Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of N,N'-(1,2-phenyl­ene)­bis­(pyridine-2-carbox­amide), C18H14N4O2, (I), and N,N'-(1,2-cyclo­hexane­diyl)­bis­(pyridine-2-carbox­amide) have been determined, the latter compound as the toluene hemisolvate, C18H20N4O2·0.5C7H8, (II). In (I), the benzene ring is nearly coplanar with one of the pyridine rings and forms a dihedral angle of 59.4 (1)° with the other. However, in (II), the dihedral angle of the two pyridine rings is 70.0 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100016395/na1486sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100016395/na1486Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100016395/na1486IIsup3.hkl
Contains datablock II

CCDC references: 160000; 160001

Comment top

Functional mimics of manganese superoxide dismutase (Mn-SOD) are of great potential as therapeutic agents (Riley, 1999), for example, manganese porphyrin derivatives, which show powerful antinflammatory effects due to their multiple scavenging activities (Cuzzocrea et al., 1999), and N-containing macrocyclic manganese complexes, which have high catalytic SOD activity and are chemically and biologically stable in vivo (Salvemini et al., 1999). In the latter case, the introduction of a fused cyclohexane group enhances the kinetic and thermodynamic stabilities of the manganese complexes. Therefore, we designed and synthesized the title compounds, (I) and (II), which each contain two pyridine and two amide moieties. The MnII and MnIII complexes of the title compounds were also synthesized, and preliminary data showed that the MnIII complexes possess potent SOD activity in human blood plasma and platelet. \sch

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. It is notable that the orientations of the pyridine rings in (I) and (II) are quite different. In compound (I), the N1-pyridine ring is nearly coplanar with the benzene ring, with a dihedral angle of 18.6 (1)°, which may be due to stabilization via an intramolecular C—H···O hydrogen bond between C8 and O1 (see Table 2). The N4-pyridine ring forms a dihedral angle of 59.4 (1)° with the benzene ring. Such an arrangement is similar to that found in N,N'-(4,5-dichloro-o-phenylene)bis(4-tert-butylpyridine-2-carboxamide) (Fun et al., 1999).

In (I), N2–2H acts as a donor in the three-centre (bifurcated) N2—H2B···O2 and N2—H2B···N1 interactions, the former being responsible for the reciprocal orientation of the two oxamide groups that form a dihedral angle of 64.1 (1)°, the latter for the orientation of the O1-carboxamide plane with respect to that of the N1-pyridine, the C4—C5—C6—O1 torsion angle being -7.8 (4)°. The N3—H3B···N4 interaction determines the orientation of the O2-carboxamide plane with respect to that of the N4-pyridine, the N3—C13—C14—N4 and O2—C13—C14—C15 torsion angles being -9.5 (3) and -11.6 (4)°, respectively. The orientation of the two carboxamide-2-pyridine substituents with respect to the benzene plane is defined by the C6—N2—C7—C8 and C13—N3—C12—C11 torsion angles of 23.7 (4) and 130.3 (3)°, respectively. The weak C11—H11A···O2i interaction (Table 2) contributes to the crystal packing [symmetry code: (i) x, y - 1, z].

In compound (II), the two pyridine rings form a dihedral angle of 70.0 (1)° and the cyclohexane ring adopts a chair conformation, with a total puckering amplitude (Cremer & Pople, 1975) QT = 0.559 (2) Å. The two pyridine-2-carboxamide substituents are approximately perpendicular to the cyclohexane ring, the dihedral angles they form with the least-squares plane through cyclohexane being 84.8 (1) and 73.7 (1)° for the N3- and N4-pyridine rings, respectively. The substituents occupy the equatorial position of the cyclohexane ring and adopt a trans conformation, so that the energy of (II) is minimized.

In (II), N1—H1B is involved in two three-centre (bifurcated) interactions. One, N1—H1B···N4, is intramolecular, determining the coplanarity of the N4-pyridine and O1-oxamide [C15—C14—C13—O1 4.9 (2), O1—C13—N1—C12 1.4 (2) and N4—C14—C13—N1 5.2 (2)°]. The other, N1—H1B···O2ii (Table 4), is intermolecular, connecting the molecule to a centrosymmetric one displaced along z [symmetry code: (ii) -x, -y, 2 - z]. Similar behaviour is shown by the N2—H2B group which, with the N2—H2B···N3 interaction, causes coplanarity of the N3-pyridine and O2-oxamide [C4—C5—C6—O2 - 5.4 (2), O2—C6—N2—C7 - 2.4 (2) and N3—C5—C6—N2 - 5.0 (2)°], while the intermolecular N2—H2B···O1iii bond (Table 4) contributes to the crystal packing [symmetry code: (iii) 1 - x, -y, 2 - z]. The weak C4—H4A···O2 and C7—H7A···O2 interactions contribute to the coplanarity of the N3-pyridine with O2-oxamide, which are approximately orthogonal to the cyclohexane ring [C6—N2—C7—C12 129.6 (2)°], and similarly, C12—H12A···O1 and C15—H15A···O1 are responsible for the coplanarity and orthogonality of the N4-pyridine and O1-oxamide system [C13—N1—C12—C11 - 108.1 (2)°]. The weak intermolecular C8—H8A···O1iii and C11—H11B···O2ii interactions (Table 4) contribute to the molecular packing in the crystal. Compound (II) contains a molecule of toluene, disordered over two sites related by centrosymmetry, with occupancy factors of 0.5.

The mean C—N lengths of the pyridine rings are 1.336 (3) and 1.335 (2) Å in (I) and (II), respectively. The amide N—C distances towards the bridging ring [N2—C7 and N3—C12 in (I), and N2—C7 and N1—C12 in (II)] are longer than those towards the pyridine rings [N2—C6 and N3—C13 in (I), and N2—C6 and N1—C13 in (II)] in both compounds. These values are within the normal range expected (Allen et al., 1987).

Related literature top

For related literature, see: Allen et al. (1987); Cremer & Pople (1975); Cuzzocrea et al. (1999); Fun et al. (1999); Leung et al. (1991); Riley (1999); Salvemini et al. (1999).

Experimental top

Compounds (I) and (II) were synthesized by the reaction of pyridine-2-carboxylic acid and 2-phenylenediamine (or 1,2-cyclohexanediamine) in the ratio of 2:1 in the presence of triphenyl phosphite in pyridine at 373 K for 2 h (Leung et al., 1991). Crystals suitable for X-ray structure analysis were obtained by slow evaporation of the compounds from toluene at room temperature.

Refinement top

For both compounds (I) and (II), H atoms were placed in calculated positions and refined with fixed isotropic displacement parameters (N—H 0.8600 and C—H 0.9300 Å - OK?). However, the H atoms of the toluene molecule in (II) were not located, because of disorder.

Computing details top

Data collection: please provide details for (I); CAD-4 Software (Enraf-Nonius, 1989) for (II). Cell refinement: please provide details for (I); CAD-4 Software for (II). Data reduction: please provide details for (I); CAD-4 Software for (II). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); SHELXTL (Sheldrick, 1997b) for (II). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a) for (I); SHELXTL for (II). Molecular graphics: please provide details for (I); SHELXTL for (II). Software used to prepare material for publication: please provide details for (I); SHELXTL for (II).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The structure of (II) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii. Only one of the two disordered toluene molecules is represented [symmetry code: (iv) -x, -1 - y, 3 - z].
(I) N,N'-(1,2-phenylene)bis(pyridine-2-carboxamide) top
Crystal data top
C18H14N4O2F(000) = 664
Mr = 318.33Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.346 (2) ÅCell parameters from 30 reflections
b = 5.567 (1) Åθ = 4.9–12.4°
c = 22.578 (6) ŵ = 0.09 mm1
β = 95.20 (1)°T = 293 K
V = 1545.4 (6) Å3Block, colourless
Z = 40.5 × 0.2 × 0.2 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.078
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 114
2θ/ω scansk = 16
3821 measured reflectionsl = 2626
2726 independent reflections3 standard reflections every 97 reflections
1624 reflections with I > 2σ(I) intensity decay: 5.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2 + 0.282P]
where P = (Fo2 + 2Fc2)/3
2726 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H14N4O2V = 1545.4 (6) Å3
Mr = 318.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.346 (2) ŵ = 0.09 mm1
b = 5.567 (1) ÅT = 293 K
c = 22.578 (6) Å0.5 × 0.2 × 0.2 mm
β = 95.20 (1)°
Data collection top
Bruker P4
diffractometer
Rint = 0.078
3821 measured reflections3 standard reflections every 97 reflections
2726 independent reflections intensity decay: 5.4%
1624 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2726 reflectionsΔρmin = 0.16 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1424 (2)0.9104 (5)0.4184 (1)0.0663 (7)
N20.2666 (2)0.5723 (4)0.37461 (9)0.0519 (6)
H2B0.26680.62170.41070.062*
N30.3395 (2)0.2482 (4)0.46983 (8)0.0475 (6)
H3B0.31250.12020.48390.057*
N40.2551 (2)0.1948 (4)0.57402 (9)0.0573 (6)
O10.1829 (2)0.6341 (5)0.28131 (8)0.0814 (7)
O20.3731 (2)0.6428 (4)0.49015 (7)0.0623 (6)
C10.0860 (3)1.0908 (7)0.4398 (2)0.081 (1)
H1A0.09221.11380.48080.097*
C20.0195 (3)1.2442 (7)0.4057 (2)0.084 (1)
H2A0.01771.36730.42290.100*
C30.0095 (3)1.2105 (7)0.3454 (2)0.087 (1)
H3A0.03471.31060.32070.104*
C40.0660 (3)1.0265 (6)0.3222 (1)0.073 (1)
H4A0.05980.99950.28140.087*
C50.1315 (2)0.8821 (5)0.3592 (1)0.0527 (7)
C60.1961 (2)0.6858 (6)0.3344 (1)0.0545 (7)
C70.3394 (2)0.3848 (5)0.3652 (1)0.0448 (6)
C80.3767 (2)0.3474 (6)0.3095 (1)0.0550 (7)
H8A0.35650.45340.27870.066*
C90.4429 (2)0.1564 (6)0.2997 (1)0.0603 (8)
H9A0.46540.13230.26190.072*
C100.4764 (2)0.0002 (5)0.3449 (1)0.0599 (8)
H10A0.52060.13050.33780.072*
C110.4431 (2)0.0398 (5)0.4010 (1)0.0511 (7)
H11A0.46640.06290.43210.061*
C120.3756 (2)0.2309 (5)0.41148 (9)0.0436 (6)
C130.3435 (2)0.4438 (5)0.5048 (1)0.0453 (6)
C140.3034 (2)0.4023 (5)0.5653 (1)0.0420 (6)
C150.3183 (2)0.5781 (5)0.6078 (1)0.0596 (8)
H15A0.35270.72140.59970.072*
C160.2813 (3)0.5383 (6)0.6628 (1)0.0655 (9)
H16A0.29150.65280.69280.079*
C170.2296 (2)0.3282 (6)0.6722 (1)0.0605 (8)
H17A0.20240.29790.70860.073*
C180.2181 (3)0.1619 (6)0.6275 (1)0.0676 (9)
H18A0.18280.01850.63460.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.052 (1)0.093 (2)0.053 (1)0.002 (2)0.002 (1)0.013 (1)
N20.055 (1)0.071 (2)0.029 (1)0.006 (1)0.001 (1)0.001 (1)
N30.054 (1)0.057 (1)0.032 (1)0.016 (1)0.0063 (9)0.002 (1)
N40.069 (2)0.060 (2)0.046 (1)0.016 (1)0.016 (1)0.001 (1)
O10.089 (2)0.116 (2)0.037 (1)0.016 (2)0.008 (1)0.002 (1)
O20.087 (1)0.062 (1)0.037 (1)0.028 (1)0.0030 (9)0.0041 (9)
C10.055 (2)0.116 (3)0.072 (2)0.005 (2)0.000 (2)0.030 (2)
C20.050 (2)0.087 (3)0.113 (3)0.004 (2)0.005 (2)0.017 (2)
C30.069 (2)0.098 (3)0.095 (3)0.010 (2)0.010 (2)0.026 (2)
C40.064 (2)0.094 (3)0.060 (2)0.007 (2)0.009 (2)0.017 (2)
C50.043 (1)0.068 (2)0.047 (2)0.010 (2)0.001 (1)0.004 (2)
C60.054 (2)0.073 (2)0.036 (1)0.011 (2)0.000 (1)0.004 (1)
C70.046 (1)0.054 (2)0.034 (1)0.011 (1)0.003 (1)0.001 (1)
C80.061 (2)0.071 (2)0.033 (1)0.009 (2)0.004 (1)0.004 (2)
C90.067 (2)0.079 (2)0.036 (1)0.006 (2)0.012 (1)0.006 (2)
C100.064 (2)0.066 (2)0.051 (2)0.005 (2)0.013 (1)0.009 (2)
C110.055 (2)0.054 (2)0.044 (2)0.012 (2)0.006 (1)0.004 (1)
C120.048 (1)0.055 (2)0.029 (1)0.017 (1)0.005 (1)0.001 (1)
C130.049 (2)0.052 (2)0.034 (1)0.012 (1)0.004 (1)0.003 (1)
C140.045 (1)0.048 (2)0.032 (1)0.005 (1)0.001 (1)0.004 (1)
C150.078 (2)0.058 (2)0.043 (2)0.017 (2)0.003 (1)0.004 (1)
C160.087 (2)0.075 (2)0.035 (2)0.001 (2)0.007 (2)0.006 (2)
C170.065 (2)0.081 (2)0.038 (1)0.011 (2)0.016 (1)0.009 (2)
C180.079 (2)0.073 (2)0.053 (2)0.012 (2)0.023 (2)0.009 (2)
Geometric parameters (Å, º) top
N1—C11.338 (4)C5—C61.491 (4)
N1—C51.340 (3)C7—C121.394 (3)
N2—C61.356 (3)C7—C81.393 (3)
N2—C71.406 (3)C8—C91.372 (4)
N2—H2B0.8600C8—H8A0.9300
N3—C131.343 (3)C9—C101.377 (4)
N3—C121.432 (3)C9—H9A0.9300
N3—H3B0.8600C10—C111.386 (4)
N4—C141.324 (3)C10—H10A0.9300
N4—C181.342 (3)C11—C121.384 (4)
O1—C61.229 (3)C11—H11A0.9300
O2—C131.222 (3)C13—C141.512 (3)
C1—C21.373 (5)C14—C151.371 (3)
C1—H1A0.9300C15—C161.381 (4)
C2—C31.368 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.358 (4)
C3—C41.370 (5)C16—H16A0.9300
C3—H3A0.9300C17—C181.368 (4)
C4—C51.370 (4)C17—H17A0.9300
C4—H4A0.9300C18—H18A0.9300
C1—N1—C5116.2 (3)C7—C8—H8A119.6
C6—N2—C7128.7 (2)C8—C9—C10120.9 (2)
C6—N2—H2B115.7C8—C9—H9A119.5
C7—N2—H2B115.7C10—C9—H9A119.5
C13—N3—C12126.7 (2)C9—C10—C11118.8 (3)
C13—N3—H3B116.7C9—C10—H10A120.6
C12—N3—H3B116.7C11—C10—H10A120.6
C14—N4—C18116.6 (2)C12—C11—C10120.8 (3)
N1—C1—C2124.6 (3)C12—C11—H11A119.6
N1—C1—H1A117.7C10—C11—H11A119.6
C2—C1—H1A117.7C11—C12—C7120.1 (2)
C3—C2—C1118.0 (3)C11—C12—N3116.8 (2)
C3—C2—H2A121.0C7—C12—N3122.9 (2)
C1—C2—H2A121.0O2—C13—N3124.9 (2)
C4—C3—C2118.7 (3)O2—C13—C14120.9 (2)
C4—C3—H3A120.6N3—C13—C14114.2 (2)
C2—C3—H3A120.6N4—C14—C15123.5 (2)
C3—C4—C5119.9 (3)N4—C14—C13117.2 (2)
C3—C4—H4A120.1C15—C14—C13119.3 (2)
C5—C4—H4A120.1C14—C15—C16118.8 (3)
N1—C5—C4122.7 (3)C14—C15—H15A120.6
N1—C5—C6116.9 (2)C16—C15—H15A120.6
C4—C5—C6120.4 (3)C17—C16—C15118.5 (3)
O1—C6—N2124.4 (3)C17—C16—H16A120.7
O1—C6—C5120.7 (3)C15—C16—H16A120.7
N2—C6—C5115.0 (2)C16—C17—C18119.1 (3)
C12—C7—C8118.3 (3)C16—C17—H17A120.4
C12—C7—N2120.6 (2)C18—C17—H17A120.4
C8—C7—N2121.0 (2)N4—C18—C17123.4 (3)
C9—C8—C7120.9 (3)N4—C18—H18A118.3
C9—C8—H8A119.6C17—C18—H18A118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.862.132.840 (3)140
N2—H2B···N10.862.242.673 (4)111
N3—H3B···N40.862.252.674 (3)110
C8—H8A···O10.932.372.898 (4)116
C11—H11A···O2i0.932.453.161 (3)133
Symmetry code: (i) x, y1, z.
(II) N,N'-(1,2-cyclohexanediyl)bis(pyridine-2-carboxamide) top
Crystal data top
C18H20N4O2·0.5C7H8Z = 2
Mr = 370.45F(000) = 394
Triclinic, P1Dx = 1.217 Mg m3
a = 9.899 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.492 (2) ÅCell parameters from 25 reflections
c = 10.795 (2) Åθ = 2.4–15.6°
α = 88.52 (3)°µ = 0.08 mm1
β = 64.39 (3)°T = 293 K
γ = 89.70 (3)°Block, colourless
V = 1010.7 (4) Å30.30 × 0.26 × 0.24 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 011
2θ/ω scansk = 1212
3764 measured reflectionsl = 1112
3539 independent reflections3 standard reflections every 97 reflections
2552 reflections with I > 2σ(I) intensity decay: 4.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0904P)2 + 0.3004P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.006
3539 reflectionsΔρmax = 0.27 e Å3
263 parametersΔρmin = 0.16 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (4)
Crystal data top
C18H20N4O2·0.5C7H8γ = 89.70 (3)°
Mr = 370.45V = 1010.7 (4) Å3
Triclinic, P1Z = 2
a = 9.899 (2) ÅMo Kα radiation
b = 10.492 (2) ŵ = 0.08 mm1
c = 10.795 (2) ÅT = 293 K
α = 88.52 (3)°0.30 × 0.26 × 0.24 mm
β = 64.39 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.007
3764 measured reflections3 standard reflections every 97 reflections
3539 independent reflections intensity decay: 4.2%
2552 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.04910 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
3539 reflectionsΔρmin = 0.16 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6317 (2)0.1930 (2)0.5341 (2)0.0804 (6)
H1A0.72650.20960.52840.096*
C20.6149 (2)0.1927 (2)0.4146 (2)0.0865 (7)
H2A0.69670.20670.33010.104*
C30.4756 (2)0.1714 (3)0.4223 (2)0.0929 (7)
H3A0.46060.17080.34300.111*
C40.3578 (2)0.1509 (2)0.5493 (2)0.0768 (6)
H4A0.26150.13780.55730.092*
C50.3843 (1)0.1499 (1)0.6640 (1)0.0514 (4)
C60.2569 (1)0.1259 (1)0.8040 (1)0.0502 (4)
C70.1855 (1)0.1024 (1)1.0507 (1)0.0462 (3)
H7A0.08840.08081.05250.055*
C80.1686 (2)0.2269 (2)1.1246 (2)0.0614 (4)
H8A0.26610.25501.11430.074*
H8B0.13020.29161.08260.074*
C90.0642 (2)0.2129 (2)1.2753 (2)0.0762 (6)
H9A0.05700.29341.31980.091*
H9B0.03510.18921.28650.091*
C100.1228 (2)0.1118 (2)1.3408 (2)0.0783 (6)
H10A0.05630.10361.43800.094*
H10B0.22090.13721.33160.094*
C110.1345 (2)0.0170 (2)1.2734 (1)0.0643 (4)
H11A0.17690.07911.31440.077*
H11B0.03500.04631.29060.077*
C120.2318 (1)0.0079 (1)1.1189 (1)0.0474 (3)
H12A0.33570.00661.10330.057*
C130.3371 (1)0.2087 (2)1.0052 (1)0.0514 (4)
C140.3090 (2)0.3245 (1)0.9399 (1)0.0510 (4)
C150.4148 (2)0.4191 (2)0.8960 (2)0.0722 (5)
H15A0.50310.41190.90600.087*
C160.3872 (2)0.5250 (2)0.8366 (2)0.0859 (6)
H16A0.45630.59090.80690.103*
C170.2575 (2)0.5313 (2)0.8222 (2)0.0792 (6)
H17A0.23660.60130.78220.095*
C180.1585 (2)0.4327 (2)0.8676 (2)0.0733 (5)
H18A0.07070.43740.85640.088*
N10.2255 (1)0.1265 (1)1.0545 (1)0.0525 (3)
H1B0.14400.14431.04810.063*
N20.2941 (1)0.1181 (1)0.9076 (1)0.0486 (3)
H2B0.38750.12260.88960.058*
N30.5197 (1)0.1708 (1)0.6584 (1)0.0640 (4)
N40.1808 (1)0.3302 (1)0.9272 (1)0.0607 (4)
O10.4577 (1)0.1952 (1)1.0105 (1)0.0872 (4)
O20.1275 (1)0.1167 (2)0.8161 (1)0.0838 (4)
C190.0952 (3)0.5506 (3)1.5290 (3)0.141 (1)
C200.1656 (5)0.4203 (4)1.3235 (4)0.190 (2)
C210.1998 (7)0.4994 (6)1.4153 (6)0.152 (3)0.50
C220.0553 (5)0.5336 (4)1.5667 (5)0.111 (2)0.50
C230.0158 (6)0.3901 (6)1.3510 (6)0.127 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (8)0.122 (2)0.0588 (9)0.0183 (9)0.0174 (7)0.0099 (9)
C20.0641 (9)0.131 (2)0.0513 (9)0.014 (1)0.0136 (8)0.018 (1)
C30.076 (1)0.154 (2)0.0521 (8)0.012 (1)0.0317 (7)0.014 (1)
C40.0575 (8)0.123 (2)0.0535 (8)0.0112 (9)0.0273 (6)0.0087 (9)
C50.0486 (6)0.0579 (8)0.0475 (6)0.0027 (6)0.0205 (5)0.0015 (6)
C60.0444 (6)0.0584 (8)0.0495 (7)0.0040 (6)0.0216 (5)0.0040 (6)
C70.0343 (5)0.0610 (8)0.0427 (6)0.0003 (5)0.0160 (5)0.0039 (6)
C80.0568 (7)0.0574 (9)0.0610 (8)0.0074 (7)0.0168 (6)0.0083 (7)
C90.0687 (9)0.085 (1)0.0610 (9)0.0037 (9)0.0139 (8)0.0223 (8)
C100.0800 (9)0.108 (1)0.0448 (7)0.021 (1)0.0245 (7)0.0128 (8)
C110.0690 (8)0.082 (1)0.0475 (7)0.0127 (8)0.0303 (6)0.0061 (7)
C120.0412 (5)0.0557 (8)0.0493 (6)0.0036 (6)0.0232 (5)0.0031 (6)
C130.0417 (6)0.0596 (8)0.0524 (7)0.0020 (6)0.0198 (5)0.0010 (6)
C140.0487 (6)0.0518 (8)0.0490 (7)0.0022 (6)0.0181 (5)0.0055 (6)
C150.0611 (8)0.063 (1)0.096 (1)0.0067 (7)0.0375 (7)0.0065 (8)
C160.082 (1)0.058 (1)0.117 (1)0.0158 (8)0.041 (1)0.0170 (9)
C170.091 (1)0.0543 (9)0.101 (1)0.0019 (8)0.0489 (9)0.0126 (8)
C180.0756 (8)0.060 (1)0.098 (1)0.0003 (8)0.0499 (8)0.0095 (8)
N10.0441 (5)0.0564 (7)0.0628 (6)0.0033 (5)0.0283 (4)0.0040 (5)
N20.0352 (5)0.0642 (7)0.0449 (5)0.0019 (5)0.0158 (4)0.0008 (5)
N30.0503 (6)0.0889 (9)0.0497 (6)0.0099 (6)0.0187 (5)0.0008 (6)
N40.0577 (6)0.0562 (7)0.0740 (7)0.0003 (5)0.0336 (5)0.0070 (6)
O10.0525 (5)0.0950 (9)0.1252 (9)0.0130 (6)0.0472 (5)0.0385 (7)
O20.0470 (5)0.158 (1)0.0567 (6)0.0147 (6)0.0262 (4)0.0002 (7)
C190.159 (2)0.129 (2)0.151 (2)0.017 (2)0.080 (2)0.065 (2)
C200.239 (4)0.152 (3)0.167 (3)0.036 (3)0.077 (3)0.001 (3)
C210.146 (5)0.152 (5)0.138 (5)0.036 (4)0.041 (4)0.024 (4)
C220.141 (3)0.085 (2)0.068 (2)0.031 (3)0.007 (2)0.028 (2)
C230.152 (4)0.108 (4)0.115 (4)0.034 (3)0.053 (3)0.011 (3)
Geometric parameters (Å, º) top
C1—N31.336 (2)C14—C151.375 (2)
C1—C21.370 (3)C15—C161.383 (3)
C2—C31.365 (3)C16—C171.361 (3)
C3—C41.376 (2)C17—C181.368 (3)
C4—C51.371 (2)C18—N41.335 (2)
C5—N31.335 (2)C19—C211.319 (5)
C5—C61.508 (2)C19—C221.376 (5)
C6—O21.233 (2)C19—C23i1.417 (6)
C6—N21.321 (2)C19—C22i1.519 (7)
C7—N21.457 (2)C20—C22i1.299 (5)
C7—C81.518 (2)C20—C231.417 (6)
C7—C121.528 (2)C20—C211.425 (7)
C8—C91.508 (2)C21—C22i1.401 (8)
C9—C101.507 (3)C22—C20i1.299 (5)
C10—C111.531 (3)C22—C23i1.358 (8)
C11—C121.524 (2)C22—C21i1.401 (8)
C12—N11.455 (2)C22—C19i1.519 (7)
C13—O11.229 (2)C22—C22i1.538 (9)
C13—N11.325 (2)C23—C22i1.358 (8)
C13—C141.506 (2)C23—C19i1.417 (6)
C14—N41.335 (2)
N3—C1—C2123.8 (2)C5—N3—C1116.9 (2)
C3—C2—C1118.6 (2)C14—N4—C18117.0 (1)
C2—C3—C4118.8 (2)C21—C19—C22122.6 (5)
C5—C4—C3119.2 (2)C21—C19—C23i178.0 (5)
N3—C5—C4122.8 (1)C22—C19—C23i58.1 (3)
N3—C5—C6117.3 (1)C21—C19—C22i58.6 (4)
C4—C5—C6119.9 (1)C22—C19—C22i63.9 (3)
O2—C6—N2124.3 (1)C23i—C19—C22i122.1 (4)
O2—C6—C5119.9 (1)C22i—C20—C2359.8 (4)
N2—C6—C5115.8 (1)C22i—C20—C2161.7 (4)
N2—C7—C8110.0 (1)C23—C20—C21121.5 (4)
N2—C7—C12109.9 (1)C19—C21—C22i67.8 (4)
C8—C7—C12112.6 (1)C19—C21—C20122.5 (5)
C9—C8—C7111.8 (1)C22i—C21—C2054.7 (4)
C10—C9—C8109.4 (1)C20i—C22—C23i64.4 (3)
C9—C10—C11111.1 (2)C20i—C22—C19126.8 (5)
C12—C11—C10111.6 (1)C23i—C22—C1962.4 (4)
N1—C12—C11110.6 (1)C20i—C22—C21i63.6 (3)
N1—C12—C7109.3 (1)C23i—C22—C21i128.0 (4)
C11—C12—C7112.1 (1)C19—C22—C21i169.5 (5)
O1—C13—N1124.0 (2)C20i—C22—C19i117.1 (5)
O1—C13—C14120.1 (1)C23i—C22—C19i178.3 (4)
N1—C13—C14115.9 (1)C19—C22—C19i116.1 (3)
N4—C14—C15122.9 (2)C21i—C22—C19i53.5 (3)
N4—C14—C13117.8 (1)C20i—C22—C22i170.6 (7)
C15—C14—C13119.3 (2)C23i—C22—C22i125.0 (6)
C14—C15—C16118.7 (2)C19—C22—C22i62.5 (4)
C17—C16—C15118.9 (2)C21i—C22—C22i107.0 (6)
C16—C17—C18118.8 (2)C19i—C22—C22i53.5 (4)
N4—C18—C17123.7 (2)C22i—C23—C2055.8 (3)
C13—N1—C12124.2 (1)C22i—C23—C19i59.4 (3)
C6—N2—C7123.6 (1)C20—C23—C19i115.2 (5)
Symmetry code: (i) x, y1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N40.862.312.710 (2)108
N1—H1B···O2ii0.862.463.156 (2)138
N2—H2B···N30.862.302.696 (2)108
N2—H2B···O1iii0.862.363.068 (2)140
C4—H4A···O20.932.532.812 (2)98
C7—H7A···O20.982.432.828 (2)104
C8—H8A···O1iii0.972.553.357 (2)140
C11—H11B···O2ii0.972.473.317 (3)145
C12—H12A···O10.982.452.835 (2)103
C15—H15A···O10.932.512.799 (3)98
Symmetry codes: (ii) x, y, z+2; (iii) x+1, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H14N4O2C18H20N4O2·0.5C7H8
Mr318.33370.45
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)12.346 (2), 5.567 (1), 22.578 (6)9.899 (2), 10.492 (2), 10.795 (2)
α, β, γ (°)90, 95.20 (1), 9088.52 (3), 64.39 (3), 89.70 (3)
V3)1545.4 (6)1010.7 (4)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.090.08
Crystal size (mm)0.5 × 0.2 × 0.20.30 × 0.26 × 0.24
Data collection
DiffractometerBruker P4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3821, 2726, 1624 3764, 3539, 2552
Rint0.0780.007
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.03 0.049, 0.173, 1.06
No. of reflections27263539
No. of parameters217263
No. of restraints010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.160.27, 0.16

Computer programs: please provide details, CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997a), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
N1—C11.338 (4)N3—C121.432 (3)
N1—C51.340 (3)N4—C141.324 (3)
N2—C61.356 (3)N4—C181.342 (3)
N2—C71.406 (3)O1—C61.229 (3)
N3—C131.343 (3)O2—C131.222 (3)
C1—N1—C5116.2 (3)O1—C6—N2124.4 (3)
C6—N2—C7128.7 (2)O1—C6—C5120.7 (3)
C13—N3—C12126.7 (2)O2—C13—N3124.9 (2)
C14—N4—C18116.6 (2)O2—C13—C14120.9 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.862.132.840 (3)140
N2—H2B···N10.862.242.673 (4)111
N3—H3B···N40.862.252.674 (3)110
C8—H8A···O10.932.372.898 (4)116
C11—H11A···O2i0.932.453.161 (3)133
Symmetry code: (i) x, y1, z.
Selected geometric parameters (Å, º) for (II) top
C1—N31.336 (2)C12—N11.455 (2)
C5—N31.335 (2)C13—O11.229 (2)
C6—O21.233 (2)C13—N11.325 (2)
C6—N21.321 (2)C14—N41.335 (2)
C7—N21.457 (2)C18—N41.335 (2)
O2—C6—N2124.3 (1)C13—N1—C12124.2 (1)
O2—C6—C5119.9 (1)C6—N2—C7123.6 (1)
O1—C13—N1124.0 (2)C5—N3—C1116.9 (2)
O1—C13—C14120.1 (1)C14—N4—C18117.0 (1)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N40.862.312.710 (2)108
N1—H1B···O2i0.862.463.156 (2)138
N2—H2B···N30.862.302.696 (2)108
N2—H2B···O1ii0.862.363.068 (2)140
C4—H4A···O20.932.532.812 (2)98
C7—H7A···O20.982.432.828 (2)104
C8—H8A···O1ii0.972.553.357 (2)140
C11—H11B···O2i0.972.473.317 (3)145
C12—H12A···O10.982.452.835 (2)103
C15—H15A···O10.932.512.799 (3)98
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds