Download citation
Download citation
link to html
Ammonium N-acetyl-L-threoninate, NH4+·C6H10NO4-, and methyl­ammonium N-acetyl-L-threoninate, CH6N+·­C6H10NO4-, crystallize in the orthorhombic P212121 and monoclinic P21 space groups, respectively. The two crystals present the same packing features consisting of infinite ribbons of screw-related N-acetyl-L-threoninate anions linked together through pairs of hydrogen bonds. The cations interconnect neighbouring ribbons of anions involving all the nitrogen-H atoms in three-dimensional networks of hydrogen bonds. The hydrogen-bond patterns include asymmetric `three-centred' systems. In both structures, the Thr side chain is in the favoured (g-g+) conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001268/na1450sup1.cif
Contains datablocks text, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001268/na1450Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001268/na1450IIsup3.hkl
Contains datablock 2

CCDC references: 144655; 144656

Comment top

Detailed investigations of the crystal structures of amino acid and oligopeptide derivatives are a useful step to arrive at the conformational preferences of polypeptide chains in proteins.

Threonine (threo-α-amino-β-hydroxy-n-butyric acid) is an important amino acid necessary for the human diet and a significant constituent of many common proteins (egg albumin and lactalbumin, bovine and human serum albumin, casein, insulin, hemoglobin). Thr is among the ammino acids with polar side chains that can favour, by means of intrachain hydrogen bonds, the arrangement of β-turn and β-sheet structures enhancing the folding of globular proteins.

As part of our ongoing researches concerning crystallographic, conformational and thermodynamic studies of solid N-acetyl derivatives of several aminoacids and peptides (Puliti et al., 1996, 1997, 1998, and references therein), we present here the crystal structures of the title salts, (I) and (II). \sch

In the two structures, the geometry and conformation of the N-acetyl-L-threoninate moieties do not present any significant discrepancy (Tables 1 and 3): the corresponding bond lengths and angles differ within three times the s.u.'s. All the values are in the expected ranges (Sequeira et al., 1981; Ashida et al., 1987; Engh & Huber, 1991). The geometry of carboxyl groups is typical of an ionized form (Parthasarathy et al., 1974): the asymmetry between the two C—O distances and O—C—C angles can be ascribed to the different hydrogen-bonding patterns involving the two carboxylic O atoms (see Tables 2 and 4). In fact, O2 is more strongly involved in hydrogen-bond interactions in comparison with O1 that shows the shorter distance and the larger angle. In both structures, the acetyl group is oriented to make an almost planar five-membered cyclic system, C1—H3···O3—C3—N1. In this way, an intramolecular C—H···O interaction is formed between the activated C1—H3 group and O3 oxygen (Taylor & Kennard, 1982). Figs. 1 and 2 show perspective views of the asymmetric units of crystals of (I) and (II), respectively, together with the used labelling schemes for non hydrogen atoms.

The side-chain conformation of Thr residue can be described by the torsion angles χ1,1 (N1—C1—C5—C6) and χ1,2 (N1—C1—C5—O4) and is (g-g+) type in both structures (Tables 1 and 3). This conformation with the hydroxyl group in gauche+ conformation dominates over the (tg-) one in peptide structures (Benedetti et al., 1983; Doi et al. 1993; Banumathi et al., 1999) and is the most favoured according to conformational energy calculations (Vasquez et al., 1983).

The two packings present strict analogies and are ruled by three-dimensional networks of hydrogen bonds which involve all the donor groups. A view of the packing of (I) is shown in Fig. 3. The N-acetyl-L-threoninate ions, related by screw symmetry along the a axis, are linked through two hydrogen bonds (O4—H···O2 and N1—H···O4) forming infinite ribbons parallel to the a direction. The NH4+ cations at the distance 4.408 (2) Å alternate with chains of anions. All the ammonium H atoms are involved in a three-dimensional network of hydrogen bonds that interconnects screw related Thr- ions of neighbouring ribbons. In particular, the N2—H12 is involved in an asymmetric 'three-centered' hydrogen-bond system with O1 and O2 as acceptors: the last one corresponding to the weaker component (Taylor et al., 1984; Jeffrey & Saenger, 1991). Details of the hydrogen-bond geometry are reported in Table 2. The shortest methyl-methyl distance is C4···C6(1 - x,1/2 + y,1/2 - z) = 3.811 (4) Å.

Fig. 4 presents the packing of structure (II) projected along the b direction. Also in this crystal, pairs of hydrogen bonds (O4—H···O2 and N1—H···O4) link together the Thr- moieties, related by screw symmetry, forming infinite ribbons of anions that wind parallel to the b direction. These ribbons alternate with methylammonium cations whose nitrogen H atoms are all involved in hydrogen-bond interactions (Table 4). In this structure there are two asymmetric 'three-centered' hydrogen bonds, both involving N2 as donor, one is formed by H12 with the acceptors O1 and O4 (weaker component), the other by H13 that is shared between the O2 carboxylic and the O3 acetylic (weaker) of different Thr- moieties (Table 4). The shortest distance between methylammonium N atoms is 4.480 (3) Å and the ones concerning methyl carbons are C4···C6(x,y - 1,z) = 3.956 (5) and C6···C7(x - 1,y,z) = 3.805 (6) Å.

Experimental top

The compounds (I) and (II) were obtained as secondary products during ammonolysis of the N-acetyl-L-threonine ethyl ester, using NH3 or CH3—NH2 in cold ethanol (Lilley, 1988; Sijpkes, 1990) with the primary goal to prepare the N-acetyl-L-threoninamide or -threoninmethylamide. After purification of the products, single crystals of (I) and (II) were obtained by slow evaporation from methylethylketone-ethylacetate solutions. The samples of (II) were sealed in glass capillaries with a small amount of mother solution because they are unstable in air at room temperature.

Refinement top

Systematic absences and intensity statistics led to the unique assignment of the space group P212121 for (I) and P21 for (II).

Both structures were solved using SIR92 package (Altomare et al., 1993). All H atoms were clearly observed in difference Fourier maps and included, with expected geometry, in the final refinements as fixed atoms with Biso set equal to Beq of the parent atom. All calculations were performed using SDP software (Enraf–Nonius, 1985) on a MicroVAX 3100 computer. The absolute configuration was chosen on the basis of the known configuration of the ethyl ester used in the synthesis.

Computing details top

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of (I) with the atomic labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the asymmetric unit of (II) with the atomic labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Crystal packing of (I) along the b direction. Dashed lines indicate hydrogen bonds.
[Figure 4] Fig. 4. Crystal packing of (II) projected onto the ac plane. Dashed lines indicate hydrogen bonds.
(I) N-acetyl-L-threoninate ammonium top
Crystal data top
NH4+·C6H10NO4F(000) = 384.0
Mr = 178.19Dx = 1.246 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54056 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.025 (1) Åθ = 29–32°
b = 8.0689 (4) ŵ = 0.89 mm1
c = 16.754 (2) ÅT = 293 K
V = 949.7 (2) Å3Prism, colourless
Z = 40.34 × 0.23 × 0.21 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.036
Radiation source: monochromatedθmax = 75.5°
Graphite monochromatorh = 28
ω–2θ scans as suggested by peak–shape analysisk = 210
1478 measured reflectionsl = 221
1165 independent reflections4 standard reflections every 120 min
1154 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F1/[σ2(Fo) + (0.02Fo)2 + 4] (Killean & Lawrence, 1969)
Least-squares matrix: full(Δ/σ)max = 0.003
R[F2 > 2σ(F2)] = 0.036Δρmax = 0.18 e Å3
wR(F2) = 0.044Δρmin = 0.15 e Å3
S = 0.96Extinction correction: Stout & Jensen (1968)
1154 reflectionsExtinction coefficient: 3.23 (4) x 10-5
111 parametersAbsolute structure: Rogers (1981)
H-atom parameters not refinedRogers parameter: 0.927 (4)
Crystal data top
NH4+·C6H10NO4V = 949.7 (2) Å3
Mr = 178.19Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.025 (1) ŵ = 0.89 mm1
b = 8.0689 (4) ÅT = 293 K
c = 16.754 (2) Å0.34 × 0.23 × 0.21 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.036
1478 measured reflections4 standard reflections every 120 min
1165 independent reflections intensity decay: 3%
1154 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters not refined
wR(F2) = 0.044Δρmax = 0.18 e Å3
S = 0.96Δρmin = 0.15 e Å3
1154 reflectionsAbsolute structure: Rogers (1981)
111 parametersRogers parameter: 0.927 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2585 (2)0.5753 (2)0.4578 (1)0.0584 (5)
O20.0464 (2)0.5101 (2)0.4570 (1)0.0539 (5)
O30.3314 (3)0.2943 (3)0.23530 (8)0.0745 (6)
O40.1444 (2)0.1655 (2)0.50359 (8)0.0434 (4)
N10.3656 (2)0.3157 (2)0.36790 (9)0.0372 (4)
C10.1630 (3)0.3341 (3)0.3841 (1)0.0353 (5)
C20.1243 (3)0.4854 (3)0.4368 (1)0.0387 (5)
C30.4334 (3)0.2950 (3)0.2947 (1)0.0445 (6)
C40.6468 (3)0.2696 (4)0.2889 (1)0.0630 (9)
C50.0798 (3)0.1783 (3)0.4232 (1)0.0381 (5)
C60.1176 (4)0.0211 (3)0.3764 (2)0.0585 (7)
N20.1234 (2)0.7942 (2)0.57657 (9)0.0386 (4)
H10.261520.107320.507700.0434*
H20.452350.318710.411370.0372*
H30.097400.351040.330380.0353*
H40.688550.280830.230850.0630*
H50.714660.356680.322660.0630*
H60.680830.154250.309310.0630*
H70.064610.191260.423180.0381*
H80.067780.034590.319590.0585*
H90.260480.001250.374880.0585*
H100.050050.075960.403220.0585*
H110.006580.851630.569610.0386*
H120.130950.705830.539220.0386*
H130.226540.868350.568220.0386*
H140.129680.750880.629240.0386*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0370 (7)0.0582 (8)0.0800 (10)0.0072 (7)0.0098 (8)0.0239 (8)
O20.0307 (6)0.0505 (8)0.0805 (10)0.0050 (7)0.0163 (7)0.0043 (9)
O30.0521 (9)0.1408 (17)0.0306 (6)0.0127 (13)0.0005 (7)0.0098 (10)
O40.0346 (6)0.0572 (8)0.0383 (6)0.0055 (7)0.0031 (6)0.0041 (7)
N10.0259 (6)0.0540 (9)0.0318 (6)0.0030 (8)0.0003 (6)0.0023 (7)
C10.0237 (7)0.0500 (10)0.0324 (8)0.0030 (8)0.0007 (7)0.0015 (8)
C20.0298 (8)0.0415 (9)0.0447 (9)0.0009 (9)0.0059 (9)0.0026 (8)
C30.0379 (9)0.0607 (11)0.0348 (8)0.0027 (11)0.0056 (8)0.0042 (10)
C40.0355 (10)0.0990 (19)0.0545 (11)0.0043 (14)0.0139 (10)0.0019 (14)
C50.0280 (8)0.0454 (9)0.0410 (9)0.0000 (8)0.0014 (8)0.0044 (9)
C60.0584 (13)0.0513 (12)0.0657 (13)0.0010 (13)0.0040 (13)0.0148 (11)
N20.0355 (7)0.0432 (8)0.0370 (7)0.0012 (8)0.0007 (7)0.0004 (7)
Geometric parameters (Å, º) top
O1—C21.240 (3)C4—H41.020
O2—C21.262 (2)C4—H51.020
O3—C31.227 (2)C4—H61.020
O4—C51.425 (2)C5—C61.515 (3)
O4—H10.950C5—H71.020
N1—C11.457 (2)C6—H81.020
N1—C31.326 (2)C6—H91.020
N1—H20.950C6—H101.020
C1—C21.531 (3)N2—H110.950
C1—C51.533 (3)N2—H120.950
C1—H31.020N2—H130.950
C3—C41.516 (3)N2—H140.950
O1···O43.488 (2)O3···C53.730 (3)
O1···C33.754 (3)O3···C63.564 (3)
O2···O43.183 (2)C3···C63.418 (3)
C5—O4—H1112.3H4—C4—H6109.5
C1—N1—C3122.4 (2)H5—C4—H6109.5
C1—N1—H2118.8O4—C5—C1110.0 (2)
C3—N1—H2118.8O4—C5—C6111.9 (2)
N1—C1—C2111.2 (2)O4—C5—H7108.9
N1—C1—C5111.6 (2)C1—C5—C6113.5 (2)
N1—C1—H3106.9C1—C5—H7107.2
C2—C1—C5109.8 (2)C6—C5—H7105.1
C2—C1—H3108.8C5—C6—H8109.5
C5—C1—H3108.3C5—C6—H9109.5
O1—C2—O2123.6 (2)C5—C6—H10109.5
O1—C2—C1119.7 (2)H8—C6—H9109.5
O2—C2—C1116.7 (2)H8—C6—H10109.5
O3—C3—N1122.8 (2)H9—C6—H10109.5
O3—C3—C4121.7 (2)H11—N2—H12109.5
N1—C3—C4115.6 (2)H11—N2—H13109.5
C3—C4—H4109.5H11—N2—H14109.5
C3—C4—H5109.5H12—N2—H13109.5
C3—C4—H6109.5H12—N2—H14109.5
H4—C4—H5109.5H13—N2—H14109.5
H1—O4—C5—C188.4 (2)C2—C1—C5—O451.7 (2)
H1—O4—C5—C638.7 (2)C2—C1—C5—C6177.9 (2)
H1—O4—C5—H7154.4 (2)C2—C1—C5—H766.5 (2)
C3—N1—C1—C2129.8 (2)H3—C1—C5—O4170.4 (2)
C3—N1—C1—C5107.1 (2)H3—C1—C5—C663.3 (2)
C3—N1—C1—H311.2 (3)H3—C1—C5—H752.2 (2)
H2—N1—C1—C250.2 (2)O3—C3—C4—H413.4 (3)
H2—N1—C1—C572.9 (2)O3—C3—C4—H5133.4 (2)
H2—N1—C1—H3168.8 (2)O3—C3—C4—H6106.6 (3)
C1—N1—C3—O32.1 (3)N1—C3—C4—H4167.4 (2)
C1—N1—C3—C4177.2 (2)N1—C3—C4—H547.4 (3)
H2—N1—C3—O3177.9 (2)N1—C3—C4—H672.6 (3)
H2—N1—C3—C42.8 (3)O4—C5—C6—H8179.2 (2)
N1—C1—C2—O11.9 (3)O4—C5—C6—H960.8 (3)
N1—C1—C2—O2177.6 (2)O4—C5—C6—H1059.2 (3)
C5—C1—C2—O1126.0 (2)C1—C5—C6—H855.6 (3)
C5—C1—C2—O253.5 (2)C1—C5—C6—H964.4 (3)
H3—C1—C2—O1115.6 (2)C1—C5—C6—H10175.6 (2)
H3—C1—C2—O264.9 (2)H7—C5—C6—H861.1 (3)
N1—C1—C5—O472.1 (2)H7—C5—C6—H9178.9 (2)
N1—C1—C5—C654.1 (2)H7—C5—C6—H1058.9 (3)
N1—C1—C5—H7169.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.951.752.676 (2)164
N1—H2···O4i0.951.972.915 (2)176
N2—H11···O1ii0.951.902.831 (2)167
N2—H12···O10.951.942.825 (2)154
N2—H12···O20.952.443.270 (2)146
N2—H13···O2iii0.951.922.862 (2)171
N2—H14···O3iv0.951.832.772 (2)168
C1—H3···O31.022.332.778 (2)105
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1, z+1/2.
(II) N-acetyl-L-threoninate methylammonium top
Crystal data top
CH6N+·C6H10NO4F(000) = 208.0
Mr = 192.21Dx = 1.312 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54056 Å
Hall symbol: P 2y1Cell parameters from 25 reflections
a = 8.1400 (9) Åθ = 29–30°
b = 7.178 (2) ŵ = 0.91 mm1
c = 9.081 (1) ÅT = 293 K
β = 113.52 (1)°Prism, colourless
V = 486.5 (2) Å30.63 × 0.34 × 0.22 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
1079 reflections with I > 2σ(I)
Radiation source: monochromatedRint = 0.021
Graphite monochromatorθmax = 75°
ω–2θ scans as suggested by peak–shape analysish = 010
Absorption correction: ψ scan
North et al. (1968)
k = 09
Tmin = 0.727, Tmax = 0.819l = 1111
1149 measured reflections5 standard reflections every 180 min
1086 independent reflections intensity decay: 2%
Refinement top
Refinement on F1/[σ2(Fo) + (0.02Fo)2 + 12] (Killean & Lawrence, 1969)
Least-squares matrix: full(Δ/σ)max = 0.00012
R[F2 > 2σ(F2)] = 0.041Δρmax = 0.17 e Å3
wR(F2) = 0.049Δρmin = 0.25 e Å3
S = 0.99Extinction correction: Stout & Jensen (1968)
1079 reflectionsExtinction coefficient: 5.42 (13) x 10-5
119 parametersAbsolute structure: Rogers (1981)
H-atom parameters not refinedRogers parameter: 1.023 (8)
Crystal data top
CH6N+·C6H10NO4V = 486.5 (2) Å3
Mr = 192.21Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.1400 (9) ŵ = 0.91 mm1
b = 7.178 (2) ÅT = 293 K
c = 9.081 (1) Å0.63 × 0.34 × 0.22 mm
β = 113.52 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1079 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.021
Tmin = 0.727, Tmax = 0.8195 standard reflections every 180 min
1149 measured reflections intensity decay: 2%
1086 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters not refined
wR(F2) = 0.049Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.25 e Å3
1079 reflectionsAbsolute structure: Rogers (1981)
119 parametersRogers parameter: 1.023 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7947 (3)0.50000.4299 (3)0.0581 (7)
O20.7339 (2)0.8018 (3)0.4319 (2)0.0470 (6)
O30.3201 (3)0.4346 (4)0.0266 (2)0.0631 (8)
O40.4044 (2)0.6192 (3)0.5026 (2)0.0423 (5)
N10.4533 (3)0.4053 (3)0.2428 (2)0.0355 (6)
C10.4923 (3)0.6029 (4)0.2767 (3)0.0338 (7)
C20.6886 (3)0.6349 (4)0.3886 (3)0.0390 (7)
C30.3693 (3)0.3384 (4)0.0955 (3)0.0381 (8)
C40.3353 (4)0.1299 (5)0.0849 (4)0.0517 (10)
C50.3683 (3)0.6921 (4)0.3462 (3)0.0358 (8)
C60.1720 (4)0.6777 (4)0.2362 (4)0.0492 (9)
N20.8823 (3)0.1338 (4)0.3464 (3)0.0435 (7)
C70.9330 (5)0.2195 (7)0.2266 (4)0.0784 (14)
H10.317440.527150.494790.0423*
H20.489890.320660.330400.0355*
H30.469480.666010.169650.0338*
H40.221670.101190.013840.0517*
H50.320110.085840.185540.0517*
H60.441310.062630.075970.0517*
H70.395670.831300.356570.0358*
H80.096400.733830.291580.0493*
H90.148820.748610.132420.0493*
H100.138310.541150.210360.0493*
H110.985230.081390.428710.0435*
H120.831540.225150.391370.0435*
H130.796750.038460.297770.0435*
H140.828150.295460.149290.0784*
H151.040300.305000.281600.0784*
H160.966410.118580.164400.0784*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (8)0.0258 (9)0.0922 (14)0.0028 (9)0.0111 (9)0.0094 (10)
O20.0432 (8)0.0237 (8)0.0702 (10)0.0070 (8)0.0186 (7)0.0092 (9)
O30.0901 (14)0.0441 (12)0.0414 (9)0.0095 (12)0.0117 (9)0.0021 (10)
O40.0580 (8)0.0271 (9)0.0423 (7)0.0031 (8)0.0207 (6)0.0001 (8)
N10.0431 (9)0.0174 (9)0.0419 (9)0.0026 (8)0.0126 (7)0.0008 (8)
C10.0404 (10)0.0171 (10)0.0411 (10)0.0024 (10)0.0133 (8)0.0002 (9)
C20.0402 (10)0.0252 (11)0.0519 (11)0.0046 (10)0.0186 (8)0.0036 (11)
C30.0410 (10)0.0290 (13)0.0434 (10)0.0035 (10)0.0159 (8)0.0043 (10)
C40.0620 (14)0.0278 (12)0.0631 (13)0.0106 (13)0.0227 (10)0.0134 (13)
C50.0419 (10)0.0212 (11)0.0426 (10)0.0011 (9)0.0149 (8)0.0014 (10)
C60.0409 (11)0.0382 (16)0.0631 (14)0.0010 (12)0.0149 (10)0.0022 (13)
N20.0417 (9)0.0291 (10)0.0597 (10)0.0013 (10)0.0201 (7)0.0033 (11)
C70.100 (2)0.075 (2)0.0594 (15)0.032 (2)0.0308 (13)0.0019 (18)
Geometric parameters (Å, º) top
O1—C21.251 (3)C4—H61.020
O2—C21.270 (4)C5—C61.513 (3)
O3—C31.230 (3)C5—H71.020
O4—C51.430 (3)C6—H81.020
O4—H10.950C6—H91.020
N1—C11.459 (3)C6—H101.020
N1—C31.326 (3)N2—C71.446 (5)
N1—H20.950N2—H110.950
C1—C21.530 (3)N2—H120.950
C1—C51.529 (4)N2—H130.950
C1—H31.020C7—H141.020
C3—C41.518 (4)C7—H151.020
C4—H41.020C7—H161.020
C4—H51.020
O1···O43.597 (3)O3···C53.738 (4)
O1···C33.764 (3)O3···C63.535 (5)
O2···O43.271 (3)C3···C63.433 (5)
C5—O4—H1109.2O4—C5—C6112.1 (2)
C1—N1—C3123.2 (2)O4—C5—H7108.4
C1—N1—H2118.4C1—C5—C6113.4 (2)
C3—N1—H2118.4C1—C5—H7107.0
N1—C1—C2111.6 (2)C6—C5—H7105.2
N1—C1—C5111.7 (2)C5—C6—H8109.5
N1—C1—H3106.8C5—C6—H9109.5
C2—C1—C5110.5 (2)C5—C6—H10109.5
C2—C1—H3108.1H8—C6—H9109.5
C5—C1—H3108.0H8—C6—H10109.5
O1—C2—O2123.9 (3)H9—C6—H10109.5
O1—C2—C1119.7 (2)C7—N2—H11109.5
O2—C2—C1116.4 (2)C7—N2—H12109.5
O3—C3—N1123.9 (2)C7—N2—H13109.5
O3—C3—C4120.7 (3)H11—N2—H12109.5
N1—C3—C4115.4 (2)H11—N2—H13109.5
C3—C4—H4109.5H12—N2—H13109.5
C3—C4—H5109.5N2—C7—H14109.5
C3—C4—H6109.5N2—C7—H15109.5
H4—C4—H5109.5N2—C7—H16109.5
H4—C4—H6109.5H14—C7—H15109.5
H5—C4—H6109.5H14—C7—H16109.5
O4—C5—C1110.4 (2)H15—C7—H16109.5
H1—O4—C5—C1100.3 (2)H3—C1—C5—C657.9 (3)
H1—O4—C5—C627.1 (3)H3—C1—C5—H757.6 (3)
H1—O4—C5—H7142.8 (2)O3—C3—C4—H429.6 (4)
C3—N1—C1—C2130.4 (3)O3—C3—C4—H5149.7 (3)
C3—N1—C1—C5105.4 (3)O3—C3—C4—H690.3 (4)
C3—N1—C1—H312.5 (3)N1—C3—C4—H4150.2 (3)
H2—N1—C1—C249.6 (3)N1—C3—C4—H530.2 (4)
H2—N1—C1—C574.6 (3)N1—C3—C4—H689.8 (3)
H2—N1—C1—H3167.5 (2)O4—C5—C6—H851.4 (3)
C1—N1—C3—O31.9 (4)O4—C5—C6—H9171.4 (2)
C1—N1—C3—C4178.0 (2)O4—C5—C6—H1068.6 (3)
H2—N1—C3—O3178.1 (3)C1—C5—C6—H8177.2 (2)
H2—N1—C3—C42.0 (4)C1—C5—C6—H962.8 (3)
N1—C1—C2—O14.5 (3)C1—C5—C6—H1057.2 (3)
N1—C1—C2—O2176.6 (2)H7—C5—C6—H866.2 (3)
C5—C1—C2—O1129.5 (3)H7—C5—C6—H953.8 (3)
C5—C1—C2—O251.6 (3)H7—C5—C6—H10173.8 (2)
H3—C1—C2—O1112.6 (3)H11—N2—C7—H14169.9 (3)
H3—C1—C2—O266.3 (3)H11—N2—C7—H1549.9 (4)
N1—C1—C5—O467.4 (3)H11—N2—C7—H1670.1 (4)
N1—C1—C5—C659.3 (3)H12—N2—C7—H1449.9 (4)
N1—C1—C5—H7174.7 (2)H12—N2—C7—H1570.1 (4)
C2—C1—C5—O457.4 (3)H12—N2—C7—H16169.9 (3)
C2—C1—C5—C6175.9 (2)H13—N2—C7—H1470.1 (4)
C2—C1—C5—H760.4 (3)H13—N2—C7—H15169.9 (3)
H3—C1—C5—O4175.4 (2)H13—N2—C7—H1649.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.951.862.710 (3)148
N1—H2···O4i0.952.022.961 (3)169
N2—H11···O1ii0.951.832.775 (3)170
N2—H12···O10.952.052.903 (3)149
N2—H12···O4i0.952.583.144 (3)118
N2—H13···O2iii0.952.272.914 (3)125
N2—H13···O3iv0.952.383.061 (3)129
C1—H3···O31.022.382.816 (3)104
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x, y1, z; (iv) x+1, y1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaNH4+·C6H10NO4CH6N+·C6H10NO4
Mr178.19192.21
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)293293
a, b, c (Å)7.025 (1), 8.0689 (4), 16.754 (2)8.1400 (9), 7.178 (2), 9.081 (1)
α, β, γ (°)90, 90, 9090, 113.52 (1), 90
V3)949.7 (2)486.5 (2)
Z42
Radiation typeCu KαCu Kα
µ (mm1)0.890.91
Crystal size (mm)0.34 × 0.23 × 0.210.63 × 0.34 × 0.22
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
North et al. (1968)
Tmin, Tmax0.727, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
1478, 1165, 1154 1149, 1086, 1079
Rint0.0360.021
(sin θ/λ)max1)0.6280.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.044, 0.96 0.041, 0.049, 0.99
No. of reflections11541079
No. of parameters111119
No. of restraints??
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.18, 0.150.17, 0.25
Absolute structureRogers (1981)Rogers (1981)
Rogers parameter0.927 (4)1.023 (8)

Selected geometric parameters (Å, º) for (I) top
O1—C21.240 (3)O4—C51.425 (2)
O2—C21.262 (2)N1—C11.457 (2)
O3—C31.227 (2)N1—C31.326 (2)
C1—N1—C3122.4 (2)O3—C3—N1122.8 (2)
N1—C1—C2111.2 (2)O3—C3—C4121.7 (2)
N1—C1—C5111.6 (2)N1—C3—C4115.6 (2)
O1—C2—O2123.6 (2)O4—C5—C1110.0 (2)
O1—C2—C1119.7 (2)O4—C5—C6111.9 (2)
O2—C2—C1116.7 (2)C1—C5—C6113.5 (2)
C3—N1—C1—C2129.8 (2)N1—C1—C2—O11.9 (3)
C1—N1—C3—O32.1 (3)N1—C1—C5—O472.1 (2)
C1—N1—C3—C4177.2 (2)N1—C1—C5—C654.1 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.951.752.676 (2)164
N1—H2···O4i0.951.972.915 (2)176
N2—H11···O1ii0.951.902.831 (2)167
N2—H12···O10.951.942.825 (2)154
N2—H12···O20.952.443.270 (2)146
N2—H13···O2iii0.951.922.862 (2)171
N2—H14···O3iv0.951.832.772 (2)168
C1—H3···O31.022.332.778 (2)105
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1, z+1/2.
Selected geometric parameters (Å, º) for (II) top
O1—C21.251 (3)N1—C11.459 (3)
O2—C21.270 (4)N1—C31.326 (3)
O3—C31.230 (3)N2—C71.446 (5)
O4—C51.430 (3)
C1—N1—C3123.2 (2)O3—C3—N1123.9 (2)
N1—C1—C2111.6 (2)O3—C3—C4120.7 (3)
N1—C1—C5111.7 (2)N1—C3—C4115.4 (2)
O1—C2—O2123.9 (3)O4—C5—C1110.4 (2)
O1—C2—C1119.7 (2)O4—C5—C6112.1 (2)
O2—C2—C1116.4 (2)C1—C5—C6113.4 (2)
C3—N1—C1—C2130.4 (3)N1—C1—C2—O14.5 (3)
C1—N1—C3—O31.9 (4)N1—C1—C5—O467.4 (3)
C1—N1—C3—C4178.0 (2)N1—C1—C5—C659.3 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.951.862.710 (3)148
N1—H2···O4i0.952.022.961 (3)169
N2—H11···O1ii0.951.832.775 (3)170
N2—H12···O10.952.052.903 (3)149
N2—H12···O4i0.952.583.144 (3)118
N2—H13···O2iii0.952.272.914 (3)125
N2—H13···O3iv0.952.383.061 (3)129
C1—H3···O31.022.382.816 (3)104
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x, y1, z; (iv) x+1, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds