Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The three zinc sulfate complexes presented herein display three completely different coordination modes, viz tri­aqua(1,10-phenanthroline-N,N′)(sulfato-O)­zinc(II) hydrate, [Zn(SO4)(C12H8N2)(H2O)3]·H2O (octahedral, monomeric), bis(μ-sulfato-O:O′)­bis[(2,9-di­methyl-1,10-phenanthroline-N,N′)­zinc(II)], [Zn2(SO4)2(C14H12N2)2] (tetrahedral, dimeric), and catena-poly­[[di­aqua(2,2′-bipyridyl-N,N′)­zinc(II)]-μ-(sul­fato-O:O′)], [Zn(SO4)(C10H8N2)(H2O)2]n (octahedral, polymeric, twofold crystallographic symmetry). In the first, the sulfate is monodentate, while in the other two it acts as a bidentate bridge between two different Zn centers. There is a variety of sulfate S—O bond lengths, depending on the different coordination conditions and hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004753/na1468sup1.cif
Contains datablocks default, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004753/na1468Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004753/na1468IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004753/na1468IIIsup4.hkl
Contains datablock III

CCDC references: 147614; 147615; 147616

Comment top

The structural study of ZnII complexes results are particularly attractive since, like most d10 metal ions, it has the ability to adopt different ways of coordination solely determined by considerations of size as well as electrostatic and covalent bonding forces alone. Besides, when complexed with N– and O-donor ligands its derivatives have an additional interest since such systems are present in some biological molecules of outstanding interest viz: phospholipase C (Huogh et al., 1989); bovine lens leucine aminopeptidase (Burley et al., 1992); etc.

The eventual presence of sulfate as a ligand is expected to introduce additional flexibility into the ZnII coordination geometry, due to the versatility of the anion in acting either as a monodentate, bidentate or bridging ligand. A search in the Cambridge Structural Database (CSD) confirmed this fact, revealing the existence of 22 reported structures, 14 of which are of a ionic nature and nine constitute real sulfato complexes presenting a variety of coordination modes. In five of them, the anion acts as a simple monodentate ligand, in a diversity of ZnII environments viz: tetrahedral (Andreetti et al., 1968; Greener et al., 1996), square pyramidal (Zhu Zhi-guo et al., 1990) or octahedral (Hanggi et al., 1988; Dubler et al., 1990); in other two compounds it behaves as a O,O' bridge in linear polymeric chains of ZnO6 octahedra (Labadi et al., 1993; Shorsheneva et al., 1994). Finally, in the remaining two it presents a much more complex coordination viz: in µ4-sulfido)-hexakis (µ3-sulfido)-tris(µ3-sulfato)-nonakis(pyridyl)-deca-zinc trihydrate (Ali et al., 1998) it binds to three different Zn centers as a triply monodentate ligand, fulfilling the role of a multiple link in an extremely intricate three-dimensional network, while in catena-[(µ2-4,4'-bipyridyl)-aqua-(µ2-sulfato-O,O',O'')]zinc hemihydrate) (Songping et al., 1998) it links to two different Zn centers, monocordinated to one and bicordinated to the other, also giving rise to a complex structure. Recently, the structure of tetraaqua(1,10-phenanthroline) zinc(II) sulfate hydrate has been reported, in which the anion is not coordinated to the metal (Zhang et al., 1999)

As a part of a general structural work on sulfur oxyanions, we report herein the synthesis and structural determination of three novel ZnII sulfate complexes: triaqua(1,10-phenanthroline-N,N')(sulfato-O)zinc(II) hydrate, (I); di-µ-(sulfato-O:O')bis(2,9-dimethyl-1,10-phenanthroline)zinc(II), (II), whose coordination is unprecedented in the literature, and catena-poly[diaqua(2,2'-bipyridyl-N,N') zinc(II)-µ-(sulfato-O:O')], (III). \sch

The structure of (I) is made up of monomers (Fig. 1) strongly inter-linked by hydrogen bonding. The environment of the cation is octahedral, the bidentate bipy and two aqua molecules occupying the equatorial sites, with a third aqua and one of the sulfate O atoms (the only one involved in direct coordination to the cation) filling the apical sites. There is a strong intramolecular hydrogen bond, between one of the coordinated water molecules (O2W) and a second oxygen from the sulfate anion (O4). The rest of the available H atoms take part in important hydrogen-bonding interactions (Table 1) which give rise to a rather complex three-dimensional structure. The oxygen O4, in particular, is acceptor of three of them, a fact which seems to weaken the S—O4 bond (see below).

In the neocuproine sulfate, (II), the sulfate acts as a O—S—O bridge across two different ZnII nuclei, determining the formation of a dimer (Fig. 2). The cation environment is tetrahedral, the coordination being completed by a bidentate neocuproine. The structure is doubly unique in that it is the first sulfato-bridged zinc(II) dimer reported, and it is the first ZnII complex with a tetrahedral ZnN2O2 environment which includes a bidentate N—Zn—N bite. No hydrogen bonding is present in the structure due to the absence of H donors.

Finally, the bipyridine structure is a polymer made up of ZnN2O4 octahedra, with a twofold axis bisecting the coordination polyhedron through the cation and the central point of the bipy ligand. As a result, only half of the group is independent (Fig. 3). The equatorial plane is similarly defined as the one in (I), but the apical sites are provided by a single oxygen from the sulfate group. The latter anion, in turn, is also bisected by a second twofold axis thus rendering only two O atoms independent: the one involved in coordination to Zn and a second one which takes part in two important hydrogen bonds: an intramolecular one, with one of the two aqua H atoms, H1WA, and an intermolecular one with the remaining hydrogen H1WB.

A systematic analysis of the three structures leads to the conclusion that the S—O bond lengths are quite sensible to the degree of compromise with which the O atoms are involved in any extra interaction, be it coordination or hydrogen bonding. Thus, when coordination is achieved through a mild interaction viz, through the occupation of an apical site in a Jahn Teller distorted octahedra [cases (I) and (III)], the S—O distance hardly departs from average. Instead, when the coordination interaction is strong [case (II)] or the hydrogen bonds in which it takes part are strong and multiple [case of the triple acceptor O4 in (I)] the S—O weakens sensibly, with appreciable lengthening of up to 4–5%.

Experimental top

The three compounds were obtained by diffusion, with a similar setup: this consisted of two vessels, the first one containing an aqueous solution of Zn sulfate [0.050 M in (I) and (II), and 0.025 M in (III)] and the second, a methanolic solution of the corresponding organic ligand. The link between both solutions was achieved though a connecting pipe full of water, and after a rather long time (one to two months) some crystals adequate for X-ray diffraction appeared, usually in the connecting media and far from the original solutions. It was not uncommon to have crystals growing in different sections of the setup, which proved to be the same compounds though displaying quite different habits. The characteristics reported herein are those of the crystals actually measured.

Refinement top

The structures were conventionally solved by direct methods and refined by least squares on F2. Anisotropic displacement factors were applied to non-H atoms. H atoms attached to carbon were idealized and allowed to ride, except those pertaining to the methyl groups, which were also allowed to rotate around the C—C bond. Those attached to oxygen were found in the difference Fourier map and refined with individual isotropic displacement factors.

Computing details top

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: PARST (Nardelli, 1983) and CSD (Allen Kennard, 1993).

Figures top
[Figure 1] Fig. 1. Molecular diagram for (I). Displacement ellipsoids are drawn at a 50% level. Light broken lines depict intermolecular hydrogen-bonding interactions; heavy broken lines, intramolecular ones [symmetry codes: (') 2 − x, 1 − y, 1 − z; (") 1 − x, 1 − y, −z; (*) x, y, 1 + z].
[Figure 2] Fig. 2. Molecular diagram for (II) showing the dimer formed around the symmetry center. Displacement ellipsoids are drawn at a 50% level.
[Figure 3] Fig. 3. Molecular diagram for (III). Note the twofold axis across the coordination polyhedron through the cation. Displacement ellipsoids are drawn at a 50% level. Light broken lines depict intermolecular hydrogen-bonding interactions; heavy broken lines, intramolecular ones. [Symmetry codes: (') −x, y, 1/2 − z; (") x, 1 − y, 1/2 + z; (*) x, y, 1 + z].
(I) Tri-aqua(zinc(II) 1,10-phenanthroline sulfate), hydrate top
Crystal data top
[Zn(SO4)(C12H8N2)(H2O)3]·H2OZ = 2
Mr = 413.70F(000) = 424
Triclinic, P1Dx = 1.757 Mg m3
a = 8.641 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.600 (3) ÅCell parameters from 25 reflections
c = 8.046 (1) Åθ = 7.5–15°
α = 92.11°µ = 1.75 mm1
β = 103.77 (3)°T = 293 K
γ = 92.06°Prismatic, colorless
V = 782.0 (4) Å30.35 × 0.25 × 0.18 mm
Data collection top
Rigaku AFC7S Difractometer
diffractometer
3355 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ω/2θ scansh = 811
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
k = 1515
Tmin = 0.63, Tmax = 0.73l = 1010
4231 measured reflections3 standard reflections every 150 reflections
3591 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom+difmap
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Calculated w = 1/[σ2(Fo2) + (0.037P)2 + 0.496P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.01
3591 reflectionsΔρmax = 0.69 e Å3
251 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.106 (4)
Crystal data top
[Zn(SO4)(C12H8N2)(H2O)3]·H2Oγ = 92.06°
Mr = 413.70V = 782.0 (4) Å3
Triclinic, P1Z = 2
a = 8.641 (3) ÅMo Kα radiation
b = 11.600 (3) ŵ = 1.75 mm1
c = 8.046 (1) ÅT = 293 K
α = 92.11°0.35 × 0.25 × 0.18 mm
β = 103.77 (3)°
Data collection top
Rigaku AFC7S Difractometer
diffractometer
3355 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Rint = 0.026
Tmin = 0.63, Tmax = 0.733 standard reflections every 150 reflections
4231 measured reflections intensity decay: <3%
3591 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.69 e Å3
3591 reflectionsΔρmin = 0.58 e Å3
251 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.75855 (3)0.696082 (17)0.19472 (3)0.02241 (12)
S0.55260 (6)0.65281 (4)0.22243 (6)0.02304 (14)
O10.6041 (2)0.71481 (15)0.3561 (2)0.0407 (4)
O20.37763 (19)0.63521 (14)0.2675 (2)0.0332 (3)
O30.6043 (2)0.71755 (13)0.05536 (19)0.0317 (3)
O40.6233 (2)0.53596 (13)0.2069 (2)0.0310 (3)
N10.7612 (2)0.87486 (15)0.2673 (2)0.0238 (3)
N20.9720 (2)0.76087 (14)0.1332 (2)0.0241 (3)
C10.6520 (3)0.9311 (2)0.3271 (3)0.0332 (5)
H1C0.55830.88860.33940.080*
C20.6696 (3)1.0497 (2)0.3727 (3)0.0402 (6)
H2C0.58691.08790.41130.080*
C30.8053 (3)1.11001 (19)0.3617 (3)0.0383 (6)
H3C0.81981.19070.39530.080*
C40.9235 (3)1.05338 (17)0.3004 (3)0.0297 (5)
C51.0680 (3)1.10968 (19)0.2809 (3)0.0361 (5)
H5A1.09011.18960.31720.080*
C61.1734 (3)1.0531 (2)0.2131 (3)0.0362 (5)
H6A1.26831.09350.19980.080*
C71.1460 (3)0.93304 (19)0.1606 (3)0.0284 (4)
C81.2506 (3)0.8698 (2)0.0862 (3)0.0345 (5)
H8A1.34630.90690.06880.080*
C91.2154 (3)0.7557 (2)0.0387 (3)0.0368 (5)
H9A1.28640.71180.01100.080*
C101.0742 (3)0.70396 (19)0.0640 (3)0.0328 (5)
H10A1.05030.62380.03030.080*
C111.0071 (2)0.87362 (16)0.1809 (2)0.0226 (4)
C120.8932 (3)0.93490 (16)0.2522 (2)0.0232 (4)
O1W0.9181 (2)0.65373 (15)0.4379 (2)0.0309 (3)
H1WA1.003 (4)0.625 (3)0.420 (4)0.045 (8)*
H1WB0.879 (4)0.610 (3)0.485 (4)0.034 (8)*
O2W0.7791 (2)0.52569 (13)0.1176 (2)0.0306 (3)
H2WA0.721 (5)0.523 (4)0.025 (6)0.069 (12)*
H2WB0.735 (4)0.480 (3)0.170 (4)0.040 (8)*
O3W0.5696 (2)0.66139 (14)0.3062 (2)0.0301 (3)
H3WA0.508 (4)0.604 (3)0.273 (4)0.039 (8)*
H3WB0.586 (4)0.670 (3)0.417 (5)0.053 (9)*
O4W0.8039 (2)0.45698 (18)0.5733 (3)0.0387 (4)
H4WA0.736 (5)0.431 (4)0.500 (6)0.070 (13)*
H4WB0.757 (4)0.479 (3)0.641 (5)0.054 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02813 (16)0.01688 (15)0.02337 (15)0.00429 (9)0.01003 (10)0.00420 (9)
S0.0308 (3)0.0210 (2)0.0177 (2)0.00746 (18)0.00866 (18)0.00529 (17)
O10.0604 (11)0.0379 (9)0.0264 (8)0.0204 (8)0.0197 (8)0.0030 (7)
O20.0311 (8)0.0337 (8)0.0341 (8)0.0054 (6)0.0080 (6)0.0026 (6)
O30.0469 (9)0.0250 (7)0.0208 (7)0.0004 (7)0.0050 (6)0.0082 (6)
O40.0385 (8)0.0252 (7)0.0297 (8)0.0012 (6)0.0109 (6)0.0105 (6)
N10.0286 (8)0.0211 (8)0.0218 (8)0.0004 (6)0.0070 (6)0.0032 (6)
N20.0298 (9)0.0183 (7)0.0257 (8)0.0018 (6)0.0105 (7)0.0019 (6)
C10.0371 (12)0.0331 (11)0.0309 (11)0.0049 (9)0.0115 (9)0.0032 (9)
C20.0529 (15)0.0333 (12)0.0376 (12)0.0140 (11)0.0166 (11)0.0051 (10)
C30.0621 (16)0.0214 (10)0.0308 (11)0.0064 (10)0.0100 (11)0.0054 (8)
C40.0447 (12)0.0181 (9)0.0225 (9)0.0020 (8)0.0015 (8)0.0026 (7)
C50.0533 (14)0.0182 (9)0.0309 (11)0.0115 (9)0.0010 (10)0.0030 (8)
C60.0407 (13)0.0290 (11)0.0337 (11)0.0155 (9)0.0009 (9)0.0020 (9)
C70.0301 (10)0.0278 (10)0.0245 (9)0.0076 (8)0.0023 (8)0.0019 (8)
C80.0266 (10)0.0420 (12)0.0346 (11)0.0074 (9)0.0078 (9)0.0050 (9)
C90.0367 (12)0.0396 (12)0.0398 (12)0.0050 (10)0.0198 (10)0.0019 (10)
C100.0382 (12)0.0265 (10)0.0379 (12)0.0021 (9)0.0180 (10)0.0022 (8)
C110.0279 (10)0.0190 (9)0.0193 (8)0.0030 (7)0.0032 (7)0.0004 (7)
C120.0324 (10)0.0180 (8)0.0173 (8)0.0015 (7)0.0029 (7)0.0016 (6)
O1W0.0329 (8)0.0299 (8)0.0311 (8)0.0001 (7)0.0103 (7)0.0006 (6)
O2W0.0427 (9)0.0203 (7)0.0287 (8)0.0035 (6)0.0099 (7)0.0034 (6)
O3W0.0340 (8)0.0313 (8)0.0262 (8)0.0106 (7)0.0123 (6)0.0057 (6)
O4W0.0313 (9)0.0535 (11)0.0320 (9)0.0021 (8)0.0102 (8)0.0047 (8)
Geometric parameters (Å, º) top
Zn—O2W2.076 (2)C4—C51.432 (4)
Zn—O3W2.076 (2)C5—C61.346 (4)
Zn—N12.132 (2)C5—H5A0.9600
Zn—N22.138 (2)C6—C71.435 (3)
Zn—O32.161 (2)C6—H6A0.9600
Zn—O1W2.192 (2)C7—C111.409 (3)
S—O11.461 (2)C7—C81.409 (3)
S—O21.473 (2)C8—C91.367 (4)
S—O31.479 (2)C8—H8A0.9600
S—O41.504 (2)C9—C101.401 (3)
N1—C11.335 (3)C9—H9A0.9601
N1—C121.347 (3)C10—H10A0.9600
N2—C101.333 (3)C11—C121.446 (3)
N2—C111.352 (2)O1W—H1WA0.85 (4)
C1—C21.404 (3)O1W—H1WB0.76 (3)
C1—H1C0.9600O2W—H2WA0.79 (5)
C2—C31.367 (4)O2W—H2WB0.83 (3)
C2—H2C0.9600O3W—H3WA0.83 (3)
C3—C41.408 (3)O3W—H3WB0.87 (4)
C3—H3C0.9600O4W—H4WA0.77 (5)
C4—C121.412 (3)O4W—H4WB0.80 (4)
O2W—Zn—O3W95.17 (7)C3—C4—C12116.9 (2)
O2W—Zn—N1173.89 (7)C3—C4—C5123.8 (2)
O3W—Zn—N190.82 (7)C12—C4—C5119.3 (2)
O2W—Zn—N295.82 (7)C6—C5—C4121.5 (2)
O3W—Zn—N2165.87 (7)C6—C5—H5A119.3
N1—Zn—N278.07 (7)C4—C5—H5A119.2
O2W—Zn—O387.81 (6)C5—C6—C7120.9 (2)
O3W—Zn—O393.44 (7)C5—C6—H6A119.6
N1—Zn—O393.06 (6)C7—C6—H6A119.5
N2—Zn—O395.84 (7)C11—C7—C8117.1 (2)
O2W—Zn—O1W85.53 (7)C11—C7—C6119.5 (2)
O3W—Zn—O1W87.42 (7)C8—C7—C6123.4 (2)
N1—Zn—O1W93.53 (6)C9—C8—C7119.8 (2)
N2—Zn—O1W84.60 (7)C9—C8—H8A120.1
O3—Zn—O1W173.34 (6)C7—C8—H8A120.0
O1—S—O2109.95 (11)C8—C9—C10119.0 (2)
O1—S—O3110.73 (10)C8—C9—H9A120.4
O2—S—O3109.58 (10)C10—C9—H9A120.6
O1—S—O4109.80 (10)N2—C10—C9123.0 (2)
O2—S—O4107.90 (9)N2—C10—H10A118.5
O3—S—O4108.82 (9)C9—C10—H10A118.5
S—O3—Zn138.61 (10)N2—C11—C7123.05 (19)
C1—N1—C12118.20 (18)N2—C11—C12117.42 (18)
C1—N1—Zn128.17 (16)C7—C11—C12119.51 (18)
C12—N1—Zn113.61 (13)N1—C12—C4123.3 (2)
C10—N2—C11118.05 (18)N1—C12—C11117.40 (17)
C10—N2—Zn128.68 (15)C4—C12—C11119.30 (19)
C11—N2—Zn113.18 (13)Zn—O1W—H1WA110 (2)
N1—C1—C2122.4 (2)Zn—O1W—H1WB112 (2)
N1—C1—H1C118.6H1WA—O1W—H1WB108 (3)
C2—C1—H1C118.9Zn—O2W—H2WA101 (3)
C3—C2—C1119.4 (2)Zn—O2W—H2WB112 (2)
C3—C2—H2C120.4H2WA—O2W—H2WB103 (3)
C1—C2—H2C120.2Zn—O3W—H3WA121 (2)
C2—C3—C4119.7 (2)Zn—O3W—H3WB119 (2)
C2—C3—H3C120.1H3WA—O3W—H3WB108 (3)
C4—C3—H3C120.2H4WA—O4W—H4WB102 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4Wi0.86 (4)1.94 (3)2.783 (3)167 (3)
O1W—H1WB···O4W0.76 (3)2.07 (3)2.812 (3)163 (3)
O2W—H2WA···O40.80 (4)1.86 (4)2.647 (2)166 (4)
O2W—H2WB···O2ii0.83 (4)1.92 (3)2.746 (3)174 (3)
O3W—H3WA···O4ii0.83 (3)1.93 (3)2.760 (2)175 (3)
O3W—H3WB···O1iii0.87 (4)1.85 (4)2.708 (2)169 (3)
O4W—H4WA···O2ii0.78 (4)2.00 (4)2.740 (2)159 (4)
O4W—H4WB···O4iii0.80 (4)1.98 (4)2.775 (3)175 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y, z+1.
(II) Bis(zinc(II) 2,9-dimethyl-1,10-phenanthroline sulfate) top
Crystal data top
[Zn2(SO4)2(C14H12N2)2]Z = 1
Mr = 739.37F(000) = 376
Triclinic, P1Dx = 1.785 Mg m3
a = 8.8044 (15) ÅMo Kα radiation, λ = 0.71070 Å
b = 10.4281 (13) ÅCell parameters from 25 reflections
c = 8.7719 (12) Åθ = 7.5–15°
α = 103.738 (12)°µ = 1.96 mm1
β = 99.385 (14)°T = 293 K
γ = 113.357 (11)°Prismatic, colorless
V = 687.70 (17) Å30.40 × 0.28 × 0.20 mm
Data collection top
Rigaku AFC7S Difractometer
diffractometer
2966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω/2θ scansh = 211
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
k = 1313
Tmin = 0.56, Tmax = 0.68l = 1111
4198 measured reflections3 standard reflections every 150 reflections
3175 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom+difmap
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Calculated w = 1/[σ2(Fo2) + (0.054P)2 + 0.43P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.01
3175 reflectionsΔρmax = 0.85 e Å3
202 parametersΔρmin = 0.62 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (4)
Crystal data top
[Zn2(SO4)2(C14H12N2)2]γ = 113.357 (11)°
Mr = 739.37V = 687.70 (17) Å3
Triclinic, P1Z = 1
a = 8.8044 (15) ÅMo Kα radiation
b = 10.4281 (13) ŵ = 1.96 mm1
c = 8.7719 (12) ÅT = 293 K
α = 103.738 (12)°0.40 × 0.28 × 0.20 mm
β = 99.385 (14)°
Data collection top
Rigaku AFC7S Difractometer
diffractometer
2966 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Rint = 0.031
Tmin = 0.56, Tmax = 0.683 standard reflections every 150 reflections
4198 measured reflections intensity decay: <3%
3175 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.85 e Å3
3175 reflectionsΔρmin = 0.62 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.21595 (3)0.17175 (3)0.07365 (3)0.02792 (12)
S0.09980 (7)0.10451 (6)0.20524 (7)0.02828 (15)
O10.0565 (2)0.0814 (2)0.1877 (2)0.0390 (4)
O20.2518 (2)0.0303 (2)0.0824 (2)0.0418 (4)
O30.1149 (3)0.1113 (3)0.3676 (2)0.0502 (5)
O40.0845 (3)0.2345 (2)0.1662 (3)0.0540 (5)
N10.4504 (2)0.3058 (2)0.2464 (2)0.0276 (4)
N20.2461 (2)0.3651 (2)0.0375 (2)0.0282 (4)
C10.5513 (3)0.2696 (3)0.3390 (3)0.0332 (5)
C20.7075 (3)0.3808 (3)0.4549 (3)0.0432 (6)
H2B0.78140.35370.51900.080*
C30.7539 (3)0.5269 (3)0.4768 (3)0.0437 (6)
H3B0.85860.60230.55820.080*
C40.6484 (3)0.5670 (3)0.3797 (3)0.0348 (5)
C50.6882 (4)0.7164 (3)0.3902 (3)0.0419 (6)
H5A0.78910.79640.47230.080*
C60.5860 (4)0.7461 (3)0.2865 (3)0.0424 (6)
H6A0.61530.84720.29570.080*
C70.4342 (3)0.6297 (3)0.1627 (3)0.0350 (5)
C80.3258 (4)0.6532 (3)0.0467 (4)0.0415 (6)
H8A0.35140.75210.04880.080*
C90.1849 (4)0.5351 (3)0.0681 (3)0.0408 (6)
H9A0.11190.55130.14740.080*
C100.1455 (3)0.3890 (3)0.0714 (3)0.0331 (5)
C110.4976 (3)0.4508 (2)0.2631 (3)0.0283 (4)
C120.3884 (3)0.4818 (2)0.1521 (3)0.0288 (4)
C130.4930 (4)0.1087 (3)0.3146 (4)0.0436 (6)
H13A0.38970.07020.34740.052*
H13B0.58200.09670.37980.052*
H13C0.47000.05590.20110.052*
C140.0077 (4)0.2583 (3)0.1956 (3)0.0414 (6)
H14A0.02580.18410.24210.050*
H14B0.05240.28820.28070.050*
H14C0.09530.21830.14400.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02259 (16)0.02048 (16)0.03504 (17)0.00519 (11)0.00683 (11)0.00878 (11)
S0.0235 (3)0.0219 (3)0.0340 (3)0.0061 (2)0.0075 (2)0.0080 (2)
O10.0296 (8)0.0421 (10)0.0547 (10)0.0168 (8)0.0190 (8)0.0267 (8)
O20.0258 (8)0.0331 (9)0.0465 (10)0.0045 (7)0.0087 (7)0.0038 (7)
O30.0382 (10)0.0652 (14)0.0361 (9)0.0147 (10)0.0122 (8)0.0128 (9)
O40.0555 (12)0.0358 (10)0.0812 (15)0.0241 (10)0.0216 (11)0.0300 (10)
N10.0219 (8)0.0229 (8)0.0328 (9)0.0064 (7)0.0068 (7)0.0078 (7)
N20.0279 (9)0.0238 (9)0.0346 (9)0.0105 (7)0.0122 (7)0.0130 (7)
C10.0260 (10)0.0333 (12)0.0380 (11)0.0122 (9)0.0083 (9)0.0111 (9)
C20.0306 (12)0.0452 (15)0.0423 (13)0.0127 (11)0.0002 (10)0.0105 (11)
C30.0296 (12)0.0383 (13)0.0410 (13)0.0035 (10)0.0033 (10)0.0014 (10)
C40.0279 (11)0.0269 (11)0.0365 (11)0.0025 (9)0.0120 (9)0.0041 (9)
C50.0370 (13)0.0235 (11)0.0455 (13)0.0010 (9)0.0157 (11)0.0012 (9)
C60.0480 (15)0.0205 (10)0.0532 (14)0.0063 (10)0.0274 (12)0.0103 (10)
C70.0424 (13)0.0248 (11)0.0430 (12)0.0134 (10)0.0251 (10)0.0148 (9)
C80.0575 (16)0.0314 (12)0.0535 (14)0.0252 (12)0.0328 (13)0.0244 (11)
C90.0515 (15)0.0436 (15)0.0482 (14)0.0308 (13)0.0251 (12)0.0274 (12)
C100.0348 (12)0.0361 (12)0.0385 (11)0.0200 (10)0.0170 (9)0.0183 (10)
C110.0242 (10)0.0225 (10)0.0324 (10)0.0054 (8)0.0118 (8)0.0063 (8)
C120.0297 (10)0.0207 (10)0.0355 (10)0.0084 (8)0.0166 (9)0.0092 (8)
C130.0415 (14)0.0366 (13)0.0527 (15)0.0200 (11)0.0061 (11)0.0157 (11)
C140.0375 (13)0.0462 (15)0.0430 (13)0.0212 (12)0.0072 (10)0.0183 (11)
Geometric parameters (Å, º) top
Zn—O2i1.923 (2)C4—C51.431 (4)
Zn—O11.928 (2)C5—C61.350 (4)
Zn—N22.035 (2)C5—H5A0.9600
Zn—N12.049 (2)C6—C71.433 (4)
S—O41.437 (2)C6—H6A0.9600
S—O31.439 (2)C7—C121.406 (3)
S—O21.499 (2)C7—C81.411 (4)
S—O11.513 (2)C8—C91.364 (4)
N1—C11.329 (3)C8—H8A0.9600
N1—C111.363 (3)C9—C101.413 (3)
N2—C101.332 (3)C9—H9A0.9599
N2—C121.364 (3)C10—C141.491 (4)
C1—C21.410 (3)C11—C121.438 (3)
C1—C131.495 (4)C13—H13A0.9600
C2—C31.367 (4)C13—H13B0.9600
C2—H2B0.9599C13—H13C0.9600
C3—C41.408 (4)C14—H14A0.9600
C3—H3B0.9600C14—H14B0.9600
C4—C111.404 (3)C14—H14C0.9600
O2i—Zn—O1112.96 (8)C4—C5—H5A119.4
O2i—Zn—N2119.61 (8)C5—C6—C7121.4 (2)
O1—Zn—N2121.21 (8)C5—C6—H6A119.5
O2i—Zn—N1105.96 (8)C7—C6—H6A119.2
O1—Zn—N1106.67 (8)C12—C7—C8116.7 (2)
N2—Zn—N183.00 (8)C12—C7—C6119.3 (2)
O4—S—O3113.77 (15)C8—C7—C6124.1 (2)
O4—S—O2110.12 (13)C9—C8—C7119.9 (2)
O3—S—O2109.26 (12)C9—C8—H8A120.2
O4—S—O1108.93 (12)C7—C8—H8A119.9
O3—S—O1109.01 (12)C8—C9—C10120.6 (2)
O2—S—O1105.41 (11)C8—C9—H9A119.7
S—O1—Zn126.04 (11)C10—C9—H9A119.7
S—O2—Zni120.00 (11)N2—C10—C9120.2 (2)
C1—N1—C11120.07 (19)N2—C10—C14118.2 (2)
C1—N1—Zn129.36 (16)C9—C10—C14121.6 (2)
C11—N1—Zn110.55 (15)N1—C11—C4122.5 (2)
C10—N2—C12119.9 (2)N1—C11—C12117.27 (19)
C10—N2—Zn129.53 (16)C4—C11—C12120.2 (2)
C12—N2—Zn110.46 (14)N2—C12—C7122.7 (2)
N1—C1—C2120.3 (2)N2—C12—C11118.13 (19)
N1—C1—C13117.6 (2)C7—C12—C11119.2 (2)
C2—C1—C13122.1 (2)C1—C13—H13A109.5
C3—C2—C1120.3 (2)C1—C13—H13B109.5
C3—C2—H2B119.8H13A—C13—H13B109.5
C1—C2—H2B119.8C1—C13—H13C109.5
C2—C3—C4120.0 (2)H13A—C13—H13C109.5
C2—C3—H3B120.0H13B—C13—H13C109.5
C4—C3—H3B120.0C10—C14—H14A109.5
C11—C4—C3116.7 (2)C10—C14—H14B109.5
C11—C4—C5119.1 (2)H14A—C14—H14B109.5
C3—C4—C5124.2 (2)C10—C14—H14C109.5
C6—C5—C4120.9 (2)H14A—C14—H14C109.5
C6—C5—H5A119.7H14B—C14—H14C109.5
Symmetry code: (i) x, y, z.
(III) Di-aqua(zinc(II) bipyridil sulfate) top
Crystal data top
[Zn(SO4)(C10H8N2)(H2O)2]F(000) = 720
Mr = 353.65Dx = 1.833 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.421 (3) ÅCell parameters from 25 reflections
b = 12.701 (3) Åθ = 7.5–15°
c = 6.694 (1) ŵ = 2.11 mm1
β = 102.13 (3)°T = 293 K
V = 1281.8 (4) Å3Plate, colorless
Z = 40.25 × 0.22 × 0.12 mm
Data collection top
Rigaku AFC7S Difractometer
diffractometer
1099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω/2θ scansh = 020
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
k = 016
Tmin = 0.60, Tmax = 0.78l = 88
1524 measured reflections3 standard reflections every 150 reflections
1473 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom+difmap
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Calculated w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.01
1473 reflectionsΔρmax = 0.37 e Å3
102 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (4)
Crystal data top
[Zn(SO4)(C10H8N2)(H2O)2]V = 1281.8 (4) Å3
Mr = 353.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.421 (3) ŵ = 2.11 mm1
b = 12.701 (3) ÅT = 293 K
c = 6.694 (1) Å0.25 × 0.22 × 0.12 mm
β = 102.13 (3)°
Data collection top
Rigaku AFC7S Difractometer
diffractometer
1099 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Rint = 0.026
Tmin = 0.60, Tmax = 0.783 standard reflections every 150 reflections
1524 measured reflections intensity decay: <3%
1473 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
1473 reflectionsΔρmin = 0.39 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.00000.27590 (3)0.25000.02180 (16)
S0.00000.34307 (7)0.25000.0221 (2)
O10.02369 (16)0.27637 (15)0.0897 (3)0.0337 (5)
O20.07592 (14)0.41057 (15)0.3428 (3)0.0319 (5)
N10.08714 (15)0.14648 (17)0.2239 (3)0.0212 (5)
C10.17580 (19)0.1532 (2)0.1948 (4)0.0281 (6)
H10.20190.21950.18510.034*
C20.2297 (2)0.0655 (3)0.1788 (5)0.0347 (7)
H20.29090.07240.16030.042*
C30.1905 (2)0.0324 (2)0.1908 (5)0.0349 (7)
H30.22520.09290.18030.042*
C40.0994 (2)0.0401 (2)0.2187 (4)0.0287 (6)
H40.07200.10570.22630.034*
C50.04939 (17)0.05134 (19)0.2350 (4)0.0206 (5)
O1W0.09831 (15)0.38539 (15)0.2556 (3)0.0266 (4)
H1WA0.090 (3)0.391 (3)0.371 (4)0.043 (11)*
H1WB0.090 (2)0.438 (2)0.211 (4)0.037 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0244 (3)0.0146 (2)0.0275 (3)0.0000.00815 (18)0.000
S0.0353 (5)0.0153 (4)0.0181 (4)0.0000.0108 (4)0.000
O10.0560 (14)0.0290 (11)0.0175 (10)0.0181 (10)0.0111 (9)0.0009 (8)
O20.0380 (12)0.0280 (11)0.0309 (11)0.0094 (9)0.0101 (10)0.0037 (9)
N10.0252 (12)0.0188 (10)0.0204 (11)0.0021 (9)0.0062 (9)0.0011 (8)
C10.0260 (14)0.0295 (15)0.0291 (15)0.0031 (12)0.0064 (12)0.0030 (12)
C20.0234 (14)0.0470 (17)0.0339 (17)0.0067 (14)0.0062 (13)0.0016 (14)
C30.0377 (16)0.0347 (15)0.0324 (15)0.0166 (14)0.0075 (13)0.0003 (13)
C40.0385 (16)0.0214 (13)0.0261 (14)0.0046 (12)0.0067 (12)0.0015 (11)
C50.0265 (14)0.0195 (12)0.0161 (11)0.0022 (10)0.0049 (10)0.0001 (10)
O1W0.0338 (12)0.0193 (10)0.0272 (11)0.0042 (9)0.0080 (9)0.0032 (9)
Geometric parameters (Å, º) top
Zn—O1Wi2.063 (2)C1—C21.380 (4)
Zn—O1W2.063 (2)C1—H10.9300
Zn—N12.107 (2)C2—C31.378 (5)
Zn—N1i2.107 (2)C2—H20.9300
Zn—O1i2.226 (2)C3—C41.382 (4)
Zn—O12.226 (2)C3—H30.9300
S—O1ii1.472 (2)C4—C51.386 (4)
S—O11.472 (2)C4—H40.9300
S—O2ii1.478 (2)C5—C5i1.494 (5)
S—O21.478 (2)O1W—H1WA0.76 (2)
N1—C51.337 (3)O1W—H1WB0.76 (2)
N1—C11.343 (4)
O1Wi—Zn—O1W95.25 (12)C5—N1—C1118.9 (2)
O1Wi—Zn—N1169.26 (8)C5—N1—Zn115.98 (18)
O1W—Zn—N193.96 (9)C1—N1—Zn125.08 (19)
O1Wi—Zn—N1i93.96 (9)N1—C1—C2122.6 (3)
O1W—Zn—N1i169.26 (8)N1—C1—H1118.7
N1—Zn—N1i77.45 (12)C2—C1—H1118.7
O1Wi—Zn—O1i93.05 (9)C3—C2—C1118.4 (3)
O1W—Zn—O1i86.75 (8)C3—C2—H2120.8
N1—Zn—O1i92.97 (9)C1—C2—H2120.8
N1i—Zn—O1i87.27 (8)C2—C3—C4119.5 (3)
O1Wi—Zn—O186.75 (8)C2—C3—H3120.3
O1W—Zn—O193.05 (9)C4—C3—H3120.3
N1—Zn—O187.27 (8)C3—C4—C5119.0 (3)
N1i—Zn—O192.97 (9)C3—C4—H4120.5
O1i—Zn—O1179.69 (10)C5—C4—H4120.5
O1ii—S—O1109.74 (17)N1—C5—C4121.7 (2)
O1ii—S—O2ii110.12 (13)N1—C5—C5i115.29 (15)
O1—S—O2ii108.87 (11)C4—C5—C5i123.03 (16)
O1ii—S—O2108.87 (11)Zn—O1W—H1WA97 (3)
O1—S—O2110.12 (13)Zn—O1W—H1WB114 (3)
O2ii—S—O2109.11 (17)H1WA—O1W—H1WB108 (2)
S—O1—Zn137.19 (12)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.76 (2)1.90 (3)2.658 (3)177 (3)
O1W—H1WB···O2iv0.76 (3)1.98 (3)2.714 (3)165 (3)
Symmetry codes: (iii) x, y, z+1; (iv) x, y+1, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Zn(SO4)(C12H8N2)(H2O)3]·H2O[Zn2(SO4)2(C14H12N2)2][Zn(SO4)(C10H8N2)(H2O)2]
Mr413.70739.37353.65
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, C2/c
Temperature (K)293293293
a, b, c (Å)8.641 (3), 11.600 (3), 8.046 (1)8.8044 (15), 10.4281 (13), 8.7719 (12)15.421 (3), 12.701 (3), 6.694 (1)
α, β, γ (°)92.11, 103.77 (3), 92.06103.738 (12), 99.385 (14), 113.357 (11)90, 102.13 (3), 90
V3)782.0 (4)687.70 (17)1281.8 (4)
Z214
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.751.962.11
Crystal size (mm)0.35 × 0.25 × 0.180.40 × 0.28 × 0.200.25 × 0.22 × 0.12
Data collection
DiffractometerRigaku AFC7S Difractometer
diffractometer
Rigaku AFC7S Difractometer
diffractometer
Rigaku AFC7S Difractometer
diffractometer
Absorption correctionψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corporation, 1988)
Tmin, Tmax0.63, 0.730.56, 0.680.60, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
4231, 3591, 3355 4198, 3175, 2966 1524, 1473, 1099
Rint0.0260.0310.026
(sin θ/λ)max1)0.6490.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.03 0.033, 0.096, 1.08 0.029, 0.085, 1.02
No. of reflections359131751473
No. of parameters251202102
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.580.85, 0.620.37, 0.39

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), PARST (Nardelli, 1983) and CSD (Allen Kennard, 1993).

Selected bond lengths (Å) for (I) top
Zn—O2W2.076 (2)Zn—O1W2.192 (2)
Zn—O3W2.076 (2)S—O11.461 (2)
Zn—N12.132 (2)S—O21.473 (2)
Zn—N22.138 (2)S—O31.479 (2)
Zn—O32.161 (2)S—O41.504 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4Wi0.86 (4)1.94 (3)2.783 (3)167 (3)
O1W—H1WB···O4W0.76 (3)2.07 (3)2.812 (3)163 (3)
O2W—H2WA···O40.80 (4)1.86 (4)2.647 (2)166 (4)
O2W—H2WB···O2ii0.83 (4)1.92 (3)2.746 (3)174 (3)
O3W—H3WA···O4ii0.83 (3)1.93 (3)2.760 (2)175 (3)
O3W—H3WB···O1iii0.87 (4)1.85 (4)2.708 (2)169 (3)
O4W—H4WA···O2ii0.78 (4)2.00 (4)2.740 (2)159 (4)
O4W—H4WB···O4iii0.80 (4)1.98 (4)2.775 (3)175 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y, z+1.
Selected bond lengths (Å) for (II) top
Zn—O2i1.923 (2)S—O41.437 (2)
Zn—O11.928 (2)S—O31.439 (2)
Zn—N22.035 (2)S—O21.499 (2)
Zn—N12.049 (2)S—O11.513 (2)
Symmetry code: (i) x, y, z.
Selected bond lengths (Å) for (III) top
Zn—O1W2.063 (2)S—O11.472 (2)
Zn—N12.107 (2)S—O2i1.478 (2)
Zn—O12.226 (2)S—O21.478 (2)
S—O1i1.472 (2)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.76 (2)1.90 (3)2.658 (3)177 (3)
O1W—H1WB···O2iii0.76 (3)1.98 (3)2.714 (3)165 (3)
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds