Download citation
Download citation
link to html
The title compound, C13H18N2O2S, crystallizes in the thio­amidic form. The mol­ecules are connected by N—H...S interactions forming dimers with N...S and H...S distances of 3.487 (4) and 2.76 Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001554/na1453sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001554/na1453Isup2.hkl
Contains datablock I

CCDC reference: 144658

Comment top

Among organic sulfur compounds, thioureas and its derivatives are of relevant importance. These compounds have been introduced almost in every branch of chemistry and are commercialized as dyes, photographic films, elastomery plastics and textiles (Chynowet, 1955). In chemical research works they have been thoroughly used as intermediates in the synthesis and characterization of organic compounds and in the separation of branched hydrocarbons in organic mixtures (Gabriele, 1995; Rodriguez et al., 1995). In order to continue these studies we have prepared derivatives of acylthioureas (Rodriguez et al., 1995). The crystal structure of 1-(3-methoxybenzoyl)-3,3-diethylthiourea, (I), has been determined to understand better the role of the anions geometry in the reactivity of alkylation reactions with respect to the substitutes present in nitrogen positions 1 and 3. \sch

The title compound crystallizes in the thioamidic form. The S, C2, N1, C1, O1 moiety deviates extensively from planarity. The torsion angles O1—C1—N1—C2 and C1—N1—C2—S are 0.8 (6) and -123.6 (3)°, respectively. The molecule is stabilized in the s-cisoid, s-transoid conformation with respect to the imino C1—N1—C2. The bond distance C2—N2 has a double-bond character but the bonds distances C2—N1 and C1—N1 correspond to a single bond Csp2—Nsp2. This fact indicates that there is π conjugation only along S—C2—N2 system, but not along O1—C1—N1 and C1—N1—C2 as found in 1-benzoyl-3-n-propylthiourea (Dago et al., 1989) and 1-(4-methoxybenzoyl-3-phenylthiourea (Fajardo et al., 1990). The p atomic orbital of the O2 atom in the methoxy group overlaps with the π system of the phenyl ring, as evidenced by the shortening of the O2—C9 bond distance [1.368 (4) Å]. This also results in the coplanarity of the methoxy group with the phenyl ring C8—C9—O2—C13 = 6.4 (5)°. The diferences in the values of the C10—C9—O2 = 115.5 (3) and C8—C9—O2 = 124.1 (3)° is in agreement with the distortion already observed in anysoles as shown by Domiano et al. (1979). The molecules are held together by N—H···S interactions forming dimers with N1···S and H1···S distances of 3.487 (4) and 2.77 Å, respectively.

Experimental top

The compound was prepared by the reaction of diethylamine with 3-methoxybenzoyl isothiocyanate obtained in situ by a method already published (Rodríguez et al., 1995). Recrystallization from ethanol gave suitable crystals for X-ray analysis.

Refinement top

H atoms were calculated geometrically and included in the refinement, but were restrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed to 1.3 times Ueq of their parent atoms. The C6 atom of the terminal methyl group was located from the ΔF map and found to be disordered; it was placed in two positions (C6A and C6B), with 60% and 40% occupancy, respectively. The H atoms of the disordered C6 atom were not located.

Computing details top

Data collection: DIF4 (Stoe, 1992a); cell refinement: DIF4; data reduction: REDU4 (Stoe, 1992b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Figures top
[Figure 1] Fig. 1. Plot showing the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level for non-H atoms.
1-(3-methoxybenzoyl)-3,3-diethylthiourea top
Crystal data top
C13H18N2O2SZ = 2
Mr = 266.36F(000) = 284
Triclinic, P1Dx = 1.286 Mg m3
a = 7.754 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.949 (8) ÅCell parameters from 25 reflections
c = 11.251 (7) Åθ = 2–50°
α = 78.48 (6)°µ = 0.23 mm1
β = 70.26 (4)°T = 293 K
γ = 70.06 (6)°Prism, colourless
V = 687.6 (8) Å30.61 × 0.57 × 0.34 mm
Data collection top
Stoe STADI4 four-circle difractometer
diffractometer
1803 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
w scansh = 91
Absorption correction: ψ scan
Empirical absorption correction with EMPIR (Stoe, 1992c). Number of ψ scans used = 12
k = 1010
Tmin = 0.833, Tmax = 0.924l = 1313
3005 measured reflections2 standard reflections every 60 min
2423 independent reflections intensity decay: <2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1092P)2 + 0.4967P]
where P = (Fo2 + 2Fc2)/3
2423 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C13H18N2O2Sγ = 70.06 (6)°
Mr = 266.36V = 687.6 (8) Å3
Triclinic, P1Z = 2
a = 7.754 (4) ÅMo Kα radiation
b = 8.949 (8) ŵ = 0.23 mm1
c = 11.251 (7) ÅT = 293 K
α = 78.48 (6)°0.61 × 0.57 × 0.34 mm
β = 70.26 (4)°
Data collection top
Stoe STADI4 four-circle difractometer
diffractometer
1803 reflections with I > 2σ(I)
Absorption correction: ψ scan
Empirical absorption correction with EMPIR (Stoe, 1992c). Number of ψ scans used = 12
Rint = 0.016
Tmin = 0.833, Tmax = 0.9242 standard reflections every 60 min
3005 measured reflections intensity decay: <2.0%
2423 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
2423 reflectionsΔρmin = 0.43 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S0.74460 (13)0.16037 (12)0.60379 (8)0.0603 (3)
O10.8092 (5)0.3950 (3)0.2472 (3)0.0882 (10)
O21.3155 (3)0.1785 (3)0.0247 (2)0.0604 (8)
N10.8533 (4)0.1483 (3)0.3549 (2)0.0443 (8)
N20.5269 (4)0.2641 (3)0.4479 (2)0.0505 (9)
C10.8991 (5)0.2545 (4)0.2497 (3)0.0503 (10)
C20.7000 (4)0.1961 (3)0.4634 (3)0.0410 (9)
C30.3654 (5)0.3419 (5)0.5520 (3)0.0582 (11)
C40.2317 (7)0.2453 (7)0.6192 (4)0.0861 (18)
C50.4813 (7)0.2587 (9)0.3325 (5)0.125 (3)
C6A0.3688 (12)0.3895 (11)0.2816 (8)0.078 (3)*0.605 (17)
C71.0599 (4)0.1869 (4)0.1389 (3)0.0432 (10)
C81.1128 (4)0.0270 (4)0.1178 (3)0.0414 (9)
C91.2539 (4)0.0253 (4)0.0073 (3)0.0470 (10)
C101.3400 (5)0.0800 (5)0.0803 (3)0.0558 (13)
C111.2861 (5)0.2379 (5)0.0586 (3)0.0587 (13)
C121.1457 (5)0.2922 (4)0.0504 (3)0.0527 (11)
C131.2443 (6)0.2940 (5)0.0660 (4)0.0667 (14)
C6B0.3086 (19)0.3050 (16)0.3134 (12)0.080 (5)*0.395 (17)
H3A0.294130.443630.517930.0696*
H3B0.415830.363430.612670.0696*
H4A0.130070.302460.685670.1297*
H4B0.300290.145360.655110.1297*
H4C0.178530.225590.560280.1297*
H5A0.602300.225280.267110.1501*
H5B0.421380.174460.349860.1501*
H81.054670.043450.176760.0497*
H101.434560.043940.154060.0667*
H111.344550.308030.117580.0704*
H121.108560.399080.064610.0632*
H13A1.298080.395710.031880.1008*
H13B1.107070.262770.085970.1008*
H13C1.279420.301940.141560.1008*
H10.921360.049650.353470.0531*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0567 (6)0.0754 (7)0.0347 (5)0.0028 (4)0.0141 (4)0.0129 (4)
O10.106 (2)0.0427 (15)0.0649 (17)0.0050 (15)0.0091 (16)0.0017 (12)
O20.0553 (14)0.0696 (16)0.0484 (14)0.0125 (12)0.0008 (11)0.0246 (12)
N10.0505 (15)0.0398 (13)0.0321 (12)0.0034 (11)0.0062 (11)0.0084 (10)
N20.0464 (16)0.0621 (17)0.0401 (14)0.0045 (13)0.0122 (12)0.0201 (12)
C10.058 (2)0.0440 (18)0.0396 (16)0.0069 (15)0.0096 (15)0.0066 (13)
C20.0472 (17)0.0370 (15)0.0351 (15)0.0092 (13)0.0080 (13)0.0082 (12)
C30.0452 (18)0.074 (2)0.0486 (19)0.0014 (16)0.0119 (15)0.0231 (17)
C40.071 (3)0.118 (4)0.059 (2)0.029 (3)0.007 (2)0.005 (2)
C50.062 (3)0.223 (7)0.078 (3)0.030 (4)0.039 (2)0.086 (4)
C70.0444 (17)0.0498 (18)0.0333 (15)0.0117 (14)0.0124 (13)0.0018 (13)
C80.0385 (16)0.0518 (18)0.0308 (14)0.0117 (13)0.0086 (12)0.0028 (12)
C90.0387 (16)0.065 (2)0.0360 (15)0.0100 (15)0.0106 (13)0.0119 (14)
C100.0409 (17)0.086 (3)0.0341 (16)0.0186 (17)0.0036 (14)0.0053 (16)
C110.052 (2)0.080 (3)0.0445 (18)0.0305 (19)0.0133 (16)0.0112 (17)
C120.059 (2)0.057 (2)0.0450 (18)0.0219 (16)0.0191 (16)0.0039 (15)
C130.072 (3)0.060 (2)0.065 (2)0.0117 (19)0.015 (2)0.0223 (19)
Geometric parameters (Å, º) top
S—C21.676 (4)C10—C111.377 (6)
O1—C11.212 (4)C11—C121.379 (5)
O2—C91.368 (4)C6B—H5B1.2852
O2—C131.415 (5)C3—H3B0.9696
N1—C11.388 (4)C3—H3A0.9704
N1—C21.403 (4)C4—H4A0.9601
N2—C21.327 (5)C4—H4B0.9604
N2—C31.471 (5)C4—H4C0.9599
N2—C51.470 (6)C5—H5A0.9702
N1—H10.8604C5—H5B0.9701
C1—C71.487 (5)C8—H80.9303
C6B—C51.338 (17)C10—H100.9300
C3—C41.488 (7)C11—H110.9296
C5—C6A1.354 (12)C12—H120.9303
C7—C121.388 (5)C13—H13B0.9600
C7—C81.393 (5)C13—H13C0.9597
C8—C91.388 (5)C13—H13A0.9603
C9—C101.385 (5)
S···N1i3.487 (4)C7···H13Biv3.0765
S···C8i3.581 (5)C8···H13C2.7804
S···H3B2.5596C8···H13B2.7046
S···H1i2.7627C8···H12.5741
S···H8i3.1728C10···H4Bviii3.0166
O1···N22.935 (5)C11···H13Biv3.0956
O1···C52.979 (8)C12···H13Biv2.9681
O1···C6A3.321 (12)C13···H82.5243
O1···C3ii3.219 (6)H1···H82.0979
O2···C11iii3.368 (6)H1···C82.5741
O2···C5iv3.395 (7)H1···Si2.7627
O1···H122.5331H3A···C6A2.6312
O1···H5A2.4928H3A···C6B2.7781
O1···H11v2.8419H3B···O1ii2.6709
O1···H3Bii2.6709H3B···S2.5596
O2···H5Aiv2.6683H4B···C10ix3.0166
N1···Si3.487 (4)H4B···H10ix2.5699
N2···O12.935 (5)H4C···H5B2.4887
N1···H82.6138H4C···C52.8765
N1···H5A2.3131H4C···C6B2.6544
C1···C53.042 (8)H5A···O12.4928
C6B···C43.252 (14)H5A···N12.3131
C3···O1ii3.219 (6)H5A···C12.3428
C4···C6B3.252 (14)H5A···O2iv2.6683
C5···O2iv3.395 (7)H5B···H4C2.4887
C5···O12.979 (8)H5B···C42.9780
C5···C13.042 (8)H8···N12.6138
C6A···C13vi3.437 (10)H8···C132.5243
C6A···O13.321 (12)H8···H12.0979
C8···C9iv3.579 (6)H8···Si3.1728
C8···Si3.581 (5)H8···H13B2.2444
C9···C10iii3.371 (6)H8···H13C2.3864
C9···C8iv3.579 (6)H10···H4Bviii2.5699
C10···C9iii3.371 (6)H11···O1v2.8419
C10···C10iii3.323 (6)H12···O12.5331
C11···O2iii3.368 (6)H12···H12v2.5963
C13···C6Avii3.437 (10)H13B···C82.7046
C1···H5A2.3428H13B···C12iv2.9681
C6B···H4C2.6544H13B···H82.2444
C6B···H3A2.7781H13B···C7iv3.0765
C4···H5B2.9780H13B···C11iv3.0956
C5···H4C2.8765H13C···C6Avii2.8779
C6A···H3A2.6312H13C···C82.7804
C6A···H13Cvi2.8779H13C···H82.3864
C9—O2—C13117.8 (3)H3A—C3—H3B107.69
C1—N1—C2122.3 (3)N2—C3—H3B108.83
C2—N2—C3120.2 (3)C3—C4—H4A109.49
C2—N2—C5123.4 (3)C3—C4—H4B109.46
C3—N2—C5116.3 (4)H4A—C4—H4B109.44
C1—N1—H1118.81H4A—C4—H4C109.48
C2—N1—H1118.84C3—C4—H4C109.52
O1—C1—N1121.5 (3)H4B—C4—H4C109.44
O1—C1—C7121.6 (3)N2—C5—H5B107.12
N1—C1—C7116.9 (3)C6A—C5—H5A107.10
S—C2—N1118.6 (3)N2—C5—H5A107.11
N1—C2—N2117.2 (3)H5A—C5—H5B106.77
S—C2—N2124.2 (2)C6B—C5—H5A124.55
N2—C3—C4113.6 (4)C6A—C5—H5B107.09
N2—C5—C6B128.0 (7)C6B—C5—H5B65.41
N2—C5—C6A120.9 (6)C9—C8—H8120.60
C8—C7—C12120.6 (3)C7—C8—H8120.60
C1—C7—C8121.8 (3)C9—C10—H10119.87
C1—C7—C12117.4 (3)C11—C10—H10119.87
C7—C8—C9118.8 (3)C12—C11—H11119.91
O2—C9—C10115.5 (3)C10—C11—H11119.93
C8—C9—C10120.4 (3)C7—C12—H12120.10
O2—C9—C8124.1 (3)C11—C12—H12120.10
C9—C10—C11120.3 (3)O2—C13—H13B109.45
C10—C11—C12120.2 (3)O2—C13—H13C109.51
C7—C12—C11119.8 (3)O2—C13—H13A109.44
C5—C6B—H5B43.34H13A—C13—H13C109.48
N2—C3—H3A108.80H13B—C13—H13C109.50
C4—C3—H3A108.83H13A—C13—H13B109.45
C4—C3—H3B108.89
C13—O2—C9—C86.4 (5)N1—C1—C7—C824.6 (5)
C13—O2—C9—C10174.8 (4)O1—C1—C7—C1220.9 (6)
C2—N1—C1—C7177.5 (3)O1—C1—C7—C8153.7 (4)
C1—N1—C2—S123.6 (3)N1—C1—C7—C12160.9 (4)
C2—N1—C1—O10.8 (6)C1—C7—C8—C9174.9 (3)
C1—N1—C2—N257.9 (4)C1—C7—C12—C11175.4 (4)
C2—N2—C3—C4103.2 (4)C8—C7—C12—C110.8 (6)
C5—N2—C2—N114.4 (5)C12—C7—C8—C90.6 (5)
C2—N2—C5—C6A138.2 (6)C7—C8—C9—C100.1 (5)
C5—N2—C2—S164.1 (4)C7—C8—C9—O2178.9 (3)
C5—N2—C3—C473.3 (5)O2—C9—C10—C11178.8 (4)
C3—N2—C2—N1169.5 (3)C8—C9—C10—C110.1 (6)
C3—N2—C2—S12.1 (4)C9—C10—C11—C120.1 (6)
C3—N2—C5—C6A45.5 (8)C10—C11—C12—C70.6 (6)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+3, y, z; (iv) x+2, y, z; (v) x+2, y+1, z; (vi) x1, y+1, z; (vii) x+1, y1, z; (viii) x+1, y, z1; (ix) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Si0.862.763.487 (4)143
C3—H3B···S0.972.563.024 (5)109
C5—H5A···O10.972.492.979 (8)111
C5—H5A···N10.972.312.794 (8)110
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H18N2O2S
Mr266.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.754 (4), 8.949 (8), 11.251 (7)
α, β, γ (°)78.48 (6), 70.26 (4), 70.06 (6)
V3)687.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.61 × 0.57 × 0.34
Data collection
DiffractometerStoe STADI4 four-circle difractometer
diffractometer
Absorption correctionψ scan
Empirical absorption correction with EMPIR (Stoe, 1992c). Number of ψ scans used = 12
Tmin, Tmax0.833, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
3005, 2423, 1803
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.184, 1.03
No. of reflections2423
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.43

Computer programs: DIF4 (Stoe, 1992a), DIF4, REDU4 (Stoe, 1992b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996), PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Selected geometric parameters (Å, º) top
S—C21.676 (4)N1—C21.403 (4)
O1—C11.212 (4)N2—C21.327 (5)
O2—C91.368 (4)N2—C31.471 (5)
O2—C131.415 (5)N2—C51.470 (6)
N1—C11.388 (4)
C9—O2—C13117.8 (3)S—C2—N1118.6 (3)
C1—N1—C2122.3 (3)N1—C2—N2117.2 (3)
C2—N2—C3120.2 (3)S—C2—N2124.2 (2)
C2—N2—C5123.4 (3)N2—C3—C4113.6 (4)
C3—N2—C5116.3 (4)O2—C9—C10115.5 (3)
O1—C1—N1121.5 (3)O2—C9—C8124.1 (3)
C13—O2—C9—C86.4 (5)C2—N1—C1—O10.8 (6)
C1—N1—C2—S123.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Si0.862.763.487 (4)143
C3—H3B···S0.972.563.024 (5)109
C5—H5A···O10.972.492.979 (8)111
C5—H5A···N10.972.312.794 (8)110
Symmetry code: (i) x+2, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds