Download citation
Download citation
link to html
The X-ray structure analysis of [Ni(C5H8N2)4(H2O)2]Cl2 was undertaken to elucidate the geometry around the Ni2+ ion. The molecule lies on a twofold axis which runs through the O-Ni-O atoms. The geometry around the Ni2+ ion is best described as slightly distorted tetragonal bipyramidal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100020746/na1497sup1.cif
Contains datablocks Y, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020746/na1497Isup2.hkl
Contains datablock I

CCDC reference: 164621

Comment top

In recent years we have investigated the coordination chemistry of metal complexes with N-containing heterocycles derivatives (Driessen et al., 1988; Małecka et al., 1998; Ochocki et al., 1990, 1992, 1997) because of expected pharmacological activity by analogy to cis platinum complexes (Hollis, 1989; Reedijk, 1996). Previous studies on this kind of complexes showed the significant role played in biological processes which is often related to their coordination ability towards transition metal ions (Ochocki et al., 1998). This work opens the studies on transition metal complexes with pyrazoles and their derivatives. On the other hand nickel is now recognized to be an essential element for bacteria, plants, animals and humans, since it plays an important role in catalytic activity of enzymes. \sch

The X-ray structure analysis of the title compound, (I), was undertaken to elucidate the geometry around the Ni2+ ion. The central ion Ni2+ of the complex is in a special position on the twofold axis running through atoms O1, Ni1 and O2. The Ni2+ ion is centered in slightly distorted octahedral environment. The basal plane is formed by N atoms of 3,5-dimethylpyrazole ligands, which is distorted with the tetrahedral angle [178.3 (1)°] [proposed by Holm & O'Connor (1971)]. The distortion of the local tetrahedral coordination is assigned in a bending angle of 179.4 (1)° (which shows how far the Ni2+ ion is shifted from the geometric centre of the tetrahedron). There is a net of hydrogen bonds (see table 2). Bond distances and angles in the phenyl and pyrazole rings are in a good agreement with expected values (Allen et al., 1987; Orpen et al., 1989).

The ORTEP drawing of the molecule with the atomic numbering scheme is given in Fig. 1.

Related literature top

For related literature, see: Allen et al. (1987); Driessen et al. (1988); Hollis (1989); Holm & O'Connor (1971); Małecka et al. (1998); Ochocki et al. (1990, 1992, 1997, 1998); Orpen et al. (1989); Reedijk (1996).

Experimental top

The title compound was obtained by reaction of 3,5-dimethylpirazole with nickel(II) chloride hexahydrate (4:1 stoichiometric) in ethanol-water (4:1) solution. The light blue crystals were obtained by slow evaporation from the same solution.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. ORTEP (McArdle, 1995) drawing of the molecule. Displacement ellipsoids are drawn at the 40% probability level.
trans diaqua [tetrakis(3,5-dimethylopyrazole- N2)] nickel (II) dichloride top
Crystal data top
[Ni(C5H8N2)4(H2O)2]Cl2F(000) = 1160
Mr = 550.18Dx = 1.302 Mg m3
Dm = 1.300 Mg m3
Dm measured by flotation in xylene, bromobenzene, toluene and heptane
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 10.505 (3) ÅCell parameters from 25 reflections
b = 14.213 (2) Åθ = 6.1–12.8°
c = 18.822 (3) ŵ = 0.91 mm1
β = 92.77 (2)°T = 293 K
V = 2807.1 (10) Å3Block, light blue
Z = 40.5 × 0.2 × 0.2 mm
Data collection top
AFC5S Rigaku
diffractometer
3056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 32.6°, θmin = 3.6°
ω scanh = 015
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 021
Tmin = 0.560, Tmax = 0.788l = 2828
5343 measured reflections3 standard reflections every 150 min
5110 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0852P)2]
where P = (Fo2 + 2Fc2)/3'
S = 1.05(Δ/σ)max = 0.026
5109 reflectionsΔρmax = 0.84 e Å3
185 parametersΔρmin = 0.85 e Å3
0 restraints
Crystal data top
[Ni(C5H8N2)4(H2O)2]Cl2V = 2807.1 (10) Å3
Mr = 550.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.505 (3) ŵ = 0.91 mm1
b = 14.213 (2) ÅT = 293 K
c = 18.822 (3) Å0.5 × 0.2 × 0.2 mm
β = 92.77 (2)°
Data collection top
AFC5S Rigaku
diffractometer
3056 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.024
Tmin = 0.560, Tmax = 0.7883 standard reflections every 150 min
5343 measured reflections intensity decay: <2%
5110 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.84 e Å3
5109 reflectionsΔρmin = 0.85 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H-atoms from methyl groups constrained to their parent atoms as a rigid body SHELXL97 (Sheldrick, 1997). U(H71)=1.1 Ueqof its parent atom. U(H72)=1.1 Ueqof its parent atom. U(H73)=1.1 Ueqof its parent atom. U(H141)=1.1 Ueqof its parent atom. U(H142)=1.1 Ueqof its parent atom. U(H143)=1.1 Ueqof its parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.58603 (3)0.25000.03122 (14)
O10.00000.7315 (2)0.25000.0457 (7)
H1010.055 (3)0.757 (2)0.2574 (18)0.044 (10)*
O20.00000.4404 (2)0.25000.0454 (7)
H2010.049 (3)0.411 (2)0.259 (2)0.051 (11)*
Cl30.74899 (8)0.16394 (6)0.72457 (5)0.0598 (2)
N10.2219 (2)0.65599 (19)0.32991 (15)0.0494 (6)
H10.232 (3)0.695 (2)0.2947 (17)0.046 (9)*
N20.1348 (2)0.58546 (16)0.32987 (11)0.0391 (5)
C30.1448 (3)0.5412 (2)0.39241 (15)0.0462 (6)
C60.0682 (4)0.4573 (2)0.41348 (17)0.0576 (8)
H610.01720.46490.39830.118 (18)*
H620.10570.40230.39150.087 (14)*
H630.06630.45040.46430.079 (12)*
C40.2371 (4)0.5863 (3)0.4314 (2)0.0649 (10)
H40.255 (4)0.570 (3)0.472 (2)0.086 (14)*
C50.2839 (4)0.6593 (3)0.3906 (2)0.0645 (10)
C70.3824 (5)0.7338 (4)0.4022 (3)0.1036 (18)
H710.35560.79210.38190.114*
H720.39220.74190.45220.114*
H730.46230.71490.37970.114*
N80.2494 (2)0.52407 (19)0.32034 (14)0.0455 (6)
H80.251 (4)0.491 (3)0.289 (2)0.064 (12)*
N90.1546 (2)0.58818 (16)0.32674 (11)0.0381 (4)
C100.1828 (3)0.6317 (2)0.38899 (14)0.0419 (6)
C130.1033 (4)0.7092 (2)0.41651 (17)0.0543 (8)
H1310.10430.70600.46750.105 (15)*
H1320.01730.70280.39750.113 (17)*
H1330.13710.76870.40230.101 (15)*
C110.2953 (3)0.5942 (3)0.42011 (18)0.0585 (8)
H110.332 (4)0.607 (3)0.468 (2)0.083 (13)*
C120.3338 (3)0.5257 (3)0.37614 (19)0.0583 (8)
C140.4454 (4)0.4591 (4)0.3796 (3)0.0948 (16)
H1410.42060.40040.35780.104*
H1420.47240.44840.42840.104*
H1430.51440.48590.35480.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0290 (2)0.0265 (2)0.0382 (2)0.0000.00162 (15)0.000
O10.0356 (16)0.0299 (14)0.071 (2)0.0000.0038 (15)0.000
O20.0350 (15)0.0282 (13)0.074 (2)0.0000.0112 (14)0.000
Cl30.0553 (5)0.0515 (4)0.0725 (5)0.0242 (4)0.0004 (4)0.0036 (4)
N10.0430 (13)0.0451 (14)0.0612 (15)0.0064 (11)0.0145 (11)0.0062 (12)
N20.0380 (11)0.0367 (11)0.0429 (11)0.0008 (9)0.0044 (9)0.0009 (9)
C30.0528 (17)0.0440 (15)0.0420 (14)0.0087 (13)0.0042 (12)0.0016 (11)
C60.077 (2)0.0492 (18)0.0461 (16)0.0043 (17)0.0055 (15)0.0078 (14)
C40.076 (2)0.067 (2)0.0550 (18)0.0077 (19)0.0290 (17)0.0025 (17)
C50.059 (2)0.059 (2)0.079 (2)0.0036 (16)0.0340 (18)0.0020 (17)
C70.089 (3)0.091 (3)0.137 (4)0.027 (3)0.062 (3)0.002 (3)
N80.0389 (12)0.0455 (14)0.0516 (14)0.0076 (10)0.0040 (10)0.0097 (11)
N90.0339 (10)0.0368 (11)0.0433 (11)0.0031 (9)0.0005 (8)0.0032 (9)
C100.0451 (14)0.0386 (14)0.0417 (13)0.0066 (11)0.0003 (11)0.0009 (11)
C130.066 (2)0.0458 (17)0.0510 (16)0.0012 (15)0.0023 (15)0.0100 (13)
C110.0568 (19)0.064 (2)0.0530 (17)0.0001 (16)0.0160 (14)0.0083 (15)
C120.0442 (16)0.060 (2)0.069 (2)0.0098 (15)0.0155 (14)0.0029 (16)
C140.063 (3)0.102 (4)0.115 (4)0.035 (3)0.036 (2)0.022 (3)
Geometric parameters (Å, º) top
Ni1—O12.068 (3)C5—C71.502 (5)
Ni1—O22.070 (3)C7—H710.9600
Ni1—N2i2.115 (2)C7—H720.9600
Ni1—N22.115 (2)C7—H730.9600
Ni1—N92.121 (2)N8—C121.342 (4)
Ni1—N9i2.121 (2)N8—N91.360 (3)
O1—H1010.69 (3)N8—H80.75 (4)
O2—H2010.69 (3)N9—C101.345 (3)
N1—C51.344 (4)C10—C111.399 (4)
N1—N21.357 (3)C10—C131.490 (4)
N1—H10.87 (3)C13—H1310.9600
N2—C31.343 (4)C13—H1320.9600
C3—C41.399 (5)C13—H1330.9600
C3—C61.482 (5)C11—C121.353 (5)
C6—H610.9600C11—H110.99 (4)
C6—H620.9600C12—C141.506 (5)
C6—H630.9600C14—H1410.9600
C4—C51.368 (6)C14—H1420.9600
C4—H40.84 (4)C14—H1430.9600
O1—Ni1—O2180.0N1—C5—C7120.9 (4)
O1—Ni1—N2i90.22 (6)C4—C5—C7133.3 (4)
O2—Ni1—N2i89.78 (6)C5—C7—H71109.5
O1—Ni1—N290.22 (6)C5—C7—H72109.5
O2—Ni1—N289.78 (6)H71—C7—H72109.5
N2i—Ni1—N2179.56 (13)C5—C7—H73109.5
O1—Ni1—N989.17 (6)H71—C7—H73109.5
O2—Ni1—N990.83 (6)H72—C7—H73109.5
N2i—Ni1—N988.12 (8)C12—N8—N9112.2 (3)
N2—Ni1—N991.88 (8)C12—N8—H8126 (3)
O1—Ni1—N9i89.17 (6)N9—N8—H8122 (3)
O2—Ni1—N9i90.83 (6)C10—N9—N8104.7 (2)
N2i—Ni1—N9i91.88 (8)C10—N9—Ni1136.82 (19)
N2—Ni1—N9i88.12 (8)N8—N9—Ni1118.04 (17)
N9—Ni1—N9i178.35 (12)N9—C10—C11109.6 (3)
Ni1—O1—H101121 (3)N9—C10—C13122.6 (3)
Ni1—O2—H201127 (3)C11—C10—C13127.8 (3)
C5—N1—N2112.4 (3)C10—C13—H131109.5
C5—N1—H1125 (2)C10—C13—H132109.5
N2—N1—H1122 (2)H131—C13—H132109.5
C3—N2—N1105.3 (2)C10—C13—H133109.5
C3—N2—Ni1135.1 (2)H131—C13—H133109.5
N1—N2—Ni1118.17 (17)H132—C13—H133109.5
N2—C3—C4109.3 (3)C12—C11—C10106.8 (3)
N2—C3—C6123.1 (3)C12—C11—H11126 (2)
C4—C3—C6127.6 (3)C10—C11—H11127 (2)
C3—C6—H61109.5N8—C12—C11106.6 (3)
C3—C6—H62109.5N8—C12—C14120.4 (3)
H61—C6—H62109.5C11—C12—C14133.0 (3)
C3—C6—H63109.5C12—C14—H141109.5
H61—C6—H63109.5C12—C14—H142109.5
H62—C6—H63109.5H141—C14—H142109.5
C5—C4—C3107.1 (3)C12—C14—H143109.5
C5—C4—H4129 (3)H141—C14—H143109.5
C3—C4—H4123 (3)H142—C14—H143109.5
N1—C5—C4105.8 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···Cl3ii0.69 (3)2.35 (3)3.044 (2)175 (3)
O2—H201···Cl3iii0.69 (3)2.39 (3)3.065 (2)166 (4)
N1—H1···Cl3iv0.87 (3)2.40 (3)3.242 (3)164 (3)
N8—H8···Cl3v0.75 (4)2.52 (4)3.223 (3)157 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1, y+1, z1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H8N2)4(H2O)2]Cl2
Mr550.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.505 (3), 14.213 (2), 18.822 (3)
β (°) 92.77 (2)
V3)2807.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.5 × 0.2 × 0.2
Data collection
DiffractometerAFC5S Rigaku
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.560, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
5343, 5110, 3056
Rint0.024
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.171, 1.05
No. of reflections5109
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.85

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989b), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) top
Ni1—O12.068 (3)Ni1—N22.115 (2)
Ni1—O22.070 (3)Ni1—N92.121 (2)
O1—Ni1—N290.22 (6)O2—Ni1—N990.83 (6)
O2—Ni1—N289.78 (6)N2—Ni1—N991.88 (8)
O1—Ni1—N989.17 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···Cl3i0.69 (3)2.35 (3)3.044 (2)175 (3)
O2—H201···Cl3ii0.69 (3)2.39 (3)3.065 (2)166 (4)
N1—H1···Cl3iii0.87 (3)2.40 (3)3.242 (3)164 (3)
N8—H8···Cl3iv0.75 (4)2.52 (4)3.223 (3)157 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1, y+1, z1/2; (iv) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds