Download citation
Download citation
link to html
The title antimony(III) complex, [Sb(C32H16N8)]Cl or [SbPc]Cl (where Pc = C32H16N82−), has been obtained from the reaction of pure powdered antimony with 1,2-di­cyano­benzene under a stream of ICl vapour. The asymmetric unit of this complex consists of an [SbPc]+ cation and a Cl anion. The phthalocyaninate residue [SbPc]+ is not planar. The Sb atom lies 1.057 (3) Å from the plane defined by the four iso­indole N atoms. A combination of ionic and donor–acceptor interactions links the [SbPc]Cl mol­ecules to form centrosymmetric [(SbPc)Cl]2 pseudo-dimers in the crystal. The Sb—Cl distances in the pseudo-dimer are not equivalent [3.043 (2) and 3.201 (2) Å]. The pseudo-dimers are weakly linked through Cl...H—Cbenzo interactions to form a three-dimensional network. As a result of these interactions, the four Sn—Nisoindole bond lengths in the [SbPc]+ residue are not equivalent and the symmetry of the Sb—N core is only close to Cs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015420/na1489sup1.cif
Contains datablocks SbPcCl, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015420/na1489Isup2.hkl
Contains datablock I

CCDC reference: 158246

Comment top

As a continuation of our studies on synthesis and characterization of the halogenide doped metallophthalocyanines (especially iodine doped) we have obtained several phthalocyaninato complexes (Kubiak & Janczak, 1997; Janczak et al., 1998; Janczak, Kubiak & Jezierski, 1999; Janczak, Kubiak & Hahn, 1999; Janczak et al., 2000; Janczak & Kubiak, 1999a,b,c,d). Previously, only two kinds of antimony phthalocyanines have been prepared, which were characterized by elemental analyses only (Barrett et al., 1936). Next the syntheses and spectral investigations of [SbIIIPc]F and [SbVPc(OH)2]F and the electrochemical studies of [SbVPcCl2]SbCl6·CH2Cl2 have been reported (Knör, 1996; Kagaya & Isagi, 1994). Recently, the syntheses and structural investigations of iodide antimony(III) phthalocyanine (SbPcI) and triiodide antimony(III) phthalocyanine [(SbPc)I3] have been reported (Kubiak & Razik, 1998; Kubiak & Ejsmont, 1999). To our knowledge, the present paper reports the third X-ray single-crystal structure determination of antimony phthalocyanine. \sch

The crystal of the title compound (I) is built up from a saucer-shaped macrocyclic [SbPc]+ residues and a Cl- anion (Fig. 1). The tetradendate phthalocyaninato(2-) ligand is not strictly planar. All atoms of Pc2- ring are displaced from the plane defined by the four nitrogen isoindole atoms. The largest deviation (besides the H atoms) from the N4-isoindole plane is for the C4 [0.893 (3) Å] and C28 [0.878 (3) Å]. The Sb atom lies at 1.056 (3) Å from the N4-isoindole plane. A similar deviation of the central metal can be found in the BiPcI (Kubiak & Ejsmont, 1999), in SbPcI (Kubiak & Razik, 1998) and in the non-planar metal(II) phthalocyanines, e.g. Sn(II)Pc (Friedel et al., 1970; Kubiak & Janczak, 1992) and Pb(II)Pc (Ukei, 1973; Iyechika et al., 1982).

In the crystal, as a conseqence of the contribution of the ionic and donor-acceptor interactions, Sb–Cl [3.043 (2) Å] and Sb–Cli [3.201 (2) Å] [symmetry code: (i) 1 - x, 2 - y, -z] the SbPcCl molecules form pseudo-dimers. A similar interactions in the crystal can be found in the iodide antimony(III) phthalocyanine (Kubiak & Razik, 1998). The difference in the radius between Cl- and I- ions (about 0.21 Å) implicated the difference in the distances between Sb and the halogenide (Cl- and I-) ions. The equivalent Sb–I distances in the crystal of SbPcI are equal to 3.438 (2) and 3.474 (2) Å, respectively. The pseudo-dimers are linked through Cl–H—Cbenzo interactions, e.g. Cl–H5ii (2.83 Å) and Cl–H11iii (2.72 Å) [symmetry code: (ii) x - 1, y, z; (iii) 2 - x, 2 - y, -z], which could be considered as a weak hydrogen-bond interactions, to form a three-dimensional network in the crystal (Fig. 2).

The interatomic distance between the antimonium atoms in this dinuclear pseudo-dimers equals to 4.334 (1) Å and between the chloride atoms equals to 4.498 (2) Å, and the angles Sb—Cl—Sbi and Cl—Sb—Cli are equal to 87.87 (3) and 92.13 (3)°, respectively. The equivalent interatomic distances in the iodide antimony(III) and bismuth(III) phthalocyaninato analogues are equal to 5.036 (2) (Sb–Sb) and 4.733 (2) Å (I–I) and 4.904 (2) (Bi–Bi) and 4.571 (2) Å (I–I) and the angles are equal to 86.0 (1) and 94.0 (1)° and 85.98 (3) and 94.02 (3)°, respectively.

The influence of the ionic and donor-acceptor interactions in the SbPcCl pseudo-dimers is clearly manifested in the Sb—Nisoindole bond lengths. The four Sb—Nisoindole bond distances are not equivalent and fall into two groups, the Sb—N1 and Sb—N7 are shorter than Sb—N3 and Sb—N5. These differences in the Sb—N bond lengths do appear to be affected in the molecular symmetry of Sb—Nisoindole core, which is close to Cs symmetry and not to C4v, which is possible for a saucer-shaped MIIPc molecules as SnIIPc or PbIIPc.

Although there is no imposed crystallographic symmetry on the phthalocyaninato(2-) ring, the bond distances and angles for chemically equivalent bonds do not differ significantly and compare well with the bond lengths and angles of the other saucer-shaped metallophtalocyaninato structures. The closest non-bonded contact between back-to-back phthalocyaninato rings equals to \sim3.3 Å.

In contrast to fluorides of antimony(III) and dihydroxyantimony(V) phthalocyanines and [SbVPcCl2]SbCl6·CH2Cl2 complexes, the chloride phthalocyaninato(2-) antimony(III) complex is not readily soluble in polar and non-polar solvents, in particular in alkohols, acetone, acetonitrile, cyclohexane etc.

Experimental top

The crystals of SbPcCl were obtained by the direct reaction of the pure powdered antimony with 1,2-dicyanobenzene (Kubiak & Janczak, 1993) under a stream of ICl vapours at about 453 K. At this temperature the liquid 1,2-dicyanobenzene undergoes catalytic tetramerization with simultaneous transfer of two electrons from Sb metal to the forming of the Pc ring, the third electron from Sb is transfered to the ICl to form a I- and Cl- ions. The crystals of SbPcCl were grown besides the iodine analogue (SbPcI).

Computing details top

Data collection: KUMA-KM4 CCD software (KUMA, 1998); cell refinement: KUMA-KM4 CCD software; data reduction: KUMA-KM4 CCD software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing in the unit cell showing the pseudo-dimers of the SbPcCl molecules.
(I) top
Crystal data top
[Sb(C32H16ClN8)]Z = 2
Mr = 669.73F(000) = 664
Triclinic, P1Dx = 1.741 Mg m3
Dm = 1.74 Mg m3
Dm measured by flotation
a = 9.560 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.806 (2) ÅCell parameters from 200 reflections
c = 12.462 (2) Åθ = 3–25°
α = 91.96 (3)°µ = 1.23 mm1
β = 96.21 (3)°T = 293 K
γ = 92.37 (3)°Plate, violet
V = 1277.8 (4) Å30.32 × 0.17 × 0.15 mm
Data collection top
KUMA KM-4
diffractometer equipped with a two-dimension area CCD detector
6190 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 29.5°, θmin = 3.3°
ω–scanh = 1213
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990)
k = 1411
Tmin = 0.695, Tmax = 0.838l = 1717
11638 measured reflections
Refinement top
Refinement on F2Primary atom site location: Patterson
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.011P)2]
where P = (Fo2 + 2Fc2)/3
6190 reflections(Δ/σ)max = 0.002
379 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Sb(C32H16ClN8)]γ = 92.37 (3)°
Mr = 669.73V = 1277.8 (4) Å3
Triclinic, P1Z = 2
a = 9.560 (2) ÅMo Kα radiation
b = 10.806 (2) ŵ = 1.23 mm1
c = 12.462 (2) ÅT = 293 K
α = 91.96 (3)°0.32 × 0.17 × 0.15 mm
β = 96.21 (3)°
Data collection top
KUMA KM-4
diffractometer equipped with a two-dimension area CCD detector
6190 independent reflections
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990)
2834 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.838Rint = 0.035
11638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.75 e Å3
6190 reflectionsΔρmin = 0.65 e Å3
379 parameters
Special details top

Experimental. The measurement has been performed on a KUMA KM-4 diffractometer equipped with a two-dimension area CCD detector. The ω–scan technique were used, the Δω=0.75° for one image. The 960 images for six different runs covered about 93% of the Ewald sphere. The lattice parameters were calculated using 200 reflections obtained from 30 images for ten runs with different orientations in reciprocal space.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb0.62937 (3)0.84216 (2)0.02977 (2)0.07034 (12)
Cl0.57906 (10)1.06970 (7)0.16866 (7)0.0690 (3)
N10.8328 (3)0.8398 (2)0.1321 (2)0.0623 (8)
N20.9969 (3)0.8456 (2)0.0058 (3)0.0617 (8)
N30.7696 (3)0.7546 (2)0.0832 (2)0.0655 (8)
N40.5935 (4)0.6474 (2)0.2119 (2)0.0642 (9)
N50.5067 (3)0.6697 (2)0.0366 (2)0.0605 (8)
N60.3503 (3)0.6417 (3)0.1023 (3)0.0658 (9)
N70.5699 (3)0.7546 (2)0.1760 (2)0.0541 (8)
N80.7538 (3)0.8413 (2)0.3121 (2)0.0596 (8)
C10.8506 (4)0.8572 (3)0.2439 (3)0.0622 (10)
C20.9973 (4)0.8956 (3)0.2762 (3)0.0564 (10)
C31.0645 (4)0.9246 (3)0.3816 (3)0.0677 (11)
H31.01710.91950.44270.081*
C41.2052 (5)0.9610 (3)0.3871 (3)0.0747 (12)
H41.25540.97930.45430.090*
C51.2743 (4)0.9711 (3)0.2940 (4)0.0765 (12)
H51.36751.00130.30070.092*
C61.2078 (4)0.9376 (3)0.1925 (3)0.0700 (11)
H61.25510.94000.13110.084*
C71.0657 (4)0.8999 (3)0.1873 (3)0.0538 (10)
C80.9629 (4)0.8611 (3)0.0955 (3)0.0581 (10)
C90.9076 (4)0.7931 (3)0.0873 (3)0.0610 (11)
C100.9490 (4)0.7695 (3)0.1899 (3)0.0661 (11)
C111.0735 (4)0.7957 (3)0.2369 (3)0.0727 (11)
H111.15100.83540.19650.087*
C121.0790 (4)0.7622 (3)0.3423 (3)0.0781 (12)
H121.16150.77670.37410.094*
C130.9559 (5)0.7036 (3)0.4053 (3)0.0855 (13)
H130.95890.68570.47850.103*
C140.8352 (5)0.6739 (3)0.3596 (3)0.0677 (11)
H140.75930.63090.39910.081*
C150.8302 (4)0.7106 (3)0.2518 (3)0.0614 (10)
C160.7229 (4)0.7021 (3)0.1832 (3)0.0626 (11)
C170.4977 (4)0.6330 (3)0.1447 (3)0.0575 (10)
C180.3632 (4)0.5684 (3)0.1750 (3)0.0648 (11)
C190.3041 (4)0.5111 (3)0.2753 (3)0.0747 (12)
H190.35040.50960.33720.090*
C200.1664 (4)0.4563 (3)0.2709 (4)0.0854 (14)
H200.12130.41890.33450.102*
C210.0952 (5)0.4539 (4)0.1821 (4)0.0771 (13)
H210.00500.41660.18890.093*
C220.1495 (4)0.5031 (3)0.0840 (3)0.0641 (11)
H220.10210.49750.02290.077*
C230.2890 (4)0.5660 (3)0.0819 (3)0.0707 (12)
C240.3858 (4)0.6316 (3)0.0043 (3)0.0591 (10)
C250.4411 (4)0.6951 (3)0.1846 (3)0.0577 (10)
C260.4135 (4)0.6928 (3)0.2948 (3)0.0592 (10)
C270.3044 (4)0.6404 (3)0.3458 (3)0.0731 (12)
H270.22720.60010.30550.088*
C280.3121 (4)0.6488 (3)0.4552 (3)0.0750 (12)
H280.24200.61040.49020.090*
C290.4278 (4)0.7163 (3)0.5174 (3)0.0745 (12)
H290.42870.72700.59190.089*
C300.5370 (4)0.7650 (3)0.4667 (3)0.0715 (11)
H300.61530.80370.50700.086*
C310.5299 (4)0.7561 (3)0.3556 (3)0.0647 (11)
C320.6272 (4)0.7895 (3)0.2813 (3)0.0605 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb0.0730 (2)0.06258 (19)0.07103 (19)0.01615 (14)0.00426 (14)0.00030 (13)
Cl0.0713 (7)0.0488 (6)0.0816 (7)0.0080 (5)0.0113 (5)0.0021 (5)
N10.070 (2)0.0563 (19)0.056 (2)0.0178 (16)0.0104 (17)0.0019 (15)
N20.067 (2)0.0482 (19)0.067 (2)0.0125 (15)0.0000 (18)0.0007 (16)
N30.066 (2)0.056 (2)0.071 (2)0.0106 (16)0.0006 (18)0.0026 (16)
N40.078 (2)0.0511 (19)0.057 (2)0.0111 (17)0.0136 (19)0.0015 (15)
N50.060 (2)0.065 (2)0.052 (2)0.0092 (16)0.0089 (16)0.0021 (16)
N60.067 (2)0.064 (2)0.062 (2)0.0108 (17)0.0071 (18)0.0010 (17)
N70.0521 (19)0.0428 (17)0.0640 (19)0.0075 (14)0.0051 (15)0.0001 (14)
N80.059 (2)0.0505 (19)0.068 (2)0.0089 (16)0.0032 (18)0.0056 (16)
C10.063 (3)0.053 (2)0.067 (3)0.005 (2)0.007 (2)0.005 (2)
C20.061 (3)0.045 (2)0.059 (2)0.0143 (19)0.007 (2)0.0049 (19)
C30.071 (3)0.057 (2)0.069 (3)0.027 (2)0.005 (2)0.006 (2)
C40.078 (3)0.063 (3)0.075 (3)0.005 (2)0.023 (2)0.001 (2)
C50.062 (3)0.050 (3)0.111 (4)0.024 (2)0.008 (3)0.000 (3)
C60.071 (3)0.050 (2)0.086 (3)0.018 (2)0.003 (2)0.003 (2)
C70.058 (3)0.038 (2)0.062 (2)0.0154 (18)0.003 (2)0.0054 (19)
C80.058 (3)0.052 (2)0.063 (3)0.014 (2)0.007 (2)0.006 (2)
C90.063 (3)0.052 (2)0.063 (3)0.017 (2)0.009 (2)0.003 (2)
C100.063 (3)0.064 (3)0.068 (3)0.012 (2)0.001 (2)0.003 (2)
C110.066 (3)0.070 (3)0.082 (3)0.007 (2)0.010 (2)0.009 (2)
C120.097 (4)0.080 (3)0.056 (3)0.008 (3)0.008 (2)0.006 (2)
C130.098 (4)0.064 (3)0.090 (3)0.005 (3)0.006 (3)0.000 (2)
C140.082 (3)0.055 (3)0.064 (3)0.003 (2)0.000 (2)0.002 (2)
C150.070 (3)0.056 (3)0.056 (3)0.011 (2)0.000 (2)0.015 (2)
C160.068 (3)0.055 (2)0.060 (3)0.006 (2)0.011 (2)0.005 (2)
C170.062 (3)0.048 (2)0.062 (3)0.006 (2)0.006 (2)0.004 (2)
C180.064 (3)0.062 (3)0.066 (3)0.010 (2)0.003 (2)0.004 (2)
C190.084 (3)0.075 (3)0.059 (2)0.022 (2)0.013 (2)0.005 (2)
C200.064 (3)0.066 (3)0.113 (4)0.020 (2)0.041 (3)0.005 (3)
C210.073 (3)0.082 (3)0.069 (3)0.014 (2)0.017 (3)0.001 (3)
C220.079 (3)0.075 (3)0.044 (2)0.056 (2)0.005 (2)0.019 (2)
C230.063 (3)0.056 (3)0.087 (3)0.017 (2)0.018 (2)0.006 (2)
C240.060 (3)0.055 (2)0.058 (3)0.016 (2)0.006 (2)0.004 (2)
C250.060 (3)0.049 (2)0.059 (3)0.0132 (19)0.010 (2)0.0039 (19)
C260.057 (3)0.060 (2)0.059 (3)0.011 (2)0.003 (2)0.004 (2)
C270.067 (3)0.081 (3)0.065 (3)0.022 (2)0.012 (2)0.001 (2)
C280.079 (3)0.081 (3)0.065 (3)0.013 (2)0.012 (2)0.015 (2)
C290.071 (3)0.093 (3)0.055 (3)0.017 (2)0.003 (2)0.005 (2)
C300.069 (3)0.073 (3)0.069 (3)0.016 (2)0.002 (2)0.000 (2)
C310.060 (3)0.071 (3)0.057 (3)0.017 (2)0.006 (2)0.002 (2)
C320.062 (3)0.059 (2)0.055 (2)0.017 (2)0.012 (2)0.0112 (19)
Geometric parameters (Å, º) top
Sb—Cl3.043 (2)C6—C71.397 (4)
Sb—N72.199 (3)C7—C81.462 (4)
Sb—N12.208 (3)C9—C101.397 (5)
Sb—N52.244 (3)C10—C111.405 (5)
Sb—N32.257 (3)C10—C151.417 (4)
N1—C81.384 (4)C11—C121.358 (4)
N1—C11.391 (4)C12—C131.451 (5)
N2—C81.344 (4)C13—C141.373 (5)
N2—C91.348 (4)C14—C151.393 (4)
N3—C161.372 (4)C15—C161.407 (5)
N3—C91.374 (4)C17—C181.444 (4)
N4—C171.314 (4)C18—C231.424 (5)
N4—C161.356 (4)C18—C191.424 (4)
N5—C241.367 (4)C19—C201.428 (5)
N5—C171.384 (4)C20—C211.361 (5)
N6—C241.305 (4)C21—C221.357 (4)
N6—C251.365 (4)C22—C231.469 (3)
N7—C251.382 (4)C23—C241.481 (4)
N7—C321.399 (4)C25—C261.427 (4)
N8—C321.325 (4)C26—C271.389 (4)
N8—C11.332 (4)C26—C311.415 (4)
C1—C21.456 (4)C27—C281.357 (4)
C2—C71.348 (4)C28—C291.437 (4)
C2—C31.417 (4)C29—C301.374 (4)
C3—C41.379 (5)C30—C311.378 (4)
C4—C51.400 (5)C31—C321.426 (5)
C5—C61.383 (4)
N7—Sb—N177.43 (11)C11—C10—C15120.6 (4)
N7—Sb—N577.10 (10)C12—C11—C10119.0 (4)
N1—Sb—N5123.30 (10)C11—C12—C13119.9 (4)
N7—Sb—N3123.47 (10)C14—C13—C12121.7 (4)
N1—Sb—N377.66 (11)C13—C14—C15117.7 (4)
N5—Sb—N375.85 (11)C14—C15—C16132.5 (4)
C8—N1—C1107.5 (3)C14—C15—C10121.0 (4)
C8—N1—Sb124.5 (2)C16—C15—C10106.5 (4)
C1—N1—Sb125.1 (3)N4—C16—N3125.4 (4)
C8—N2—C9123.2 (3)N4—C16—C15124.4 (4)
C16—N3—C9106.3 (3)N3—C16—C15110.2 (3)
C16—N3—Sb124.4 (3)N4—C17—N5128.1 (3)
C9—N3—Sb123.3 (2)N4—C17—C18123.0 (4)
C17—N4—C16123.7 (3)N5—C17—C18108.9 (3)
C24—N5—C17109.1 (3)C23—C18—C19121.2 (3)
C24—N5—Sb120.9 (2)C23—C18—C17107.8 (3)
C17—N5—Sb122.2 (2)C19—C18—C17130.9 (4)
C24—N6—C25121.1 (3)C18—C19—C20113.1 (4)
C25—N7—C32106.4 (3)C21—C20—C19125.8 (4)
C25—N7—Sb124.7 (2)C22—C21—C20123.1 (4)
C32—N7—Sb124.6 (2)C21—C22—C23114.8 (3)
C32—N8—C1122.4 (3)C18—C23—C22121.9 (3)
N8—C1—N1127.6 (3)C18—C23—C24104.6 (3)
N8—C1—C2124.5 (4)C22—C23—C24133.4 (4)
N1—C1—C2107.9 (4)N6—C24—N5130.4 (3)
C7—C2—C3122.9 (3)N6—C24—C23120.0 (4)
C7—C2—C1108.7 (3)N5—C24—C23109.6 (3)
C3—C2—C1128.4 (4)N6—C25—N7126.9 (3)
C4—C3—C2115.3 (4)N6—C25—C26122.5 (3)
C3—C4—C5121.7 (4)N7—C25—C26110.6 (3)
C6—C5—C4121.9 (4)C27—C26—C31120.6 (3)
C5—C6—C7116.2 (4)C27—C26—C25133.1 (3)
C2—C7—C6121.9 (3)C31—C26—C25106.2 (3)
C2—C7—C8106.8 (3)C28—C27—C26119.1 (3)
C6—C7—C8131.3 (4)C27—C28—C29120.6 (4)
N2—C8—N1127.8 (3)C30—C29—C28119.8 (3)
N2—C8—C7123.2 (4)C29—C30—C31119.5 (3)
N1—C8—C7109.0 (3)C30—C31—C26120.1 (4)
N2—C9—N3126.9 (4)C30—C31—C32132.8 (3)
N2—C9—C10122.0 (4)C26—C31—C32106.9 (3)
N3—C9—C10111.2 (3)N8—C32—N7127.2 (3)
C9—C10—C11133.6 (4)N8—C32—C31123.0 (3)
C9—C10—C15105.8 (4)N7—C32—C31109.7 (3)

Experimental details

Crystal data
Chemical formula[Sb(C32H16ClN8)]
Mr669.73
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.560 (2), 10.806 (2), 12.462 (2)
α, β, γ (°)91.96 (3), 96.21 (3), 92.37 (3)
V3)1277.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.32 × 0.17 × 0.15
Data collection
DiffractometerKUMA KM-4
diffractometer equipped with a two-dimension area CCD detector
Absorption correctionAnalytical
face-indexed (SHELXTL; Sheldrick, 1990)
Tmin, Tmax0.695, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
11638, 6190, 2834
Rint0.035
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.061, 1.03
No. of reflections6190
No. of parameters379
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.65

Computer programs: KUMA-KM4 CCD software (KUMA, 1998), KUMA-KM4 CCD software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Sb—Cl3.043 (2)Sb—N52.244 (3)
Sb—N72.199 (3)Sb—N32.257 (3)
Sb—N12.208 (3)
N7—Sb—N177.43 (11)N7—Sb—N3123.47 (10)
N7—Sb—N577.10 (10)N1—Sb—N377.66 (11)
N1—Sb—N5123.30 (10)N5—Sb—N375.85 (11)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds