Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The single-crystal X-ray structure determinations of the title complexes, cis-di­chloro-trans-di­methyl-cis-bis(N-methyl­pyr­rolidin-2-one-O)­tin(IV), [Sn(CH3)2Cl2(C5H9NO)2], cis-di­bromo-trans-di­methyl-cis-bis(N-methyl­pyrrolidin-2-one-O)tin­(IV), [SnBr2(CH3)2(C5H9NO)2], and cis-di­iodo-trans-di­methyl-cis-bis(N-methyl­pyrrolidin-2-one-O)­tin(IV), [Sn(CH3)2I2(C5H9NO)2], show that those tin complexes in which coordination of the lactam ligand to SnIV is realized via oxygen exhibit a distorted octahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016388/na1448sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016388/na1448Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016388/na1448IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016388/na1448IIIsup4.hkl
Contains datablock III

CCDC references: 143237; 143238; 143239

Comment top

Molecular complexes of dimethyltin dihalides with electron-donor solvents such as dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) have been explored extensively (Tanaka, 1967; Isaacs et al., 1968; Aslanov et al., 1978). Studies of complexes of the related N-methylpyrrolidinone (NMP) ligand have not been published to date. The structures of the title complexes, cis-dichloro-trans-dimethyl-cis-bis(N-methylpyrrolidin-2-one-O)tin(IV), (I), cis-dibromo-trans-dimethyl-cis-bis(N-methylpyrrolidin-2-one-O)tin(IV), (II) and cis-diiodo-trans-dimethyl-cis-bis(N-methylpyrrolidin-2-one-O)tin(IV), (III), are part of our study on the Stille reaction in which the compounds investigated can be formed as by-products. These complexes are of great promise in studying solvent effects on organometallic reactions. \scheme

In all three cases, the crystals exhibit distorted octahedral geometry. The degree of distortion becomes obvious when the angles C—Sn—C and O—Sn-halogen are compared. The values are as follows: (I) C—Sn—C 159.57 (9), O—Sn—Cl 177.76 (4) and 178.02 (4)°, (II) C—Sn—C 169.7 (4), O—Sn—Br 172.17 (15) and 173.67 (15)°, and (III) C—Sn—C 170.3 (2), O—Sn—I 173.19 (8) and 175.46 (7)°.

The bond lengths and angles in the NMP ligand of complexes (I)-(III) agree well with those in the uncoordinated ligand (Müller et al., 1996). In the dichloro compound, (I), the torsion angles of both NMP ligands are within the range previously reported. In the dibromo compound, (II), the torsion angle C11—C12—C13—C14 increases to 23.7 (10)°, while in the diiodo compound, (III), the torsion angle C12—C13—C14—N1 is 22.3 (5)°. In these three compounds the deviation from planarity is larger than in the uncomplexed NMP. The orientation of the NMP ligands can be described by the following torsion angles. Sn—O1—C11—N1 - 153.53 (18) in (I), 152.4 (6) in (II) and -160.0 (3)° in (III); Sn—O2—C21—N2 - 165.15 (16) in (I), 171.3 (6) in (II) and -177.4 (3)° in (III). These orientations could be determined by the C15—H···O1 and C25—H···O2 interactions with H···O distances in the range from 2.41 to 2.47 Å, C···O distances in the range from 2.811 (12) to 2.850 (3) Å and C—H···O angles in the range from 103 to 104°.

There are only slight differences between the bond lengths in the Sn—C fragment [2.105 (2) and 2.111 (2) Å in (I), 2.098 (8) and 2.114 (9) Å in (II), and 2.109 (4) and 2.119 (4) Å in (III)] and they are comparable with reported values (Skinner & Sutton, 1944; Fujii & Kimura, 1971; Aslanov et al., 1978). The Sn-halogen bonds are longer [2.4737 (7) and 2.4768 (8) Å in (I), 2.6738 (10) and 2.6761 (12) Å in (II), and 2.9135 (7) and 2.9299 (7) Å in (III)] than in the uncomplexed compounds and correlate with the values for related organotin complexes with DMF or DMSO (Isaacs & Kennard, 1970; Aslanov et al., 1978).

A comparative study of the values of the Sn—O bond lengths leads to the unexpected result that the Sn—O bonds in the dichloro compound are the longest in the series [2.4464 (16) and 2.4598 (15) Å] and are thus a little longer than in the related DMF compound (2.390 Å; Aslanov et al., 1978). In the dibromo [2.323 (6) and 2.345 (6) Å] and the diiodo [2.294 (3) and 2.326 (3) Å] compounds the Sn—O bond lengths are almost the same. This can be explained by the tendency of Cl to react as an electron acceptor. In the trinuclear, almost linear, fragment ONMP—Sn—Cl, the Cl can draw out of the Sn—O bond the electron density delivered by O. Consequently, the Sn—Cl bond becomes shorter and the Sn—O bond length increases (Aslanov et al., 1978). This effect might well be expected to be even greater on going from Br to I, but the size of the ligand in fact seems to become predominant.

In (II) and (III) there are no intermolecular interactions exceeding van der Waals forces, whereas in (I) weak C—H···Cl interactions are also effective.

Experimental top

All three compounds were prepared by a similar route. Freshly sublimed dichlorodimethylstannane (2.20 g, 10 mmol), derived from the reaction of dimethyltinoxide with HCl (Pfeiffer, 1902), or dibromodimethylstannane (3.09 g, 10 mmol) was mixed in an atmosphere of argon with a solution of absolute? N-methylpyrrolidinone (1.98 g, 20 mmol) in dry diethyl ether (10 ml). After stirring for 30 min the mixture was stored in a refrigerator at 278 K. Colourless crystals were obtained in quantitative yield for the dichloro compound, (I) (m.p. 318 K). The structure-relevant NMR parameters are 2J(119Sn—C-1H), 1J(119Sn-13C) and δ(119Sn). A solution of the complex (70 mg) in C6D6 (420 mg) gave values of 86 Hz, 678 Hz and -47.5 p.p.m., respectively. These values represent an equilibrium which was, as expected, shifted when a solution of the complex (40 mg) in NMP (590 mg) is studied: 2J(119Sn—C-1H) = 104 Hz, 1J(119Sn-13C) = 865 Hz and δ(119Sn) = -154.6 p.p.m. Colourless crystals were obtained in quantitative yield for the dibromo compound, (II) (m.p. 315 K). A solution of the complex (80 mg) in C6D6 (410 mg) gave the following values for the structure-relevant NMR parameters: 2J(119Sn—C-1H) = 84 Hz, 1J(119Sn-13C) = 636 Hz and δ(119Sn) -94.0 p.p.m. The following values are measured for the complex (40 mg) dissolved in NMP (410 mg): 2J(119Sn—C-1H) = 105 Hz, 1J(119Sn-13C) = 863 Hz, δ(119Sn) = -204.5 p.p.m. Diiododimethylstannane was obtained according to the literature method of (Armitage & Tarassoli, 1975) by a halide exchange reaction of dichlorodimethylstannane with trimethyliodosilane and finally distilled in vacuo before use. Following the described experimental route yellow crystals of (III) were obtained in quantitative yield (mp. 326 K). A solution of the complex (80 mg) in C6D6 (410 mg) gave the following values for the structure-relevant NMR parameters: 2J(119Sn—C-1H) = 71 Hz, 1J(119Sn-13C) = 462 Hz and δ(119Sn) = -197.9 p.p.m. The following values were obtained for the complex (60 mg) dissolved in NMP (370 mg): 2J(119Sn—C-1H) = 103 Hz, 1J(119Sn-13C) = 854 Hz and δ(119Sn) = -284.8 p.p.m. Crystals for the diffraction experiments were obtained by slow evaporation of solutions of the title compounds in diethyl ether.

Refinement top

All H atoms were placed in calculated positions and refined with a riding model (including free rotation about C—C bonds), with Uiso constrained to be 1.5 times Ueq of the carrier atom. The absolute configuration of the crystal of the bromine derivative, (II), could not be determined reliably [Flack (1983) parameter 0.366 (13), R1 = 0.0382 and wR2 = 0.1036]. The inverse of the configuration presented in this paper resulted in poorer residuals [Flack parameter 0.466 (15), R1 = 0.0400 and wR2= 0.1093] and was therefore rejected. This means that with increasing halogen size the structure changes from centrosymmetric P21/c for Cl in (I) to the acentric Pn for Br in (II) to the acentric Pn but with the inverse configuration for I in (III). The data were not corrected for absorption and a possible absorption effect for the bromine derivative, (II), which is the strongest absorber of the three compounds, cannot be excluded.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as circles of arbitrary radii.
[Figure 2] Fig. 2. View of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as circles of arbitrary radii.
[Figure 3] Fig. 3. View of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as circles of arbitrary radii.
(I) cis-dichloro-trans-dimethyl-cis-bis(N-methylpyrrolidin-2-one-O)tin(IV) top
Crystal data top
[SnCl2(CH3)2(C5H9NO)2]F(000) = 840
Mr = 417.92Dx = 1.648 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8320 (16) ÅCell parameters from 6276 reflections
b = 25.703 (5) Åθ = 2.6–25.7°
c = 8.9840 (18) ŵ = 1.83 mm1
β = 111.38 (3)°T = 173 K
V = 1684.0 (6) Å3Parallelepiped, colourless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2598 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.7°, θmin = 2.6°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 99
935 frames via ω–rotation (Δω = 1°) at different θ values and 2 × 20 s per frame scansk = 3131
6276 measured reflectionsl = 1010
3188 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 0.98Calculated w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
3188 reflections(Δ/σ)max = 0.005
176 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[SnCl2(CH3)2(C5H9NO)2]V = 1684.0 (6) Å3
Mr = 417.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8320 (16) ŵ = 1.83 mm1
b = 25.703 (5) ÅT = 173 K
c = 8.9840 (18) Å0.15 × 0.10 × 0.10 mm
β = 111.38 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2598 reflections with I > 2σ(I)
6276 measured reflectionsRint = 0.019
3188 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 0.98Δρmax = 0.32 e Å3
3188 reflectionsΔρmin = 0.59 e Å3
176 parameters
Special details top

Experimental. The data collections covered the whole sphere of reciprocal space. The crystal to detector distance was 3.5 cm. Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there were no indications for any decay. The structures were solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods (Sheldrick, 1997).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.55506 (2)0.875738 (6)0.147222 (16)0.02559 (7)
Cl10.44742 (8)0.81796 (2)0.08912 (7)0.03417 (15)
Cl20.28036 (8)0.93176 (2)0.03559 (6)0.03249 (14)
C10.4510 (3)0.83341 (8)0.2969 (3)0.0340 (6)
H1A0.45970.79680.27940.051*
H1B0.32490.84260.27280.051*
H1C0.52100.84150.40660.051*
C20.7403 (3)0.91839 (8)0.0742 (3)0.0322 (6)
H2A0.70930.95470.06820.048*
H2B0.73360.90650.02910.048*
H2C0.86260.91350.15000.048*
O10.8247 (2)0.82031 (6)0.26626 (19)0.0378 (4)
C110.8474 (3)0.77224 (9)0.2870 (3)0.0295 (5)
C120.7258 (3)0.73021 (8)0.1893 (3)0.0374 (6)
H12A0.70310.73520.07670.056*
H12B0.60930.73000.20430.056*
C130.8288 (4)0.67986 (9)0.2489 (3)0.0412 (6)
H13A0.88370.66720.17490.062*
H13B0.74760.65330.26240.062*
C140.9765 (3)0.69428 (9)0.4096 (3)0.0412 (6)
H14A0.94090.68360.49780.062*
H14B1.09290.67820.42180.062*
N10.9878 (3)0.75095 (7)0.4021 (2)0.0324 (5)
C151.1324 (3)0.77999 (10)0.5218 (3)0.0427 (7)
H15A1.11270.81660.50120.064*
H15B1.24890.77040.51750.064*
H15C1.13120.77220.62600.064*
O20.6735 (2)0.93132 (6)0.38595 (17)0.0361 (4)
C210.6857 (3)0.97906 (8)0.4134 (2)0.0259 (5)
C220.5857 (3)1.02161 (8)0.3011 (2)0.0305 (5)
H22A0.45431.01590.26310.046*
H22B0.62371.02320.20980.046*
C230.6370 (4)1.07148 (9)0.3986 (3)0.0427 (7)
H23A0.53211.08530.41860.064*
H23B0.67991.09760.34240.064*
C240.7897 (3)1.05659 (8)0.5557 (3)0.0339 (6)
H24A0.90661.07070.56090.051*
H24B0.76291.06920.64670.051*
N20.7915 (3)0.99975 (7)0.5524 (2)0.0277 (4)
C250.9070 (3)0.96993 (9)0.6887 (3)0.0361 (6)
H25A0.88760.93350.66560.054*
H25B0.87680.97830.78030.054*
H25C1.03330.97830.71040.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02834 (10)0.02253 (10)0.02124 (9)0.00205 (7)0.00352 (7)0.00138 (6)
Cl10.0404 (4)0.0332 (3)0.0242 (3)0.0062 (3)0.0063 (3)0.0047 (3)
Cl20.0303 (3)0.0328 (3)0.0296 (3)0.0037 (3)0.0053 (3)0.0060 (2)
C10.0496 (16)0.0247 (12)0.0277 (12)0.0025 (11)0.0139 (11)0.0000 (10)
C20.0342 (13)0.0252 (12)0.0362 (13)0.0035 (10)0.0117 (11)0.0012 (10)
O10.0342 (10)0.0230 (8)0.0452 (10)0.0004 (7)0.0012 (8)0.0030 (7)
C110.0305 (14)0.0300 (13)0.0295 (12)0.0012 (11)0.0128 (11)0.0018 (11)
C120.0426 (16)0.0268 (12)0.0366 (13)0.0032 (11)0.0070 (12)0.0023 (11)
C130.0468 (16)0.0278 (13)0.0532 (16)0.0026 (12)0.0233 (13)0.0054 (12)
C140.0386 (15)0.0298 (13)0.0546 (16)0.0089 (11)0.0163 (13)0.0116 (12)
N10.0286 (11)0.0281 (10)0.0379 (11)0.0045 (9)0.0092 (9)0.0035 (9)
C150.0349 (15)0.0439 (15)0.0401 (15)0.0004 (12)0.0026 (12)0.0050 (12)
O20.0479 (11)0.0270 (9)0.0249 (8)0.0030 (8)0.0032 (8)0.0011 (7)
C210.0264 (13)0.0279 (12)0.0246 (11)0.0024 (10)0.0108 (10)0.0004 (10)
C220.0316 (14)0.0333 (13)0.0246 (12)0.0006 (11)0.0078 (10)0.0034 (10)
C230.0598 (18)0.0272 (12)0.0347 (14)0.0066 (12)0.0097 (13)0.0014 (11)
C240.0423 (15)0.0280 (12)0.0304 (13)0.0031 (11)0.0118 (11)0.0043 (10)
N20.0314 (11)0.0258 (9)0.0217 (10)0.0016 (8)0.0046 (8)0.0004 (8)
C250.0375 (15)0.0373 (14)0.0260 (12)0.0005 (11)0.0027 (11)0.0027 (11)
Geometric parameters (Å, º) top
Sn1—C22.105 (2)C14—H14A0.9700
Sn1—C12.111 (2)C14—H14B0.9700
Sn1—O12.4464 (16)N1—C151.452 (3)
Sn1—O22.4598 (15)C15—H15A0.9600
Sn1—Cl12.4737 (7)C15—H15B0.9600
Sn1—Cl22.4768 (8)C15—H15C0.9600
C1—H1A0.9600O2—C211.248 (2)
C1—H1B0.9600C21—N21.332 (3)
C1—H1C0.9600C21—C221.500 (3)
C2—H2A0.9600C22—C231.522 (3)
C2—H2B0.9600C22—H22A0.9700
C2—H2C0.9600C22—H22B0.9700
O1—C111.253 (3)C23—C241.529 (3)
C11—N11.322 (3)C23—H23A0.9700
C11—C121.495 (3)C23—H23B0.9700
C12—C131.516 (3)C24—N21.462 (3)
C12—H12A0.9700C24—H24A0.9700
C12—H12B0.9700C24—H24B0.9700
C13—C141.531 (3)N2—C251.448 (3)
C13—H13A0.9700C25—H25A0.9600
C13—H13B0.9700C25—H25B0.9600
C14—N11.463 (3)C25—H25C0.9600
C2—Sn1—C1159.57 (9)C13—C14—H14A111.0
C2—Sn1—O181.74 (7)N1—C14—H14B111.0
C1—Sn1—O183.89 (8)C13—C14—H14B111.0
C2—Sn1—O283.44 (8)H14A—C14—H14B109.0
C1—Sn1—O281.63 (7)C11—N1—C15124.6 (2)
O1—Sn1—O288.06 (6)C11—N1—C14113.7 (2)
C2—Sn1—Cl195.91 (7)C15—N1—C14121.43 (19)
C1—Sn1—Cl198.48 (6)N1—C15—H15A109.5
O1—Sn1—Cl189.73 (5)N1—C15—H15B109.5
O2—Sn1—Cl1177.76 (4)H15A—C15—H15B109.5
C2—Sn1—Cl299.59 (7)N1—C15—H15C109.5
C1—Sn1—Cl294.44 (7)H15A—C15—H15C109.5
O1—Sn1—Cl2178.02 (4)H15B—C15—H15C109.5
O2—Sn1—Cl290.64 (5)C21—O2—Sn1136.09 (14)
Cl1—Sn1—Cl291.58 (3)O2—C21—N2123.7 (2)
Sn1—C1—H1A109.5O2—C21—C22126.88 (19)
Sn1—C1—H1B109.5N2—C21—C22109.46 (18)
H1A—C1—H1B109.5C21—C22—C23105.27 (17)
Sn1—C1—H1C109.5C21—C22—H22A110.7
H1A—C1—H1C109.5C23—C22—H22A110.7
H1B—C1—H1C109.5C21—C22—H22B110.7
Sn1—C2—H2A109.5C23—C22—H22B110.7
Sn1—C2—H2B109.5H22A—C22—H22B108.8
H2A—C2—H2B109.5C22—C23—C24105.92 (17)
Sn1—C2—H2C109.5C22—C23—H23A110.6
H2A—C2—H2C109.5C24—C23—H23A110.6
H2B—C2—H2C109.5C22—C23—H23B110.6
C11—O1—Sn1133.83 (15)C24—C23—H23B110.6
O1—C11—N1123.9 (2)H23A—C23—H23B108.7
O1—C11—C12126.9 (2)N2—C24—C23103.98 (17)
N1—C11—C12109.28 (19)N2—C24—H24A111.0
C11—C12—C13105.46 (19)C23—C24—H24A111.0
C11—C12—H12A110.6N2—C24—H24B111.0
C13—C12—H12A110.6C23—C24—H24B111.0
C11—C12—H12B110.6H24A—C24—H24B109.0
C13—C12—H12B110.6C21—N2—C25124.38 (18)
H12A—C12—H12B108.8C21—N2—C24114.25 (17)
C12—C13—C14104.38 (18)C25—N2—C24121.30 (17)
C12—C13—H13A110.9N2—C25—H25A109.5
C14—C13—H13A110.9N2—C25—H25B109.5
C12—C13—H13B110.9H25A—C25—H25B109.5
C14—C13—H13B110.9N2—C25—H25C109.5
H13A—C13—H13B108.9H25A—C25—H25C109.5
N1—C14—C13103.58 (19)H25B—C25—H25C109.5
N1—C14—H14A111.0
C2—Sn1—O1—C11144.8 (2)C2—Sn1—O2—C2156.5 (2)
C1—Sn1—O1—C1149.8 (2)C1—Sn1—O2—C21137.4 (2)
O2—Sn1—O1—C11131.6 (2)O1—Sn1—O2—C21138.4 (2)
Cl1—Sn1—O1—C1148.8 (2)Cl1—Sn1—O2—C21129.6 (9)
Cl2—Sn1—O1—C1182.7 (11)Cl2—Sn1—O2—C2143.0 (2)
Sn1—O1—C11—N1153.53 (18)Sn1—O2—C21—N2165.15 (16)
Sn1—O1—C11—C1226.9 (4)Sn1—O2—C21—C2215.9 (4)
O1—C11—C12—C13171.9 (2)O2—C21—C22—C23175.0 (2)
N1—C11—C12—C137.8 (3)N2—C21—C22—C234.1 (3)
C11—C12—C13—C1416.4 (3)C21—C22—C23—C249.0 (3)
C12—C13—C14—N118.7 (3)C22—C23—C24—N210.5 (3)
O1—C11—N1—C151.4 (4)O2—C21—N2—C250.7 (4)
C12—C11—N1—C15178.9 (2)C22—C21—N2—C25179.8 (2)
O1—C11—N1—C14175.4 (2)O2—C21—N2—C24177.8 (2)
C12—C11—N1—C144.9 (3)C22—C21—N2—C243.0 (3)
C13—C14—N1—C1115.3 (3)C23—C24—N2—C218.7 (3)
C13—C14—N1—C15170.5 (2)C23—C24—N2—C25174.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cl1i0.972.903.662 (3)139
C14—H14B···Cl1ii0.972.823.698 (3)152
C24—H24B···Cl2iii0.972.993.916 (3)159
C22—H22B···Cl2iv0.972.823.742 (3)158
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z.
(II) cis-dibromo-trans-dimethyl-cis-bis(N-methylpyrrolidin-2-one-O)tin(IV) top
Crystal data top
[SnBr2(CH3)2(C5H9NO)2]F(000) = 492
Mr = 506.84Dx = 1.874 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 7.4750 (15) ÅCell parameters from 3025 reflections
b = 8.0300 (16) Åθ = 2.5–25.7°
c = 14.977 (3) ŵ = 5.87 mm1
β = 91.98 (3)°T = 173 K
V = 898.4 (3) Å3Parallelepiped, colourless
Z = 20.1 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2893 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.005
Graphite monochromatorθmax = 25.7°, θmin = 2.5°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 98
265 frames via ω–rotation (Δω=1°) at different θ values and 2 × 60 s per frame scansk = 99
3025 measured reflectionsl = 1818
3019 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038Calculated w = 1/[σ2(Fo2) + (0.0588P)2 + 2.0195P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.89 e Å3
3019 reflectionsΔρmin = 0.85 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0055 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.370 (13)
Crystal data top
[SnBr2(CH3)2(C5H9NO)2]V = 898.4 (3) Å3
Mr = 506.84Z = 2
Monoclinic, PnMo Kα radiation
a = 7.4750 (15) ŵ = 5.87 mm1
b = 8.0300 (16) ÅT = 173 K
c = 14.977 (3) Å0.1 × 0.1 × 0.1 mm
β = 91.98 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2893 reflections with I > 2σ(I)
3025 measured reflectionsRint = 0.005
3019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.89 e Å3
S = 1.12Δρmin = 0.85 e Å3
3019 reflectionsAbsolute structure: Flack (1983)
177 parametersAbsolute structure parameter: 0.370 (13)
2 restraints
Special details top

Experimental. The data collections covered the whole sphere of reciprocal space. The crystal to detector distance was 3.5 cm. Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there were no indications for any decay. The structures were solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods (Sheldrick, 1997).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.82865 (5)1.17177 (6)0.73758 (4)0.02583 (18)
Br10.90045 (13)1.11171 (13)0.91089 (6)0.0458 (3)
Br20.67063 (11)1.46626 (11)0.76191 (6)0.0417 (3)
C10.5884 (11)1.0377 (11)0.7427 (6)0.038 (2)
H1A0.61330.92600.76230.057*
H1B0.53111.03520.68440.057*
H1C0.51081.09060.78390.057*
C21.0850 (12)1.2726 (13)0.7166 (7)0.044 (2)
H2A1.13751.21710.66720.066*
H2B1.15971.25720.76940.066*
H2C1.07411.38940.70380.066*
O10.9672 (8)0.9232 (7)0.6955 (4)0.0364 (13)
C110.9471 (11)0.8269 (10)0.6302 (6)0.0312 (18)
C120.7813 (12)0.7940 (12)0.5741 (7)0.040 (2)
H12A0.72180.89760.55790.060*
H12B0.69870.72450.60600.060*
C130.8458 (14)0.7046 (13)0.4912 (7)0.045 (2)
H13A0.86270.78240.44270.067*
H13B0.76150.61930.47150.067*
C141.0250 (12)0.6273 (11)0.5234 (6)0.0362 (19)
H14A1.00960.51230.54130.054*
H14B1.11240.63230.47710.054*
N11.0798 (10)0.7326 (9)0.6006 (5)0.0324 (15)
C151.2563 (12)0.7249 (13)0.6403 (6)0.040 (2)
H15A1.27970.61400.66160.060*
H15B1.26580.80170.68930.060*
H15C1.34190.75380.59650.060*
O20.7907 (8)1.2025 (8)0.5839 (4)0.0366 (14)
C210.6758 (11)1.2517 (10)0.5289 (5)0.0285 (17)
C220.4830 (14)1.2921 (15)0.5475 (7)0.048 (2)
H22A0.47521.36760.59770.073*
H22B0.41571.19190.55960.073*
C230.4142 (14)1.3758 (13)0.4597 (7)0.044 (2)
H23A0.29631.33440.44220.067*
H23B0.40771.49570.46690.067*
C240.5476 (14)1.3309 (10)0.3912 (6)0.039 (2)
H24A0.50131.24390.35190.058*
H24B0.57771.42710.35550.058*
N20.7022 (9)1.2728 (8)0.4433 (5)0.0318 (15)
C250.8664 (15)1.2261 (15)0.4017 (7)0.054 (3)
H25A0.94401.17090.44470.081*
H25B0.92461.32410.38020.081*
H25C0.83981.15230.35260.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0272 (3)0.0267 (3)0.0236 (3)0.0001 (2)0.00088 (17)0.0008 (2)
Br10.0654 (6)0.0450 (6)0.0264 (4)0.0128 (5)0.0054 (4)0.0004 (4)
Br20.0533 (6)0.0323 (5)0.0387 (5)0.0113 (4)0.0088 (4)0.0072 (4)
C10.031 (4)0.039 (5)0.044 (5)0.008 (4)0.002 (4)0.003 (4)
C20.034 (5)0.048 (5)0.050 (6)0.017 (4)0.002 (4)0.001 (4)
O10.040 (3)0.037 (3)0.032 (3)0.010 (3)0.005 (3)0.010 (3)
C110.030 (4)0.029 (4)0.035 (5)0.001 (3)0.001 (3)0.004 (3)
C120.037 (5)0.037 (4)0.046 (6)0.009 (4)0.008 (4)0.008 (4)
C130.049 (5)0.045 (5)0.038 (5)0.006 (4)0.007 (4)0.009 (4)
C140.042 (5)0.029 (4)0.038 (5)0.003 (4)0.000 (4)0.007 (4)
N10.033 (3)0.032 (4)0.032 (4)0.004 (3)0.000 (3)0.005 (3)
C150.035 (4)0.049 (5)0.036 (5)0.002 (4)0.009 (4)0.002 (4)
O20.035 (3)0.048 (3)0.027 (3)0.008 (3)0.005 (3)0.003 (3)
C210.039 (4)0.029 (4)0.017 (4)0.003 (3)0.003 (3)0.001 (3)
C220.042 (5)0.071 (7)0.032 (5)0.010 (5)0.001 (4)0.002 (5)
C230.044 (5)0.047 (5)0.042 (5)0.007 (4)0.006 (4)0.000 (4)
C240.057 (5)0.030 (4)0.029 (5)0.002 (4)0.011 (4)0.002 (3)
N20.038 (4)0.026 (3)0.032 (4)0.000 (3)0.001 (3)0.001 (3)
C250.058 (6)0.068 (7)0.037 (6)0.012 (5)0.017 (5)0.004 (5)
Geometric parameters (Å, º) top
Sn1—C12.098 (8)C14—H14A0.9700
Sn1—C22.114 (9)C14—H14B0.9700
Sn1—O22.323 (6)N1—C151.429 (12)
Sn1—O12.345 (6)C15—H15A0.9600
Sn1—Br22.6738 (10)C15—H15B0.9600
Sn1—Br12.6761 (12)C15—H15C0.9600
C1—H1A0.9600O2—C211.234 (10)
C1—H1B0.9600C21—N21.315 (11)
C1—H1C0.9600C21—C221.512 (13)
C2—H2A0.9600C22—C231.549 (14)
C2—H2B0.9600C22—H22A0.9700
C2—H2C0.9600C22—H22B0.9700
O1—C111.252 (10)C23—C241.499 (15)
C11—N11.336 (11)C23—H23A0.9700
C11—C121.497 (12)C23—H23B0.9700
C12—C131.527 (13)C24—N21.449 (12)
C12—H12A0.9700C24—H24A0.9700
C12—H12B0.9700C24—H24B0.9700
C13—C141.539 (13)N2—C251.445 (12)
C13—H13A0.9700C25—H25A0.9600
C13—H13B0.9700C25—H25B0.9600
C14—N11.478 (11)C25—H25C0.9600
C1—Sn1—C2169.7 (4)C13—C14—H14A111.1
C1—Sn1—O290.9 (3)N1—C14—H14B111.1
C2—Sn1—O283.8 (3)C13—C14—H14B111.1
C1—Sn1—O187.7 (3)H14A—C14—H14B109.1
C2—Sn1—O182.8 (3)C11—N1—C15124.8 (7)
O2—Sn1—O182.2 (2)C11—N1—C14113.3 (7)
C1—Sn1—Br293.8 (3)C15—N1—C14121.8 (7)
C2—Sn1—Br295.1 (3)N1—C15—H15A109.5
O2—Sn1—Br290.11 (15)N1—C15—H15B109.5
O1—Sn1—Br2172.17 (15)H15A—C15—H15B109.5
C1—Sn1—Br190.9 (3)N1—C15—H15C109.5
C2—Sn1—Br193.5 (3)H15A—C15—H15C109.5
O2—Sn1—Br1173.67 (15)H15B—C15—H15C109.5
O1—Sn1—Br191.81 (15)C21—O2—Sn1138.9 (5)
Br2—Sn1—Br195.85 (3)O2—C21—N2124.6 (8)
Sn1—C1—H1A109.5O2—C21—C22126.3 (7)
Sn1—C1—H1B109.5N2—C21—C22109.1 (7)
H1A—C1—H1B109.5C21—C22—C23103.2 (8)
Sn1—C1—H1C109.5C21—C22—H22A111.1
H1A—C1—H1C109.5C23—C22—H22A111.1
H1B—C1—H1C109.5C21—C22—H22B111.1
Sn1—C2—H2A109.5C23—C22—H22B111.1
Sn1—C2—H2B109.5H22A—C22—H22B109.1
H2A—C2—H2B109.5C24—C23—C22105.5 (8)
Sn1—C2—H2C109.5C24—C23—H23A110.6
H2A—C2—H2C109.5C22—C23—H23A110.6
H2B—C2—H2C109.5C24—C23—H23B110.6
C11—O1—Sn1133.9 (5)C22—C23—H23B110.6
O1—C11—N1122.6 (8)H23A—C23—H23B108.8
O1—C11—C12128.5 (8)N2—C24—C23104.2 (8)
N1—C11—C12108.9 (7)N2—C24—H24A110.9
C11—C12—C13105.1 (7)C23—C24—H24A110.9
C11—C12—H12A110.7N2—C24—H24B110.9
C13—C12—H12A110.7C23—C24—H24B110.9
C11—C12—H12B110.7H24A—C24—H24B108.9
C13—C12—H12B110.7C21—N2—C25123.0 (8)
H12A—C12—H12B108.8C21—N2—C24115.0 (7)
C12—C13—C14103.3 (7)C25—N2—C24121.7 (8)
C12—C13—H13A111.1N2—C25—H25A109.5
C14—C13—H13A111.1N2—C25—H25B109.5
C12—C13—H13B111.1H25A—C25—H25B109.5
C14—C13—H13B111.1N2—C25—H25C109.5
H13A—C13—H13B109.1H25A—C25—H25C109.5
N1—C14—C13103.2 (7)H25B—C25—H25C109.5
N1—C14—H14A111.1
C1—Sn1—O1—C1161.7 (8)C1—Sn1—O2—C2152.6 (9)
C2—Sn1—O1—C11114.2 (8)C2—Sn1—O2—C21136.3 (9)
O2—Sn1—O1—C1129.5 (8)O1—Sn1—O2—C21140.1 (9)
Br2—Sn1—O1—C1139.4 (17)Br2—Sn1—O2—C2141.2 (9)
Br1—Sn1—O1—C11152.5 (8)Br1—Sn1—O2—C21158.6 (11)
Sn1—O1—C11—N1152.4 (6)Sn1—O2—C21—N2171.3 (6)
Sn1—O1—C11—C1228.4 (13)Sn1—O2—C21—C2210.7 (15)
O1—C11—C12—C13165.2 (9)O2—C21—C22—C23170.4 (9)
N1—C11—C12—C1315.5 (10)N2—C21—C22—C2311.4 (10)
C11—C12—C13—C1423.7 (10)C21—C22—C23—C2416.7 (11)
C12—C13—C14—N123.1 (10)C22—C23—C24—N216.0 (10)
O1—C11—N1—C152.2 (13)O2—C21—N2—C255.7 (14)
C12—C11—N1—C15177.1 (8)C22—C21—N2—C25172.5 (9)
O1—C11—N1—C14179.4 (8)O2—C21—N2—C24179.7 (8)
C12—C11—N1—C140.1 (10)C22—C21—N2—C241.4 (10)
C13—C14—N1—C1115.1 (10)C23—C24—N2—C219.7 (10)
C13—C14—N1—C15167.6 (8)C23—C24—N2—C25176.3 (9)
(III) cis-diiodo-trans-dimethyl-cis-bis(N-methylpyrrolidin-2-one-O)tin(IV) top
Crystal data top
[SnI2(CH3)2(C5H9NO)2]F(000) = 564
Mr = 600.82Dx = 2.103 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71069 Å
a = 7.396 (1) ÅCell parameters from 7279 reflections
b = 8.327 (2) Åθ = 2.5–27.1°
c = 15.406 (3) ŵ = 4.60 mm1
β = 90.31 (3)°T = 173 K
V = 948.8 (3) Å3Parallelepiped, pale yellow
Z = 20.07 × 0.07 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3469 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.1°, θmin = 2.5°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 99
652 frames via ω–rotation (Δω=1°) at different θ values and 2 × 50 s per frame scansk = 1010
7279 measured reflectionsl = 1918
3944 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.043Calculated w = 1/[σ2(Fo2) + (0.0075P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3944 reflectionsΔρmax = 0.54 e Å3
176 parametersΔρmin = 0.58 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[SnI2(CH3)2(C5H9NO)2]V = 948.8 (3) Å3
Mr = 600.82Z = 2
Monoclinic, PnMo Kα radiation
a = 7.396 (1) ŵ = 4.60 mm1
b = 8.327 (2) ÅT = 173 K
c = 15.406 (3) Å0.07 × 0.07 × 0.05 mm
β = 90.31 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3469 reflections with I > 2σ(I)
7279 measured reflectionsRint = 0.026
3944 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.043Δρmax = 0.54 e Å3
S = 0.95Δρmin = 0.58 e Å3
3944 reflectionsAbsolute structure: Flack (1983)
176 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Experimental. The data collections covered the whole sphere of reciprocal space. The crystal to detector distance was 3.5 cm. Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there were no indications for any decay. The structures were solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods (Sheldrick, 1997).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.17025 (3)0.16182 (3)0.265668 (19)0.02513 (8)
I10.11786 (4)0.09018 (4)0.08104 (2)0.04197 (9)
I20.32774 (4)0.47681 (4)0.23350 (2)0.04508 (10)
C10.4183 (6)0.0370 (6)0.2654 (3)0.0345 (11)
H1A0.39850.07320.24510.052*
H1B0.50310.09140.22650.052*
H1C0.46870.03500.32430.052*
C20.0948 (6)0.2547 (6)0.2792 (4)0.0440 (13)
H2A0.12870.25370.34060.066*
H2B0.09860.36520.25730.066*
H2C0.17980.18820.24600.066*
O10.0322 (4)0.0772 (3)0.3068 (2)0.0358 (8)
C110.0500 (6)0.1724 (5)0.3689 (3)0.0275 (10)
C120.2110 (6)0.1945 (6)0.4272 (3)0.0366 (12)
H12A0.31040.24930.39620.055*
H12B0.25550.08980.44910.055*
C130.1407 (7)0.2984 (6)0.5017 (4)0.0465 (13)
H13A0.10780.23130.55220.070*
H13B0.23280.37780.52010.070*
C140.0251 (6)0.3819 (5)0.4641 (3)0.0362 (11)
H14A0.12280.38950.50760.054*
H14B0.00490.49110.44320.054*
N10.0771 (4)0.2763 (4)0.3920 (2)0.0274 (8)
C150.2502 (6)0.2939 (5)0.3471 (3)0.0383 (12)
H15A0.25450.39840.31790.057*
H15B0.34870.28690.38920.057*
H15C0.26350.20810.30400.057*
O20.1951 (4)0.2021 (4)0.41256 (19)0.0334 (7)
C210.3060 (6)0.2570 (5)0.4671 (3)0.0305 (11)
C220.4945 (7)0.3164 (7)0.4517 (3)0.0509 (15)
H22A0.57420.22690.43380.076*
H22B0.49510.39940.40570.076*
C230.5574 (7)0.3862 (6)0.5369 (3)0.0443 (13)
H23A0.67770.34320.55310.066*
H23B0.56510.50470.53330.066*
C240.4133 (7)0.3349 (6)0.6040 (3)0.0410 (13)
H24A0.36920.42850.63740.062*
H24B0.46260.25410.64490.062*
N20.2699 (5)0.2668 (4)0.5505 (2)0.0318 (9)
C250.1064 (7)0.2000 (7)0.5897 (4)0.0589 (15)
H25A0.13950.11100.62830.088*
H25B0.04500.28370.62320.088*
H25C0.02530.16070.54390.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02255 (15)0.02833 (15)0.02450 (16)0.00168 (13)0.00268 (12)0.00072 (13)
I10.0527 (2)0.04596 (19)0.02711 (18)0.01084 (16)0.00914 (14)0.00003 (15)
I20.0610 (2)0.03703 (17)0.03705 (19)0.01835 (17)0.01809 (16)0.01022 (16)
C10.028 (3)0.042 (3)0.033 (3)0.003 (2)0.003 (2)0.006 (2)
C20.021 (3)0.051 (3)0.060 (3)0.006 (2)0.004 (2)0.006 (3)
O10.0325 (18)0.0388 (18)0.0359 (19)0.0064 (15)0.0073 (15)0.0111 (16)
C110.030 (3)0.026 (2)0.027 (3)0.002 (2)0.001 (2)0.000 (2)
C120.030 (3)0.039 (3)0.040 (3)0.002 (2)0.007 (2)0.003 (2)
C130.046 (3)0.048 (3)0.045 (3)0.000 (2)0.014 (2)0.014 (3)
C140.039 (3)0.033 (3)0.037 (3)0.000 (2)0.000 (2)0.010 (2)
N10.024 (2)0.032 (2)0.026 (2)0.0019 (16)0.0032 (16)0.0011 (16)
C150.027 (3)0.040 (3)0.047 (3)0.008 (2)0.006 (2)0.003 (2)
O20.0301 (18)0.0442 (18)0.0258 (18)0.0063 (14)0.0006 (15)0.0022 (15)
C210.037 (3)0.024 (2)0.030 (3)0.001 (2)0.004 (2)0.004 (2)
C220.037 (3)0.089 (4)0.027 (3)0.020 (3)0.012 (2)0.014 (3)
C230.050 (3)0.046 (3)0.037 (3)0.010 (2)0.010 (3)0.009 (2)
C240.055 (3)0.038 (3)0.030 (3)0.005 (2)0.013 (3)0.004 (2)
N20.038 (2)0.032 (2)0.025 (2)0.0008 (18)0.0040 (17)0.0008 (18)
C250.051 (4)0.078 (4)0.048 (3)0.013 (3)0.022 (3)0.005 (3)
Geometric parameters (Å, º) top
Sn1—C12.109 (4)C14—H14A0.9900
Sn1—C22.119 (4)C14—H14B0.9900
Sn1—O22.294 (3)N1—C151.459 (5)
Sn1—O12.326 (3)C15—H15A0.9800
Sn1—I22.9135 (7)C15—H15B0.9800
Sn1—I12.9299 (7)C15—H15C0.9800
C1—H1A0.9800O2—C211.257 (5)
C1—H1B0.9800C21—N21.317 (5)
C1—H1C0.9800C21—C221.500 (6)
C2—H2A0.9800C22—C231.508 (7)
C2—H2B0.9800C22—H22A0.9900
C2—H2C0.9800C22—H22B0.9900
O1—C111.249 (5)C23—C241.549 (7)
C11—N11.328 (5)C23—H23A0.9900
C11—C121.499 (6)C23—H23B0.9900
C12—C131.530 (6)C24—N21.455 (6)
C12—H12A0.9900C24—H24A0.9900
C12—H12B0.9900C24—H24B0.9900
C13—C141.521 (7)N2—C251.464 (6)
C13—H13A0.9900C25—H25A0.9800
C13—H13B0.9900C25—H25B0.9800
C14—N11.467 (6)C25—H25C0.9800
C1—Sn1—C2170.3 (2)C13—C14—H14A111.2
C1—Sn1—O290.53 (15)N1—C14—H14B111.2
C2—Sn1—O285.33 (16)C13—C14—H14B111.2
C1—Sn1—O187.84 (15)H14A—C14—H14B109.1
C2—Sn1—O182.98 (16)C11—N1—C15124.0 (4)
O2—Sn1—O183.63 (11)C11—N1—C14114.3 (3)
C1—Sn1—I295.42 (13)C15—N1—C14121.6 (3)
C2—Sn1—I293.39 (14)N1—C15—H15A109.5
O2—Sn1—I290.35 (7)N1—C15—H15B109.5
O1—Sn1—I2173.19 (8)H15A—C15—H15B109.5
C1—Sn1—I190.46 (13)N1—C15—H15C109.5
C2—Sn1—I193.01 (15)H15A—C15—H15C109.5
O2—Sn1—I1175.46 (7)H15B—C15—H15C109.5
O1—Sn1—I191.98 (8)C21—O2—Sn1139.6 (3)
I2—Sn1—I193.960 (17)O2—C21—N2122.7 (4)
Sn1—C1—H1A109.5O2—C21—C22128.2 (4)
Sn1—C1—H1B109.5N2—C21—C22109.1 (4)
H1A—C1—H1B109.5C21—C22—C23105.8 (4)
Sn1—C1—H1C109.5C21—C22—H22A110.6
H1A—C1—H1C109.5C23—C22—H22A110.6
H1B—C1—H1C109.5C21—C22—H22B110.6
Sn1—C2—H2A109.5C23—C22—H22B110.6
Sn1—C2—H2B109.5H22A—C22—H22B108.7
H2A—C2—H2B109.5C22—C23—C24105.4 (4)
Sn1—C2—H2C109.5C22—C23—H23A110.7
H2A—C2—H2C109.5C24—C23—H23A110.7
H2B—C2—H2C109.5C22—C23—H23B110.7
C11—O1—Sn1135.0 (3)C24—C23—H23B110.7
O1—C11—N1123.2 (4)H23A—C23—H23B108.8
O1—C11—C12128.1 (4)N2—C24—C23103.4 (4)
N1—C11—C12108.7 (4)N2—C24—H24A111.1
C11—C12—C13104.3 (4)C23—C24—H24A111.1
C11—C12—H12A110.9N2—C24—H24B111.1
C13—C12—H12A110.9C23—C24—H24B111.1
C11—C12—H12B110.9H24A—C24—H24B109.1
C13—C12—H12B110.9C21—N2—C24115.2 (4)
H12A—C12—H12B108.9C21—N2—C25123.5 (4)
C14—C13—C12104.5 (4)C24—N2—C25121.0 (4)
C14—C13—H13A110.9N2—C25—H25A109.5
C12—C13—H13A110.9N2—C25—H25B109.5
C14—C13—H13B110.9H25A—C25—H25B109.5
C12—C13—H13B110.9N2—C25—H25C109.5
H13A—C13—H13B108.9H25A—C25—H25C109.5
N1—C14—C13102.8 (3)H25B—C25—H25C109.5
N1—C14—H14A111.2
C1—Sn1—O1—C1158.1 (4)C1—Sn1—O2—C2152.9 (4)
C2—Sn1—O1—C11118.7 (4)C2—Sn1—O2—C21135.9 (4)
O2—Sn1—O1—C1132.6 (4)O1—Sn1—O2—C21140.7 (4)
I2—Sn1—O1—C1160.7 (9)I2—Sn1—O2—C2142.5 (4)
I1—Sn1—O1—C11148.5 (4)I1—Sn1—O2—C21155.5 (7)
Sn1—O1—C11—N1160.0 (3)Sn1—O2—C21—N2177.4 (3)
Sn1—O1—C11—C1221.8 (7)Sn1—O2—C21—C224.2 (8)
O1—C11—C12—C13168.1 (4)O2—C21—C22—C23173.4 (4)
N1—C11—C12—C1313.5 (5)N2—C21—C22—C238.0 (5)
C11—C12—C13—C1422.1 (5)C21—C22—C23—C2410.5 (5)
C12—C13—C14—N122.3 (5)C22—C23—C24—N29.3 (5)
O1—C11—N1—C151.2 (6)O2—C21—N2—C24179.4 (4)
C12—C11—N1—C15177.3 (4)C22—C21—N2—C241.9 (5)
O1—C11—N1—C14177.3 (4)O2—C21—N2—C256.7 (7)
C12—C11—N1—C141.2 (5)C22—C21—N2—C25172.0 (4)
C13—C14—N1—C1115.4 (5)C23—C24—N2—C214.8 (5)
C13—C14—N1—C15168.4 (4)C23—C24—N2—C25178.8 (4)

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[SnCl2(CH3)2(C5H9NO)2][SnBr2(CH3)2(C5H9NO)2][SnI2(CH3)2(C5H9NO)2]
Mr417.92506.84600.82
Crystal system, space groupMonoclinic, P21/cMonoclinic, PnMonoclinic, Pn
Temperature (K)173173173
a, b, c (Å)7.8320 (16), 25.703 (5), 8.9840 (18)7.4750 (15), 8.0300 (16), 14.977 (3)7.396 (1), 8.327 (2), 15.406 (3)
β (°) 111.38 (3) 91.98 (3) 90.31 (3)
V3)1684.0 (6)898.4 (3)948.8 (3)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.835.874.60
Crystal size (mm)0.15 × 0.10 × 0.100.1 × 0.1 × 0.10.07 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6276, 3188, 2598 3025, 3019, 2893 7279, 3944, 3469
Rint0.0190.0050.026
(sin θ/λ)max1)0.6090.6090.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 0.98 0.038, 0.104, 1.12 0.024, 0.043, 0.95
No. of reflections318830193944
No. of parameters176177176
No. of restraints022
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.590.89, 0.850.54, 0.58
Absolute structure?Flack (1983)Flack (1983)
Absolute structure parameter?0.370 (13)0.01 (2)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1991), SHELXL97 and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···Cl1i0.972.903.662 (3)139
C14—H14B···Cl1ii0.972.823.698 (3)152
C24—H24B···Cl2iii0.972.993.916 (3)159
C22—H22B···Cl2iv0.972.823.742 (3)158
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds