Download citation
Download citation
link to html
In the title compound, 2-[(methylphenylamino)methyl]-1-(phenylsulfonyl)indole, C22H20N2O2S, the indole system is not strictly planar and the dihedral angle between the fused rings is 2.7 (1)°. The angles around the S atom of the sulfonyl substituent deviate significantly from the ideal value for tetrahedral geometry. The pyramidalization at the indole N atom is very small. Of the two C—H...O interactions, one influences the orientation of indole with respect to the sulfonyl group and the other determines the orientation of the phenyl bound to sulfonyl. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 89.6 (1)° with the best plane of the indole. The molecular packing is stabilized by C—H...π and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010100097X/na1496sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100097X/na1496Isup2.hkl
Contains datablock I

CCDC reference: 164648

Comment top

The biological activities of indoles and their derivatives have been known for a long time. The indole unit occurs naturally in a wide variety of structures. The indole ring system occurs in plants (Nigović et al., 2000). Indolines and their oxidized counter parts are important pharmacophores that appear in numerous biologically active compounds most notably those affecting central nervous system (Zhang & Liebeskind, 1996). Certain indole derivatives possess antidepressive (Papenstasion & Newmeyer, 1972), anti-inflammatory (Rodriguez et al., 1985; Polletto et al., 1974), antimicrobial (El-Sayed et al., 1986; Gadaginamath, 1999), antitumor (Schollmeyer et al., 1995) and antibacterial (Okabe & Adachi, 1998) activities. They have been proven to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Because of the wide range of biological activities of indole derivatives, we have undertaken the X-ray studies on an indole derivative, (I), in order to study its conformations in the solid state. \sch

The indole system is not strictly planar and the dihedral angle formed by the pyrrole and benzo planes is 2.7 (1)°. Atom N1 deviates by -0.104 (2) Å from the mean plane passing through S1, C1 and C4. This slight pyramidalization behaviour is also observed in related indoles (Yokum & Fronczek, 1997; Beddoes et al., 1986). The torsion angles O2—S1—N1—C4 = 152.0 (2)° and O2—S1—C9—C14 = 175.5 (2)° describe the conformation of the phenylsulfonyl group with respect to the indole system which cause the best planes of the indole and phenyl rings to form a dihedral angle of 89.6 (1)° as observed in similar structures (Yokum & Fronczek, 1997).

In the benzene ring of the indole system, endocyclic angles at C8 and C5 are contracted to 117.3 (2) and 119.2 (2)° while those at C7 and C4 are expanded to 122.4 (2) and 121.5 (2)°, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring. A similar effect has also been observed by Sivaraman et al. (1994a,b, 1996), Govindasamy et al. (1999) and Sankaranarayanan et al. (2000).

The phenyl ring attached to N16 is inclined to an angle of 83.1 (1)° with indole mean plane and 66.0 (1)° with the phenyl ring of the sulfonyl group. The sum of the angles around N16 [359.1 (4)°] is indicative of sp2 hybridized character. The orientation of the indole substituent is influenced by a weak interaction C8—H8···O1 quantitatively defined by the torsion angles C8—C4—N1—S1 [-9.6 (3)°], C4—N1—S1—C9 [-93.6 (2)°] while the orientation of the phenyl bound to the sulfonyl group is governed by the C10—H10···O2 interaction (Table. 2) quantitatively defined by the torsion angle O2—S1—C9—C10 [-4.2 (2)°].

The angular disposition of the bonds about the S atom shows significant deviation from that of a regular tetrahedron, with the largest deviation in O—S—O angle. The widening of the angle O1—S1—O2 = 120.4 (1)° from the ideal tetrahedral value is presumably the result of the repulsive interactions between the short SO bonds similar to that observed in related structures (Govindasamy et al., 1999; Rodriguez et al., 1985; Beddoes et al., 1986). The S—N and S—C bond distances agree well with the literature values of 1.642 (24) and 1.758 (13) Å (Allen et al., 1987), respectively.

In addition to van der Waals interactions, the molecular packing is stabilized by a C—H···O hydrogen bond and C—H···π interaction (Table 2), where Cg1 is the ring centroid of the benzene ring (C3—C8).

Related literature top

For related literature, see: Allen et al. (1987); Beddoes et al. (1986); El-Sayed, Barnhart, Ammon & Wassel (1986); Gadaginamath & Patil (1999); Govindasamy et al. (1999); Nigović et al. (2000); Okabe & Adachi (1998); Papenstasion & Newmeyer (1972); Polletto et al. (1974); Rajeswaran et al. (1999); Rodriguez et al. (1985); Sankaranarayanan et al. (2000); Schollmeyer et al. (1995); Sivaraman et al. (1994a, 1994b, 1996); Yokum & Fronczek (1997); Zhang & Liebeskind (1996).

Experimental top

3-Bromo-(1-phenylsulfonylindol-2-yl-methyl)-N-methylaniline was treated with tetrakis(triphenylphosphine)palladium(0) in DMF at 353 K and gave the corresponding debrominated product of the title compound in 70% yield.

Refinement top

All the hydrogen atoms were included in calculated positions and allowed to ride on their corresponding parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids with the atom-numbering scheme.
[Figure 2] Fig. 2. Packing of the molecule viewed down the a axis showing C—H···π interaction.
N-(1-Phenylsulfonylindol-2-yl-methyl)-N-methylaniline top
Crystal data top
C22H20N2O2SDx = 1.311 Mg m3
Mr = 376.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4762 reflections
a = 8.3162 (2) Åθ = 1.6–28.3°
b = 11.2384 (3) ŵ = 0.19 mm1
c = 20.4080 (5) ÅT = 293 K
V = 1907.35 (8) Å3Block, yellow
Z = 40.44 × 0.42 × 0.24 mm
F(000) = 792
Data collection top
Siemens SMART CCD area detector
diffractometer
3474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ω scansh = 1011
13206 measured reflectionsk = 1410
4707 independent reflectionsl = 2227
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041Calculated w = 1/[σ2(Fo2) + (0.0673P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.17 e Å3
4707 reflectionsΔρmin = 0.19 e Å3
245 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (8)
Crystal data top
C22H20N2O2SV = 1907.35 (8) Å3
Mr = 376.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3162 (2) ŵ = 0.19 mm1
b = 11.2384 (3) ÅT = 293 K
c = 20.4080 (5) Å0.44 × 0.42 × 0.24 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
3474 reflections with I > 2σ(I)
13206 measured reflectionsRint = 0.035
4707 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.17 e Å3
S = 0.91Δρmin = 0.19 e Å3
4707 reflectionsAbsolute structure: Flack (1983)
245 parametersAbsolute structure parameter: 0.06 (8)
0 restraints
Special details top

Experimental. Data were collected over a hemisphere of reciprocal space, by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set was over 99% complete. Crystal decay was monitored by repeating 30 initial frames at the end of data collection and analysing the duplicate reflections; it was found negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53831 (7)0.59191 (6)0.18734 (3)0.06009 (17)
O10.4736 (2)0.68787 (18)0.22452 (8)0.0782 (5)
O20.5188 (2)0.47274 (17)0.20896 (9)0.0864 (6)
N10.7355 (2)0.61532 (16)0.18227 (8)0.0537 (4)
C10.8477 (3)0.53331 (19)0.15495 (10)0.0538 (5)
C20.9893 (3)0.58827 (19)0.14875 (11)0.0583 (5)
H21.08280.55370.13260.070*
C30.9748 (3)0.70952 (19)0.17101 (10)0.0534 (5)
C40.8141 (3)0.72642 (19)0.18967 (10)0.0507 (5)
C51.0820 (3)0.8044 (2)0.17505 (12)0.0680 (6)
H51.18970.79400.16410.082*
C61.0267 (3)0.9140 (2)0.19547 (12)0.0738 (6)
H61.09700.97820.19780.089*
C70.8671 (4)0.9286 (2)0.21244 (13)0.0749 (7)
H70.83201.00340.22560.090*
C80.7583 (3)0.8365 (2)0.21058 (11)0.0652 (6)
H80.65160.84750.22280.078*
C90.4707 (2)0.60162 (19)0.10583 (10)0.0538 (5)
C100.4021 (3)0.5042 (2)0.07598 (14)0.0736 (7)
H100.39020.43280.09860.088*
C110.3511 (4)0.5146 (3)0.01152 (15)0.0891 (9)
H110.30160.45050.00910.107*
C120.3731 (4)0.6189 (3)0.02193 (15)0.0929 (10)
H120.34130.62420.06550.111*
C130.4408 (4)0.7148 (3)0.00770 (15)0.0892 (9)
H130.45510.78510.01560.107*
C140.4885 (4)0.7080 (2)0.07251 (12)0.0698 (6)
H140.53200.77420.09340.084*
C150.8045 (3)0.4069 (2)0.13825 (13)0.0698 (6)
H15A0.70160.40580.11590.084*
H15B0.79370.36130.17840.084*
N160.9251 (3)0.35120 (17)0.09670 (12)0.0776 (6)
C171.0245 (5)0.2598 (3)0.12489 (19)0.1061 (11)
H17A1.01010.25890.17160.159*
H17B0.99450.18400.10710.159*
H17C1.13520.27570.11480.159*
C180.9234 (3)0.37291 (19)0.02964 (14)0.0637 (6)
C190.8243 (3)0.4597 (2)0.00238 (13)0.0690 (6)
H190.75690.50350.02960.083*
C200.8236 (4)0.4822 (3)0.06377 (13)0.0828 (8)
H200.75480.53980.08070.099*
C210.9236 (5)0.4206 (3)0.10500 (17)0.1034 (11)
H210.92510.43730.14960.124*
C221.0197 (5)0.3354 (3)0.0797 (2)0.1087 (12)
H221.08680.29270.10760.130*
C231.0209 (4)0.3100 (2)0.01354 (18)0.0863 (9)
H231.08760.25020.00230.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0502 (3)0.0798 (4)0.0502 (3)0.0021 (3)0.0122 (2)0.0113 (3)
O10.0586 (9)0.1168 (14)0.0592 (9)0.0102 (10)0.0194 (8)0.0119 (9)
O20.0836 (13)0.0927 (12)0.0830 (12)0.0124 (11)0.0190 (10)0.0367 (10)
N10.0491 (9)0.0669 (11)0.0451 (8)0.0071 (8)0.0044 (7)0.0003 (8)
C10.0574 (12)0.0523 (12)0.0517 (11)0.0128 (10)0.0015 (9)0.0084 (9)
C20.0531 (13)0.0592 (12)0.0626 (12)0.0161 (10)0.0083 (9)0.0072 (10)
C30.0506 (10)0.0628 (12)0.0467 (10)0.0080 (10)0.0026 (9)0.0030 (9)
C40.0513 (11)0.0622 (12)0.0386 (9)0.0034 (9)0.0027 (9)0.0013 (9)
C50.0534 (13)0.0840 (17)0.0664 (14)0.0033 (12)0.0053 (11)0.0013 (13)
C60.0763 (15)0.0758 (15)0.0692 (15)0.0113 (14)0.0004 (13)0.0112 (13)
C70.0831 (18)0.0711 (16)0.0705 (15)0.0047 (14)0.0014 (14)0.0225 (12)
C80.0596 (14)0.0791 (16)0.0569 (12)0.0120 (12)0.0050 (10)0.0179 (11)
C90.0407 (9)0.0643 (12)0.0565 (11)0.0018 (10)0.0059 (9)0.0000 (10)
C100.0617 (14)0.0726 (16)0.0864 (18)0.0103 (12)0.0060 (13)0.0047 (13)
C110.0685 (17)0.113 (2)0.0856 (19)0.0088 (16)0.0093 (15)0.0324 (18)
C120.085 (2)0.129 (3)0.0649 (16)0.018 (2)0.0157 (15)0.0065 (18)
C130.108 (2)0.0901 (19)0.0698 (16)0.0154 (19)0.0091 (17)0.0151 (15)
C140.0824 (18)0.0636 (13)0.0634 (13)0.0044 (12)0.0062 (12)0.0064 (11)
C150.0774 (16)0.0571 (14)0.0748 (15)0.0051 (12)0.0002 (13)0.0112 (12)
N160.0884 (16)0.0535 (11)0.0909 (16)0.0262 (11)0.0047 (12)0.0021 (10)
C170.117 (3)0.0704 (17)0.131 (3)0.0382 (18)0.035 (2)0.0006 (18)
C180.0622 (14)0.0440 (11)0.0851 (16)0.0007 (10)0.0026 (11)0.0121 (10)
C190.0747 (16)0.0616 (13)0.0706 (14)0.0103 (12)0.0030 (13)0.0064 (12)
C200.100 (2)0.0768 (17)0.0712 (16)0.0009 (16)0.0046 (16)0.0026 (14)
C210.134 (3)0.097 (2)0.0794 (19)0.014 (2)0.023 (2)0.0246 (18)
C220.120 (3)0.089 (2)0.117 (3)0.000 (2)0.045 (2)0.040 (2)
C230.0768 (17)0.0580 (14)0.124 (3)0.0031 (13)0.0109 (18)0.0210 (15)
Geometric parameters (Å, º) top
S1—O11.424 (2)C11—H110.9300
S1—O21.419 (2)C12—C131.358 (5)
S1—N11.664 (2)C12—H120.9300
S1—C91.759 (2)C13—C141.383 (4)
N1—C41.417 (3)C13—H130.9300
N1—C11.425 (3)C14—H140.9300
C1—C21.335 (3)C15—N161.454 (3)
C1—C151.505 (3)C15—H15A0.9700
C2—C31.441 (3)C15—H15B0.9700
C2—H20.9300N16—C181.390 (4)
C3—C51.393 (3)N16—C171.438 (3)
C3—C41.402 (3)C17—H17A0.9600
C4—C81.389 (3)C17—H17B0.9600
C5—C61.379 (3)C17—H17C0.9600
C5—H50.9300C18—C231.390 (4)
C6—C71.381 (4)C18—C191.393 (4)
C6—H60.9300C19—C201.374 (4)
C7—C81.375 (4)C19—H190.9300
C7—H70.9300C20—C211.370 (4)
C8—H80.9300C20—H200.9300
C9—C101.377 (3)C21—C221.350 (5)
C9—C141.384 (3)C21—H210.9300
C10—C111.387 (4)C22—C231.380 (5)
C10—H100.9300C22—H220.9300
C11—C121.369 (4)C23—H230.9300
O1—S1—O2120.4 (1)C13—C12—C11120.9 (3)
O1—S1—N1106.6 (1)C13—C12—H12119.6
O2—S1—N1106.3 (1)C11—C12—H12119.6
O1—S1—C9109.6 (1)C12—C13—C14120.1 (3)
O2—S1—C9108.4 (1)C12—C13—H13119.9
N1—S1—C9104.3 (1)C14—C13—H13119.9
C4—N1—C1108.0 (2)C13—C14—C9119.1 (3)
C4—N1—S1125.9 (1)C13—C14—H14120.4
C1—N1—S1124.6 (2)C9—C14—H14120.4
C2—C1—N1108.4 (2)N16—C15—C1112.0 (2)
C2—C1—C15128.7 (2)N16—C15—H15A109.2
N1—C1—C15122.9 (2)C1—C15—H15A109.2
C1—C2—C3109.5 (2)N16—C15—H15B109.2
C1—C2—H2125.3C1—C15—H15B109.2
C3—C2—H2125.3H15A—C15—H15B107.9
C5—C3—C4119.4 (2)C18—N16—C17121.7 (2)
C5—C3—C2133.6 (2)C18—N16—C15119.4 (2)
C4—C3—C2107.1 (2)C17—N16—C15118.0 (3)
C8—C4—C3121.5 (2)N16—C17—H17A109.5
C8—C4—N1131.6 (2)N16—C17—H17B109.5
C3—C4—N1106.9 (2)H17A—C17—H17B109.5
C6—C5—C3119.2 (2)N16—C17—H17C109.5
C6—C5—H5120.4H17A—C17—H17C109.5
C3—C5—H5120.4H17B—C17—H17C109.5
C5—C6—C7120.2 (2)N16—C18—C23121.9 (3)
C5—C6—H6119.9N16—C18—C19121.5 (2)
C7—C6—H6119.9C23—C18—C19116.6 (3)
C8—C7—C6122.4 (2)C20—C19—C18121.6 (3)
C8—C7—H7118.8C20—C19—H19119.2
C6—C7—H7118.8C18—C19—H19119.2
C7—C8—C4117.3 (2)C19—C20—C21120.5 (3)
C7—C8—H8121.4C19—C20—H20119.7
C4—C8—H8121.4C21—C20—H20119.7
C10—C9—C14121.0 (2)C22—C21—C20118.9 (3)
C10—C9—S1120.1 (2)C22—C21—H21120.6
C14—C9—S1119.0 (2)C20—C21—H21120.6
C9—C10—C11118.6 (3)C21—C22—C23121.7 (3)
C9—C10—H10120.7C21—C22—H22119.2
C11—C10—H10120.7C23—C22—H22119.2
C12—C11—C10120.3 (3)C22—C23—C18120.7 (3)
C12—C11—H11119.9C22—C23—H23119.6
C10—C11—H11119.9C18—C23—H23119.6
O1—S1—N1—C422.4 (2)O2—S1—C9—C104.2 (2)
O2—S1—N1—C4152.0 (2)N1—S1—C9—C10117.2 (2)
C9—S1—N1—C493.6 (2)O1—S1—C9—C1451.3 (2)
O1—S1—N1—C1173.1 (2)O2—S1—C9—C14175.5 (2)
O2—S1—N1—C143.5 (2)N1—S1—C9—C1462.5 (2)
C9—S1—N1—C171.0 (2)C14—C9—C10—C110.1 (4)
C4—N1—C1—C22.8 (2)S1—C9—C10—C11179.6 (2)
S1—N1—C1—C2169.7 (2)C9—C10—C11—C121.8 (4)
C4—N1—C1—C15178.0 (2)C10—C11—C12—C131.9 (5)
S1—N1—C1—C1511.1 (3)C11—C12—C13—C140.0 (5)
N1—C1—C2—C30.8 (2)C12—C13—C14—C91.9 (5)
C15—C1—C2—C3179.9 (2)C10—C9—C14—C132.0 (4)
C1—C2—C3—C5179.6 (2)S1—C9—C14—C13177.7 (2)
C1—C2—C3—C41.5 (2)C2—C1—C15—N1615.4 (3)
C5—C3—C4—C81.6 (3)N1—C1—C15—N16165.7 (2)
C2—C3—C4—C8176.8 (2)C1—C15—N16—C1881.2 (3)
C5—C3—C4—N1178.4 (2)C1—C15—N16—C17109.3 (3)
C2—C3—C4—N13.2 (2)C17—N16—C18—C231.9 (4)
C1—N1—C4—C8176.3 (2)C15—N16—C18—C23171.0 (2)
S1—N1—C4—C89.6 (3)C17—N16—C18—C19178.6 (3)
C1—N1—C4—C33.7 (2)C15—N16—C18—C199.4 (4)
S1—N1—C4—C3170.4 (2)N16—C18—C19—C20179.3 (3)
C4—C3—C5—C61.9 (3)C23—C18—C19—C200.3 (4)
C2—C3—C5—C6176.0 (2)C18—C19—C20—C211.1 (5)
C3—C5—C6—C70.8 (4)C19—C20—C21—C221.6 (5)
C5—C6—C7—C80.7 (4)C20—C21—C22—C230.8 (6)
C6—C7—C8—C41.0 (4)C21—C22—C23—C180.7 (5)
C3—C4—C8—C70.2 (3)N16—C18—C23—C22178.4 (3)
N1—C4—C8—C7179.8 (2)C19—C18—C23—C221.2 (4)
O1—S1—C9—C10129.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.332.911 (3)121
C10—H10···O20.932.532.904 (3)104
C8—H8···O2i0.932.433.217 (3)142
C12—H12···Cg1ii0.932.753.568 (5)148
Symmetry codes: (i) x1, y1/2, z1/2; (ii) x+1/2, y3/2, z.

Experimental details

Crystal data
Chemical formulaC22H20N2O2S
Mr376.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.3162 (2), 11.2384 (3), 20.4080 (5)
V3)1907.35 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.44 × 0.42 × 0.24
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13206, 4707, 3474
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 0.91
No. of reflections4707
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19
Absolute structureFlack (1983)
Absolute structure parameter0.06 (8)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—O11.424 (2)S1—C91.759 (2)
S1—O21.419 (2)N1—C41.417 (3)
S1—N11.664 (2)N1—C11.425 (3)
O1—S1—O2120.4 (1)C4—N1—C1108.0 (2)
O1—S1—N1106.6 (1)C4—N1—S1125.9 (1)
O2—S1—N1106.3 (1)C1—N1—S1124.6 (2)
O1—S1—C9109.6 (1)C18—N16—C17121.7 (2)
O2—S1—C9108.4 (1)C18—N16—C15119.4 (2)
N1—S1—C9104.3 (1)C17—N16—C15118.0 (3)
C1—C15—N16—C1881.2 (3)C1—C15—N16—C17109.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.332.911 (3)121
C10—H10···O20.932.532.904 (3)104
C8—H8···O2i0.932.433.217 (3)142
C12—H12···Cg1ii0.932.753.568 (5)148
Symmetry codes: (i) x1, y1/2, z1/2; (ii) x+1/2, y3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds