference: 169935

Comment top

Isoxazoline derivatives have been used in many natural-product syntheses and have also proved to be efficient precursors for many synthetic intermediates, including γ-amino alcohols, β-hydroxy ketones etc. (Kozikowski, 1984; Kanemasa & Tsuge, 1990). Spiro-isoxazoline compounds display interesting biological properties, such as herbicidal, plant-growth regulatory and antitumour activities (Howe & Shelton 1990; De Amici et al., 1990; Smietana et al., 1999). We report here the structure of 3-(p-chlorophenyl)-4-phenyl-4,5-dihydroisoxazole-5-spiro-2'- 1',2',3',4'-tetrahydronaphthalen-1'-one, (I).

The structure of (I) (Fig. 1) consists of an isoxazoline ring (A) connected to a p-chlorophenyl ring (B) at C2, a phenyl ring (C) at C3 and a tetralone moiety [D (cyclohexenone) and E (phenyl)] at C1. Rings A and B are approximately coplanar, forming a dihedral angle of 1.2 (1)°. Phenyl ring C and tetralone ring D are approximately orthogonal to ring A, forming dihedral angles of 77.5 (1) and 88.5 (1)°, respectively. There is a slight folding of rings D and E of the tetralone substituent, which form a dihedral angle of 4.9 (1)° with one another.

The bond lengths O1—N1 and N1C2 and the angles N1—O1—C1 and O1—N1—C2 in ring A are comparable with the corresponding values of two other structures (Mackay et al., 1994; Pereira et al., 1993). Also, bond lengths Cl1—C16 and C12O2 are in good agreement with the values found in the literature (Allen et al., 1987). Selected bond lengths and angles are given in Table 1.

The puckering (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983a) calculated for ring D are QT = 0.450 (4) Å, ΔCs(C4) = 0.052 (2) and ΔC2(C1—C4) = 0.060 (2), and for ring A are QT = 0.146 (4) Å and ΔCs(C1) = 0.003 (2), which correspond to an intermediate sofa/half-chair conformation for ring D and an envelope conformation for ring A.

The N atom of ring A is involved in a C—H···N intermolecular hydrogen bond. The O atom of ring A and the carbonyl O atom of ring D are involved in two C—H.·O intramolecular hydrogen bonds (Table 2). The sums of the corresponding van der Waals radii of these hydrogen bonds (Bondi, 1964) are rH + rN = 1.75 Å and rH + rO = 1.72 Å, respectively. The C3—H3···O2 and C5—H5A···O1 intramolecular interactions are a result of the configurations at C3 and C1, respectively, while the intermolecular C22—H22···N1i interaction joins the molecules in chains running along the [100] direction [symmetry code: (i) 1 + x, y, z].

Experimental top

To a well stirred solution of 2-arylidine-1-tetralone (3 mmol) in CHCl3 (10 ml) p-chlorobenzhydroxyiminoyl chloride was added (3 mmol), followed by 3.3 mmol of triethylamine. The reaction was monitored via thin-layer chromatography until the starting material had disappeared, and was then quenched with water, extracted with CHCl3, dried with anhydrous MgSO4, column chromatographed using hexane/ethyl acetate (4:1) and recrystallized from hexane/ethyl acetate (3:1).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1983b, 1995) and PLATON (Spek, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 50% probability displacement ellipsoids. H atoms are displayed as small circles of arbitrary radii.
3-(p-Chlorophenyl)-4-phenyl-4,5-dihydroisoxazole-5-spiro-2'- 1',2',3',4'-tetrahydronaphthalen-1'-one top
Crystal data top
C24H18ClNO2Z = 2
Mr = 387.84F(000) = 404
Triclinic, P1Dx = 1.299 Mg m3
a = 9.2559 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9527 (9) ÅCell parameters from 2150 reflections
c = 11.6466 (10) Åθ = 2.9–25.0°
α = 62.867 (2)°µ = 0.21 mm1
β = 71.010 (2)°T = 293 K
γ = 78.653 (2)°Rectangular, colourless
V = 991.93 (15) Å30.42 × 0.16 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2158 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
Detector resolution: 8.33 pixels mm-1h = 1010
ω scansk = 1113
5316 measured reflectionsl = 1013
3387 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.4816P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3387 reflectionsΔρmax = 0.38 e Å3
254 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (5)
Crystal data top
C24H18ClNO2γ = 78.653 (2)°
Mr = 387.84V = 991.93 (15) Å3
Triclinic, P1Z = 2
a = 9.2559 (8) ÅMo Kα radiation
b = 10.9527 (9) ŵ = 0.21 mm1
c = 11.6466 (10) ÅT = 293 K
α = 62.867 (2)°0.42 × 0.16 × 0.14 mm
β = 71.010 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2158 reflections with I > 2σ(I)
5316 measured reflectionsRint = 0.027
3387 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3387 reflectionsΔρmin = 0.46 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6903 (2)0.73628 (14)0.03835 (16)0.1317 (7)
O10.3169 (2)1.2410 (2)0.3998 (2)0.0503 (6)
O20.3142 (3)1.4644 (3)0.1147 (2)0.0682 (8)
N10.3461 (3)1.1339 (3)0.3586 (3)0.0463 (7)
C10.4198 (3)1.3501 (3)0.3026 (3)0.0415 (7)
C20.4678 (3)1.1544 (3)0.2614 (3)0.0398 (7)
C30.5436 (3)1.2848 (3)0.2192 (3)0.0380 (7)
H30.55291.34260.12380.046*
C40.4717 (4)1.4044 (4)0.3807 (4)0.0638 (10)
H4A0.53091.33220.43650.077*
H4B0.53761.47960.31840.077*
C50.3408 (4)1.4532 (4)0.4663 (4)0.0665 (11)
H5A0.28801.37420.54000.080*
H5B0.38001.49810.50430.080*
C60.2306 (4)1.5484 (4)0.3968 (4)0.0687 (11)
C70.1357 (6)1.6373 (5)0.4475 (6)0.0998 (17)
H70.14281.63610.52580.120*
C80.0321 (7)1.7264 (6)0.3841 (8)0.121 (2)
H80.03121.78470.42020.145*
C90.0198 (6)1.7316 (5)0.2672 (7)0.115 (2)
H90.05021.79410.22400.138*
C100.1108 (4)1.6443 (4)0.2149 (5)0.0795 (13)
H100.10141.64630.13690.095*
C110.2175 (4)1.5523 (3)0.2786 (4)0.0569 (9)
C120.3167 (3)1.4598 (3)0.2206 (3)0.0458 (8)
C130.5241 (4)1.0531 (3)0.2050 (3)0.0486 (8)
C140.4494 (5)0.9323 (4)0.2608 (4)0.0753 (12)
H140.36320.91640.33350.090*
C150.5023 (6)0.8359 (4)0.2089 (5)0.0936 (15)
H150.45170.75540.24650.112*
C160.6280 (6)0.8587 (4)0.1030 (5)0.0795 (12)
C170.7043 (5)0.9766 (5)0.0459 (5)0.0815 (12)
H170.79070.99130.02650.098*
C180.6512 (4)1.0734 (4)0.0975 (4)0.0682 (10)
H180.70241.15370.05890.082*
C190.7000 (3)1.2567 (3)0.2436 (3)0.0400 (7)
C200.8095 (3)1.3540 (3)0.1633 (3)0.0501 (8)
H200.78691.43420.09340.060*
C210.9513 (4)1.3322 (4)0.1867 (4)0.0672 (10)
H211.02361.39790.13260.081*
C220.9862 (4)1.2138 (4)0.2894 (4)0.0701 (11)
H221.08241.19870.30420.084*
C230.8785 (4)1.1183 (4)0.3700 (4)0.0705 (11)
H230.90141.03870.44030.085*
C240.7363 (4)1.1394 (3)0.3475 (3)0.0554 (9)
H240.66411.07390.40300.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1915 (17)0.0886 (9)0.1280 (12)0.0311 (10)0.0373 (11)0.0759 (9)
O10.0518 (13)0.0495 (13)0.0433 (12)0.0087 (10)0.0041 (10)0.0181 (10)
O20.0668 (16)0.0817 (18)0.0579 (15)0.0166 (13)0.0316 (13)0.0294 (14)
N10.0443 (15)0.0444 (14)0.0479 (15)0.0079 (11)0.0112 (13)0.0165 (12)
C10.0389 (15)0.0493 (17)0.0408 (16)0.0078 (13)0.0106 (13)0.0208 (14)
C20.0359 (15)0.0444 (17)0.0431 (16)0.0053 (13)0.0142 (13)0.0183 (14)
C30.0347 (15)0.0419 (16)0.0363 (15)0.0056 (12)0.0116 (12)0.0130 (13)
C40.055 (2)0.087 (3)0.074 (2)0.0053 (19)0.0220 (18)0.051 (2)
C50.058 (2)0.100 (3)0.077 (3)0.006 (2)0.0195 (19)0.065 (2)
C60.057 (2)0.070 (2)0.090 (3)0.0179 (19)0.005 (2)0.053 (2)
C70.079 (3)0.103 (4)0.133 (4)0.018 (3)0.015 (3)0.087 (4)
C80.087 (4)0.085 (4)0.169 (6)0.013 (3)0.038 (4)0.082 (4)
C90.079 (3)0.069 (3)0.142 (5)0.018 (3)0.003 (4)0.031 (3)
C100.061 (2)0.055 (2)0.092 (3)0.0094 (19)0.005 (2)0.021 (2)
C110.0466 (19)0.0490 (19)0.069 (2)0.0086 (15)0.0032 (17)0.0263 (18)
C120.0437 (17)0.0444 (17)0.0501 (19)0.0051 (14)0.0115 (15)0.0202 (15)
C130.0497 (18)0.0474 (18)0.0513 (19)0.0038 (14)0.0162 (15)0.0210 (15)
C140.088 (3)0.061 (2)0.074 (3)0.024 (2)0.001 (2)0.034 (2)
C150.131 (4)0.057 (2)0.096 (3)0.022 (3)0.009 (3)0.043 (2)
C160.104 (3)0.060 (2)0.083 (3)0.015 (2)0.029 (3)0.042 (2)
C170.075 (3)0.088 (3)0.082 (3)0.000 (2)0.002 (2)0.051 (3)
C180.064 (2)0.071 (2)0.072 (2)0.0125 (19)0.0010 (19)0.040 (2)
C190.0337 (15)0.0453 (17)0.0395 (16)0.0060 (13)0.0092 (13)0.0155 (14)
C200.0417 (17)0.0521 (18)0.0496 (18)0.0108 (15)0.0113 (14)0.0132 (15)
C210.0438 (19)0.084 (3)0.070 (2)0.0222 (18)0.0118 (18)0.024 (2)
C220.0384 (18)0.098 (3)0.078 (3)0.0026 (19)0.0254 (18)0.035 (2)
C230.056 (2)0.071 (2)0.077 (3)0.0044 (19)0.038 (2)0.016 (2)
C240.0482 (18)0.054 (2)0.055 (2)0.0109 (15)0.0212 (16)0.0079 (16)
Geometric parameters (Å, º) top
Cl1—C161.741 (4)C8—C91.379 (9)
O1—N11.407 (3)C9—C101.369 (7)
O1—C11.459 (4)C10—C111.394 (5)
O2—C121.218 (4)C11—C121.476 (5)
N1—C21.281 (4)C13—C181.375 (5)
C1—C41.518 (4)C13—C141.390 (5)
C1—C31.535 (4)C14—C151.381 (5)
C1—C121.536 (4)C15—C161.356 (6)
C2—C131.466 (4)C16—C171.371 (6)
C2—C31.517 (4)C17—C181.382 (5)
C3—C191.511 (4)C19—C241.380 (4)
C4—C51.481 (5)C19—C201.391 (4)
C5—C61.461 (6)C20—C211.380 (5)
C6—C71.385 (6)C21—C221.374 (5)
C6—C111.402 (5)C22—C231.369 (5)
C7—C81.360 (9)C23—C241.380 (5)
N1—O1—C1108.8 (2)C10—C11—C12119.7 (4)
C2—N1—O1110.0 (2)C6—C11—C12120.3 (3)
O1—C1—C4107.3 (3)O2—C12—C11122.4 (3)
O1—C1—C3105.2 (2)O2—C12—C1120.1 (3)
C4—C1—C3117.2 (2)C11—C12—C1117.4 (3)
O1—C1—C12103.5 (2)C18—C13—C14118.3 (3)
C4—C1—C12110.1 (3)C18—C13—C2121.6 (3)
C3—C1—C12112.3 (2)C14—C13—C2120.1 (3)
N1—C2—C13119.7 (3)C15—C14—C13120.5 (4)
N1—C2—C3114.0 (3)C16—C15—C14119.9 (4)
C13—C2—C3126.3 (3)C15—C16—C17121.0 (4)
C19—C3—C2112.8 (2)C15—C16—Cl1118.8 (4)
C19—C3—C1116.2 (2)C17—C16—Cl1120.2 (4)
C2—C3—C199.7 (2)C16—C17—C18119.1 (4)
C5—C4—C1112.0 (3)C13—C18—C17121.2 (4)
C6—C5—C4114.4 (3)C24—C19—C20118.4 (3)
C7—C6—C11118.4 (4)C24—C19—C3122.0 (3)
C7—C6—C5120.1 (4)C20—C19—C3119.6 (3)
C11—C6—C5121.4 (3)C21—C20—C19120.4 (3)
C8—C7—C6120.9 (6)C22—C21—C20120.3 (3)
C7—C8—C9120.9 (5)C23—C22—C21119.6 (3)
C10—C9—C8119.8 (5)C22—C23—C24120.4 (3)
C9—C10—C11120.0 (5)C19—C24—C23120.8 (3)
C10—C11—C6119.9 (4)
C1—O1—N1—C29.9 (3)C10—C11—C12—C1173.6 (3)
N1—O1—C1—C4140.5 (2)C6—C11—C12—C16.7 (4)
N1—O1—C1—C315.0 (3)O1—C1—C12—O296.1 (3)
N1—O1—C1—C12103.0 (2)C4—C1—C12—O2149.5 (3)
O1—N1—C2—C13177.8 (2)C3—C1—C12—O216.9 (4)
O1—N1—C2—C30.1 (3)O1—C1—C12—C1180.9 (3)
N1—C2—C3—C19115.1 (3)C4—C1—C12—C1133.5 (4)
C13—C2—C3—C1962.7 (4)C3—C1—C12—C11166.1 (3)
N1—C2—C3—C18.8 (3)N1—C2—C13—C18177.7 (3)
C13—C2—C3—C1173.4 (3)C3—C2—C13—C184.7 (5)
O1—C1—C3—C19107.8 (3)N1—C2—C13—C142.9 (5)
C4—C1—C3—C1911.2 (4)C3—C2—C13—C14174.8 (3)
C12—C1—C3—C19140.2 (3)C18—C13—C14—C150.0 (6)
O1—C1—C3—C213.6 (3)C2—C13—C14—C15179.5 (4)
C4—C1—C3—C2132.7 (3)C13—C14—C15—C160.1 (7)
C12—C1—C3—C298.3 (3)C14—C15—C16—C170.0 (8)
O1—C1—C4—C556.9 (4)C14—C15—C16—Cl1179.1 (4)
C3—C1—C4—C5174.8 (3)C15—C16—C17—C180.2 (7)
C12—C1—C4—C555.1 (4)Cl1—C16—C17—C18178.9 (3)
C1—C4—C5—C650.7 (5)C14—C13—C18—C170.2 (6)
C4—C5—C6—C7157.5 (4)C2—C13—C18—C17179.3 (4)
C4—C5—C6—C1122.8 (5)C16—C17—C18—C130.3 (7)
C11—C6—C7—C80.1 (6)C2—C3—C19—C2430.8 (4)
C5—C6—C7—C8179.8 (4)C1—C3—C19—C2483.4 (4)
C6—C7—C8—C90.6 (8)C2—C3—C19—C20152.1 (3)
C7—C8—C9—C101.2 (9)C1—C3—C19—C2093.6 (3)
C8—C9—C10—C111.1 (7)C24—C19—C20—C210.8 (5)
C9—C10—C11—C60.5 (6)C3—C19—C20—C21177.9 (3)
C9—C10—C11—C12179.2 (4)C19—C20—C21—C220.2 (6)
C7—C6—C11—C100.1 (5)C20—C21—C22—C231.0 (6)
C5—C6—C11—C10179.8 (3)C21—C22—C23—C240.8 (7)
C7—C6—C11—C12179.8 (3)C20—C19—C24—C230.9 (5)
C5—C6—C11—C120.4 (5)C3—C19—C24—C23178.0 (3)
C10—C11—C12—O23.4 (5)C22—C23—C24—C190.1 (6)
C6—C11—C12—O2176.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.972.572.831 (6)95
C3—H3···O20.982.352.777 (4)105
C22—H22···N1i0.932.603.531 (5)175
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H18ClNO2
Mr387.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2559 (8), 10.9527 (9), 11.6466 (10)
α, β, γ (°)62.867 (2), 71.010 (2), 78.653 (2)
V3)991.93 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.42 × 0.16 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5316, 3387, 2158
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.191, 1.03
No. of reflections3387
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.46

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97, PARST (Nardelli, 1983b, 1995) and PLATON (Spek, 1999).

Selected geometric parameters (Å, º) top
Cl1—C161.741 (4)O2—C121.218 (4)
O1—N11.407 (3)N1—C21.281 (4)
O1—C11.459 (4)
N1—O1—C1108.8 (2)N1—C2—C13119.7 (3)
C2—N1—O1110.0 (2)N1—C2—C3114.0 (3)
O1—C1—C4107.3 (3)O2—C12—C11122.4 (3)
O1—C1—C3105.2 (2)O2—C12—C1120.1 (3)
O1—C1—C12103.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.972.572.831 (6)95
C3—H3···O20.982.352.777 (4)105
C22—H22···N1i0.932.603.531 (5)175
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds