Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Mo atoms in the title compounds, i.e. triethyl­ammonium cis-tetra­chloro­bis(4-ethyl­pyridine-N)­molybdate(III), cis-(C6H16N)­[MoCl4(C7H9N)2], and trans-tetra­chloro­bis(4-ethyl­pyridine-N)molybdenum(IV), trans-[MoCl4(C7H9N)2], are six-coordinate with octahedral geometry. The Mo atom in the latter complex lies on a site with crystallographic 2/m symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004911/na1469sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004911/na1469Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004911/na1469IIsup3.hkl
Contains datablock II

CCDC references: 147619; 147620

Comment top

[MoX6]3− (X = Cl or Br) reacts with pyridine to give various halopyridine complexes, e.g. [MoX5(py)]2− (py = pyridine, C5H5N; Modec et al., 1998), trans- and cis-[MoX4py2] (Brenčič et al., 1993, 1994), mer-[MoX3py3] (Brenčič, 1974) and trans-[MoX2py4]+ (Brenčič et al., 1996). On partial substitution of the chloro ligands in [MoCl6]3− with 4-ethylpyridine (4-Etpy), both trans and cis geometric isomers of [MoCl4(4-EtPy)2] were obtained. Bromine oxidation of both resulted in a molybdenum(IV) complex with a trans configuration of 4-ethylpyridine ligands suggesting a rearrangement of ligands during the electron transfer. We report here the structures of triethylammonium cis-tetrachlorobis(4-ethylpyridine-N)molybdate(III), (I), and trans-tetrachlorobis(4-ethylpyridine-N)molybdenum(IV), (II).

While many tetrahalodipyridinemetalates(III) with the trans configuration of ligands are known, there are only a few structurally characterized cis isomers, namely cis-NH4[MoCl4(py)2].py·H2O (Leban et al., 1994), cis-NH4[MoBr4(py)2].1/3H2O (Brenčič et al., 1994) and cis-(Et4N)[OsCl4(py)2] (Kolf & Preetz, 1999). Also (PPh4)[MoCl4(bipy)] (Richards et al., 1987), with the bidentate N-donor ligand 2,2'-bipyridine (bipy), displays a similar geometry, with the two N atoms in a cis arrangement. Selected bond lengths and angles for (I) are given in Table 1. Four Cl atoms at distances in the range 2.423 (1)–2.438 (1) Å and two N atoms at distances of 2.196 (2) and 2.206 (4) Å make up the octahedral coordination of the Mo atom. These distances are comparable to those found in related compounds, for example, in cis-NH4[MoCl4(py)2].py·H2O [Mo—Cl 2.423 (2)–2.446 (2) Å and Mo—N 2.202 (5)–2.206 (4) Å; Leban et al., 1994]. Because of the orientation of the aromatic rings, the cis-[MoCl4(4-Etpy)2] complex anion possesses no symmetry element. The dihedral angle between the planes of the two pyridine ligands is 49.8 (2)°. Compound (I) crystallizes in an acentric space group, Pca21, while other cis compounds crystallize as racemic mixtures in centrosymmetric space groups. The N3 atom of the triethylammonium cation is linked via two hydrogen bonds with chlorines from the coordination anion [N3···Cl3 3.482 (4) Å and N3···Cl4 3.449 (4) Å]. High thermal motion was observed for the ethyl C atoms of the 4-ethylpyridine ligand and in the case of C27, a possible disorder over two positions was suggested.

Among the compounds [ZrCl4(py)2] (CSD refcode FUFSOO), [TiCl4(py)2] (GAMGAC), [TaCl4(py)2] (LATVUX), [PtCl4(py)2] (TULFIP) and [WCl4(py)2] (CPYRDW10) [Cambridge Structural Database (CSD), October 1999 release; Allen & Kennard, 1993], not only are they all trans isomers but their structures are isotypic, as shown by a comparison of the unit-cell dimensions. [MIVCl4(py)2] has a C2 h site-group symmetry. The ethyl groups on pyridine in (II) affect the unit-cell dimensions, leaving the overall symmetry of the complex intact. The Mo atom occupies a 2/m special position. The 4-ethylpyridine rings, which lie on a mirror plane, are in an eclipsed configuration. Four Cl atoms are bonded to molybdenum at distances of 2.340 (1) Å and two N atoms at distances of 2.195 (3) Å (Table 3).

Experimental top

To the solution of cis-LH[MoCl4L2] (L= 4-ethylpyridine; 150 mg, 0.268 mmol) in acetonitrile (15 ml), triethylamine (5 ml) and ether (50 ml) were added. The solution was left to stand overnight in the ice bath. Crystals of (I) were obtained in 35% yield (52 mg). Analysis calculated (found) in %: C 43.34 (43.38), H 6.18 (6.31), N 7.58 (7.40). IR data (nujol, cm−1): 3091 (m), 1617 (vvs), 1550 (w), 1315 (w), 1285 (w), 1224 (m), 1207 (w), 1180 (w), 1172 (w), 1153 (w), 1083 (w), 1065 (m), 1054 (w), 1028 (versus), 1009 (w), 976 (w), 845 (vvs), 789 (m), 722 (m), 667 (w), 578 (m), 512 (m), 304 (vvs), 284 (s), 272 (sh). A solution of trans-LH[MoCl4L2] (L = 4-ethylpyridine; 30 mg, 0.0535 mmol) in nitromethane (5 ml) and acetonitrile (5 ml) was placed in a chamber containing bromine fumes. Within a few hours, red crystals of (II) had grown from the solution. Analysis calculated (found) in %: C 37.20 (36.92), H 4.01 (3.90), N 6.20 (6.29). IR data (nujol, cm−1): 1618 (versus), 1549 (w), 1500(m), 1308(m), 1222 (m), 1193 (w), 1063 (versus), 1054 (m), 1030 (versus), 979 (w), 957 (w), 833 (vvs), 792 (m), 780 (w), 767 (w), 721 (m), 702 (w), 669 (w), 561 (w), 497 (s), 430 (w)

Computing details top

Data collection: D*TREK (Molecular Structure Corporation, 1997) for (I); CAD-4 Software (Enraf-Nonius, 1989) for (II). Cell refinement: D*TREK for (I); CAD-4 Software for (II). Data reduction: D*TREK for (I); Xtal3.4 DIFDAT, SORTRF and ADDREF (Hall et al., 1995) for (II). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); Xtal3.4 for (II). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I); Xtal3.4 CRYLSQ for (II). For both compounds, molecular graphics: ORTEPIII (Burnett & Johnson, 1996). Software used to prepare material for publication: Xtal3.4 BONDLA and CIFIO for (II).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are of arbitrary size.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are of arbitrary size.
(I) triethylammonium cis-tetrachlorodi(4-ethylpyridine)molybdenum(III) top
Crystal data top
(C6H16N)[MoCl4(C7H9N)2]F(000) = 1140
Mr = 554.24Dx = 1.433 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 12687 reflections
a = 19.7025 (9) Åθ = 3.8–25.0°
b = 7.766 (2) ŵ = 0.94 mm1
c = 16.7929 (6) ÅT = 293 K
V = 2569.6 (6) Å3Prism, yellow
Z = 40.50 × 0.30 × 0.15 mm
Data collection top
Quantum CCD Rigaku AFC7
diffractometer
5860 independent reflections
Radiation source: fine-focus sealed tube3267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 14.14 pixels mm-1θmax = 26.4°, θmin = 2.6°
ϕ and ω scansh = 023
Absorption correction: empirical (using intensity measurements)
(REQABA; Jacobson, 1997)
k = 88
Tmin = 0.739, Tmax = 0.869l = 1919
18043 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.059Calculated w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4069 reflectionsΔρmax = 0.81 e Å3
253 parametersΔρmin = 0.49 e Å3
1 restraintAbsolute structure: Flack, 1983
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
(C6H16N)[MoCl4(C7H9N)2]V = 2569.6 (6) Å3
Mr = 554.24Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.7025 (9) ŵ = 0.94 mm1
b = 7.766 (2) ÅT = 293 K
c = 16.7929 (6) Å0.50 × 0.30 × 0.15 mm
Data collection top
Quantum CCD Rigaku AFC7
diffractometer
5860 independent reflections
Absorption correction: empirical (using intensity measurements)
(REQABA; Jacobson, 1997)
3267 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.869Rint = 0.041
18043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.81 e Å3
S = 1.03Δρmin = 0.49 e Å3
4069 reflectionsAbsolute structure: Flack, 1983
253 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.130288 (12)0.08905 (4)0.00133 (3)0.02836 (8)
Cl10.16937 (7)0.29341 (17)0.10021 (6)0.0462 (3)
Cl20.07785 (7)0.11467 (17)0.09026 (6)0.0453 (3)
Cl30.17528 (7)0.25470 (18)0.10958 (7)0.0498 (4)
Cl40.23359 (4)0.08283 (13)0.00960 (9)0.0442 (3)
N10.03516 (12)0.2361 (4)0.0038 (3)0.0307 (6)
N20.0874 (2)0.0640 (5)0.0998 (2)0.0311 (10)
C110.03533 (18)0.4079 (5)0.0131 (2)0.0335 (11)
H110.07670.46350.02040.040*
C120.02234 (18)0.5039 (5)0.0123 (3)0.0424 (11)
H120.01960.62200.02070.051*
C130.08537 (15)0.4285 (5)0.0007 (4)0.0446 (9)
C140.08561 (16)0.2503 (6)0.0067 (4)0.0454 (10)
H140.12660.19200.01200.055*
C150.02594 (16)0.1593 (5)0.0048 (3)0.0377 (8)
H150.02760.04000.00950.045*
C160.1502 (2)0.5326 (6)0.0029 (6)0.0778 (14)
H16A0.18680.45950.02170.093*
H16B0.16140.56850.05090.093*
C170.1466 (3)0.6824 (10)0.0528 (5)0.148 (4)
H17A0.10470.74190.04300.178*
H17B0.18400.75740.04100.178*
H17C0.14860.64820.10760.178*
C210.05061 (19)0.0091 (6)0.1583 (2)0.0375 (10)
H210.04580.12830.15900.045*
C220.01970 (19)0.0868 (6)0.2175 (2)0.0389 (10)
H220.00580.03180.25660.047*
C230.0264 (2)0.2627 (6)0.2189 (2)0.0413 (11)
C240.0662 (2)0.3356 (6)0.1595 (2)0.0396 (10)
H240.07320.45400.15880.048*
C250.0950 (2)0.2347 (5)0.1022 (2)0.0382 (10)
H250.12110.28730.06300.046*
C260.0054 (3)0.3696 (7)0.2836 (3)0.0707 (17)
H26A0.04440.30760.30410.085*
H26B0.02700.37990.32690.085*
C270.0269 (5)0.5386 (12)0.2618 (5)0.184 (5)
H27A0.05800.53140.21800.221*
H27B0.01190.60580.24640.221*
H27C0.04890.59230.30630.221*
N30.24771 (19)0.1105 (5)0.1947 (2)0.0506 (11)
H30.22450.04850.15760.061*
C10.3230 (3)0.0911 (8)0.1752 (3)0.0706 (18)
H1A0.34920.14040.21840.085*
H1B0.33280.15750.12760.085*
C20.3455 (3)0.0845 (9)0.1625 (4)0.096 (2)
H2A0.31950.13560.12040.144*
H2B0.39270.08460.14830.144*
H2C0.33920.14960.21060.144*
C30.2262 (3)0.2928 (7)0.1855 (3)0.0664 (15)
H3A0.23680.33020.13180.080*
H3B0.17740.29930.19200.080*
C40.2597 (6)0.4172 (6)0.2446 (5)0.099 (3)
H4A0.30610.43600.22940.149*
H4B0.23580.52490.24430.149*
H4C0.25820.36850.29710.149*
C50.2317 (3)0.0321 (8)0.2742 (3)0.0729 (19)
H5A0.25760.09160.31490.087*
H5B0.24610.08730.27400.087*
C60.1595 (3)0.0395 (11)0.2952 (4)0.099 (3)
H6A0.13300.01050.25320.149*
H6B0.15200.02350.34360.149*
H6C0.14620.15730.30270.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02555 (14)0.03087 (16)0.02867 (13)0.00095 (14)0.0027 (2)0.0027 (2)
Cl10.0407 (7)0.0448 (8)0.0530 (7)0.0041 (6)0.0085 (6)0.0168 (6)
Cl20.0548 (8)0.0461 (8)0.0350 (6)0.0082 (7)0.0019 (6)0.0113 (6)
Cl30.0487 (8)0.0491 (8)0.0517 (7)0.0010 (6)0.0161 (6)0.0127 (6)
Cl40.0324 (4)0.0494 (6)0.0510 (7)0.0105 (5)0.0054 (6)0.0023 (7)
N10.0256 (14)0.0300 (17)0.0365 (15)0.0013 (13)0.005 (2)0.004 (2)
N20.024 (2)0.040 (3)0.0291 (19)0.0062 (18)0.0013 (16)0.0018 (17)
C110.0299 (18)0.036 (2)0.034 (3)0.0079 (19)0.0019 (16)0.004 (2)
C120.037 (2)0.034 (2)0.056 (3)0.0054 (19)0.002 (2)0.001 (2)
C130.0289 (18)0.051 (3)0.0541 (19)0.0081 (18)0.007 (4)0.003 (3)
C140.0255 (18)0.054 (3)0.056 (3)0.0062 (18)0.006 (3)0.003 (4)
C150.0363 (19)0.037 (2)0.0402 (19)0.0078 (17)0.003 (3)0.005 (3)
C160.041 (2)0.065 (3)0.128 (4)0.014 (2)0.012 (6)0.014 (6)
C170.077 (5)0.155 (8)0.213 (9)0.051 (5)0.005 (5)0.079 (7)
C210.035 (2)0.039 (3)0.038 (2)0.005 (2)0.0029 (18)0.006 (2)
C220.033 (2)0.056 (3)0.028 (2)0.001 (2)0.0069 (16)0.003 (2)
C230.040 (2)0.052 (3)0.032 (2)0.010 (2)0.0019 (18)0.005 (2)
C240.048 (3)0.035 (3)0.036 (2)0.001 (2)0.0010 (19)0.004 (2)
C250.044 (3)0.033 (3)0.037 (2)0.008 (2)0.0010 (19)0.007 (2)
C260.088 (4)0.073 (5)0.051 (3)0.020 (3)0.024 (3)0.015 (3)
C270.309 (14)0.143 (9)0.102 (6)0.136 (9)0.056 (7)0.015 (6)
N30.052 (2)0.061 (3)0.039 (2)0.008 (2)0.0134 (18)0.0065 (19)
C10.048 (3)0.099 (5)0.065 (3)0.011 (4)0.016 (3)0.006 (3)
C20.059 (4)0.125 (7)0.104 (5)0.015 (4)0.010 (3)0.053 (5)
C30.084 (4)0.056 (4)0.060 (3)0.012 (3)0.028 (3)0.003 (3)
C40.126 (7)0.055 (3)0.117 (4)0.005 (5)0.065 (4)0.010 (5)
C50.100 (6)0.072 (4)0.047 (3)0.005 (4)0.005 (3)0.006 (3)
C60.058 (4)0.176 (8)0.064 (4)0.005 (5)0.012 (3)0.012 (4)
Geometric parameters (Å, º) top
Mo1—N12.196 (2)C24—C251.365 (6)
Mo1—N22.206 (4)C24—H240.9300
Mo1—Cl12.4226 (12)C25—H250.9300
Mo1—Cl32.4309 (13)C26—C271.427 (9)
Mo1—Cl22.4364 (12)C26—H26A0.9700
Mo1—Cl42.4379 (9)C26—H26B0.9700
N1—C111.343 (4)C27—H27A0.9600
N1—C151.351 (4)C27—H27B0.9600
N2—C251.334 (5)C27—H27C0.9600
N2—C211.346 (5)N3—C31.486 (6)
C11—C121.359 (5)N3—C51.501 (6)
C11—H110.9300N3—C11.527 (6)
C12—C131.390 (5)N3—H30.9100
C12—H120.9300C1—C21.450 (7)
C13—C141.388 (5)C1—H1A0.9700
C13—C161.513 (5)C1—H1B0.9700
C14—C151.372 (5)C2—H2A0.9600
C14—H140.9300C2—H2B0.9600
C15—H150.9300C2—H2C0.9600
C16—C171.435 (9)C3—C41.534 (8)
C16—H16A0.9700C3—H3A0.9700
C16—H16B0.9700C3—H3B0.9700
C17—H17A0.9600C4—H4A0.9600
C17—H17B0.9600C4—H4B0.9600
C17—H17C0.9600C4—H4C0.9600
C21—C221.384 (6)C5—C61.466 (7)
C21—H210.9300C5—H5A0.9700
C22—C231.373 (6)C5—H5B0.9700
C22—H220.9300C6—H6A0.9600
C23—C241.389 (5)C6—H6B0.9600
C23—C261.505 (6)C6—H6C0.9600
N1—Mo1—N288.97 (14)C23—C24—H24119.8
N1—Mo1—Cl187.55 (9)N2—C25—C24123.0 (4)
N2—Mo1—Cl187.76 (11)N2—C25—H25118.5
N1—Mo1—Cl390.36 (11)C24—C25—H25118.5
N2—Mo1—Cl3178.47 (11)C27—C26—C23116.4 (5)
Cl1—Mo1—Cl393.59 (4)C27—C26—H26A108.2
N1—Mo1—Cl287.20 (9)C23—C26—H26A108.2
N2—Mo1—Cl287.75 (10)C27—C26—H26B108.2
Cl1—Mo1—Cl2173.16 (5)C23—C26—H26B108.2
Cl3—Mo1—Cl290.84 (5)H26A—C26—H26B107.3
N1—Mo1—Cl4177.83 (9)C26—C27—H27A109.5
N2—Mo1—Cl488.99 (11)C26—C27—H27B109.5
Cl1—Mo1—Cl493.11 (5)H27A—C27—H27B109.5
Cl3—Mo1—Cl491.66 (5)C26—C27—H27C109.5
Cl2—Mo1—Cl491.98 (5)H27A—C27—H27C109.5
C11—N1—C15116.9 (3)H27B—C27—H27C109.5
C11—N1—Mo1121.2 (2)C3—N3—C5114.8 (4)
C15—N1—Mo1121.8 (2)C3—N3—C1110.4 (4)
C25—N2—C21117.3 (4)C5—N3—C1110.9 (4)
C25—N2—Mo1120.9 (3)C3—N3—H3106.8
C21—N2—Mo1121.7 (3)C5—N3—H3106.8
N1—C11—C12122.8 (3)C1—N3—H3106.8
N1—C11—H11118.6C2—C1—N3114.9 (5)
C12—C11—H11118.6C2—C1—H1A108.5
C11—C12—C13121.2 (4)N3—C1—H1A108.5
C11—C12—H12119.4C2—C1—H1B108.5
C13—C12—H12119.4N3—C1—H1B108.5
C14—C13—C12115.7 (3)H1A—C1—H1B107.5
C14—C13—C16121.9 (3)C1—C2—H2A109.5
C12—C13—C16122.2 (4)C1—C2—H2B109.5
C15—C14—C13120.6 (3)H2A—C2—H2B109.5
C15—C14—H14119.7C1—C2—H2C109.5
C13—C14—H14119.7H2A—C2—H2C109.5
N1—C15—C14122.6 (3)H2B—C2—H2C109.5
N1—C15—H15118.7N3—C3—C4114.2 (4)
C14—C15—H15118.7N3—C3—H3A108.7
C17—C16—C13113.9 (5)C4—C3—H3A108.7
C17—C16—H16A108.8N3—C3—H3B108.7
C13—C16—H16A108.8C4—C3—H3B108.7
C17—C16—H16B108.8H3A—C3—H3B107.6
C13—C16—H16B108.8C3—C4—H4A109.5
H16A—C16—H16B107.7C3—C4—H4B109.5
C16—C17—H17A109.5H4A—C4—H4B109.5
C16—C17—H17B109.5C3—C4—H4C109.5
H17A—C17—H17B109.5H4A—C4—H4C109.5
C16—C17—H17C109.5H4B—C4—H4C109.5
H17A—C17—H17C109.5C6—C5—N3113.7 (5)
H17B—C17—H17C109.5C6—C5—H5A108.8
N2—C21—C22122.3 (4)N3—C5—H5A108.8
N2—C21—H21118.9C6—C5—H5B108.8
C22—C21—H21118.9N3—C5—H5B108.8
C23—C22—C21120.4 (4)H5A—C5—H5B107.7
C23—C22—H22119.8C5—C6—H6A109.5
C21—C22—H22119.8C5—C6—H6B109.5
C22—C23—C24116.6 (4)H6A—C6—H6B109.5
C22—C23—C26121.4 (4)C5—C6—H6C109.5
C24—C23—C26121.9 (5)H6A—C6—H6C109.5
C25—C24—C23120.5 (4)H6B—C6—H6C109.5
C25—C24—H24119.8
(II) trans-tetrachlorodi(4-ethylpyridine)molybdenum(IV) top
Crystal data top
[MoCl4(C7H9N)2]F(000) = 452
Mr = 452.06Dx = 1.715 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 50 reflections
a = 16.1077 (8) Åθ = 10.0–20.1°
b = 7.6691 (4) ŵ = 1.35 mm1
c = 7.1566 (4) ÅT = 293 K
β = 98.012 (4)°Prism, red
V = 875.44 (8) Å30.19 × 0.11 × 0.10 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.6°
Graphite monochromatorh = 2222
ω/2θ scansk = 1010
5116 measured reflectionsl = 1010
1358 independent reflections3 standard reflections every 300 reflections
1114 reflections with > 3σ(I) intensity decay: 0.6%
Refinement top
Refinement on FPrimary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.028H-atom parameters not refined
S = 1.32 w = WF.WS,
where WF(Fo < 20) = (Fo/20)1.5, WF(Fo > 22) = (22/Fo)1, WF(20 < Fo<22) = 1, and WS(sinΘ < 0.48) = (0.48/sinΘ)2.0 WS(sinΘ > 0.56) = (sinΘ/0.56)2.0 WS(0.48 < sinΘ < 0.56) = 1
1114 reflections(Δ/σ)max = 0.001
62 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.53 e Å3
0 constraints
Crystal data top
[MoCl4(C7H9N)2]V = 875.44 (8) Å3
Mr = 452.06Z = 2
Monoclinic, C2/mMo Kα radiation
a = 16.1077 (8) ŵ = 1.35 mm1
b = 7.6691 (4) ÅT = 293 K
c = 7.1566 (4) Å0.19 × 0.11 × 0.10 mm
β = 98.012 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
5116 measured reflections3 standard reflections every 300 reflections
1358 independent reflections intensity decay: 0.6%
1114 reflections with > 3σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.028H-atom parameters not refined
S = 1.32Δρmax = 0.54 e Å3
1114 reflectionsΔρmin = 0.53 e Å3
62 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo0.500000.500000.500000.0265 (3)
Cl0.55020 (5)0.28486 (12)0.31276 (13)0.0422 (6)
N0.6201 (2)0.500000.6875 (5)0.0306 (19)
C10.6944 (3)0.500000.6173 (7)0.038 (3)
C20.7701 (3)0.500000.7319 (7)0.036 (2)
C30.7738 (3)0.500000.9287 (7)0.033 (2)
C40.6972 (3)0.500000.9985 (7)0.043 (3)
C50.6223 (3)0.500000.8759 (7)0.040 (3)
C60.8580 (3)0.500001.0530 (7)0.043 (3)
C70.8538 (3)0.500001.2652 (8)0.049 (3)
H10.691500.500000.465700.03600*
H20.823500.500000.668200.03600*
H40.693700.500001.144400.04300*
H50.564200.500000.925400.04100*
H60.890200.397701.000000.04400*
H710.822900.396801.301800.05200*
H720.911900.500001.329000.05200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo0.0219 (3)0.0341 (3)0.0243 (3)0.000000.0059 (2)0.00000
Cl0.0397 (5)0.0469 (6)0.0412 (6)0.0073 (4)0.0097 (4)0.0103 (4)
N0.0249 (18)0.039 (2)0.028 (2)0.000000.0040 (15)0.00000
C10.028 (2)0.053 (3)0.032 (3)0.000000.008 (2)0.00000
C20.027 (2)0.053 (3)0.030 (3)0.000000.0059 (19)0.00000
C30.027 (2)0.037 (3)0.034 (3)0.000000.0023 (19)0.00000
C40.031 (3)0.066 (4)0.031 (3)0.000000.005 (2)0.00000
C50.033 (2)0.061 (4)0.028 (3)0.000000.005 (2)0.00000
C60.029 (2)0.066 (4)0.031 (3)0.000000.003 (2)0.00000
C70.041 (3)0.070 (4)0.032 (3)0.000000.007 (2)0.00000
Geometric parameters (Å, º) top
Mo—Cl2.3396 (9)C3—C41.394 (7)
Mo—N2.195 (3)C3—C61.515 (6)
Mo—Cli2.3396 (9)C4—C51.389 (6)
Mo—Ni2.195 (3)C4—H41.054 (5)
Mo—Clii2.3396 (9)C5—H51.046 (5)
Mo—Cliii2.3396 (9)C6—C71.529 (8)
N—C11.361 (6)C6—H61.041 (4)
N—C51.344 (6)C6—H6iii1.041 (4)
C1—C21.372 (6)C7—H710.990 (3)
C1—H11.079 (5)C7—H720.982 (5)
C2—C31.401 (7)C7—H71iii0.990 (3)
C2—H21.028 (5)
Cl—Mo—N90.27 (8)C3—C2—H2121.7 (4)
Cl—Mo—Cli90.31 (3)C2—C3—C4116.4 (4)
Cl—Mo—Ni89.73 (8)C2—C3—C6120.0 (4)
Cl—Mo—Clii180.0000C4—C3—C6123.6 (4)
Cl—Mo—Cliii89.69 (3)C3—C4—C5120.5 (5)
N—Mo—Cli89.73 (8)C3—C4—H4121.8 (4)
N—Mo—Ni180.0000C5—C4—H4117.7 (5)
N—Mo—Clii89.73 (8)N—C5—C4122.2 (5)
N—Mo—Cliii90.27 (8)N—C5—H5116.1 (4)
Cli—Mo—Ni90.27 (8)C4—C5—H5121.7 (5)
Cli—Mo—Clii89.69 (3)C3—C6—C7115.1 (4)
Cli—Mo—Cliii180.0000C3—C6—H6103.7 (3)
Ni—Mo—Clii90.27 (8)C3—C6—H6iii103.7 (3)
Ni—Mo—Cliii89.73 (8)C7—C6—H6117.1 (3)
Clii—Mo—Cliii90.31 (3)C7—C6—H6iii117.1 (3)
Mo—N—C1121.3 (3)H6—C6—H6iii97.8 (4)
Mo—N—C5120.8 (3)C6—C7—H71110.9 (3)
C1—N—C5117.9 (4)C6—C7—H72106.9 (5)
N—C1—C2122.3 (5)C6—C7—H71iii110.9 (3)
N—C1—H1117.0 (4)H71—C7—H72111.0 (3)
C2—C1—H1120.7 (5)H71—C7—H71iii106.2 (5)
C1—C2—C3120.7 (4)H72—C7—H71iii111.0 (3)
C1—C2—H2117.7 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula(C6H16N)[MoCl4(C7H9N)2][MoCl4(C7H9N)2]
Mr554.24452.06
Crystal system, space groupOrthorhombic, Pca21Monoclinic, C2/m
Temperature (K)293293
a, b, c (Å)19.7025 (9), 7.766 (2), 16.7929 (6)16.1077 (8), 7.6691 (4), 7.1566 (4)
α, β, γ (°)90, 90, 9090, 98.012 (4), 90
V3)2569.6 (6)875.44 (8)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.941.35
Crystal size (mm)0.50 × 0.30 × 0.150.19 × 0.11 × 0.10
Data collection
DiffractometerQuantum CCD Rigaku AFC7
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(REQABA; Jacobson, 1997)
Tmin, Tmax0.739, 0.869
No. of measured, independent and
observed reflections
18043, 5860, 3267 [I > 2σ(I)]5116, 1358, 1114 [ > 3σ(I)]
Rint0.0410.015
(sin θ/λ)max1)0.6250.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.059, 1.03 0.017, 0.028, 1.32
No. of reflections40691114
No. of parameters25362
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.81, 0.490.54, 0.53
Absolute structureFlack, 1983?
Absolute structure parameter0.03 (4)?

Computer programs: D*TREK (Molecular Structure Corporation, 1997), CAD-4 Software (Enraf-Nonius, 1989), D*TREK, CAD-4 Software, Xtal3.4 DIFDAT, SORTRF and ADDREF (Hall et al., 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Xtal3.4 CRYLSQ, ORTEPIII (Burnett & Johnson, 1996), Xtal3.4 BONDLA and CIFIO.

Selected geometric parameters (Å, º) for (I) top
Mo1—N12.196 (2)Mo1—Cl32.4309 (13)
Mo1—N22.206 (4)Mo1—Cl22.4364 (12)
Mo1—Cl12.4226 (12)Mo1—Cl42.4379 (9)
N1—Mo1—N288.97 (14)Cl1—Mo1—Cl2173.16 (5)
N1—Mo1—Cl187.55 (9)Cl3—Mo1—Cl290.84 (5)
N2—Mo1—Cl187.76 (11)N1—Mo1—Cl4177.83 (9)
N1—Mo1—Cl390.36 (11)N2—Mo1—Cl488.99 (11)
N2—Mo1—Cl3178.47 (11)Cl1—Mo1—Cl493.11 (5)
Cl1—Mo1—Cl393.59 (4)Cl3—Mo1—Cl491.66 (5)
N1—Mo1—Cl287.20 (9)Cl2—Mo1—Cl491.98 (5)
N2—Mo1—Cl287.75 (10)
Selected geometric parameters (Å, º) for (II) top
Mo—Cl2.3396 (9)Mo—N2.195 (3)
Cl—Mo—N90.27 (8)Cl—Mo—Ni89.73 (8)
Cl—Mo—Cli90.31 (3)Cl—Mo—Clii89.69 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds