Download citation
Download citation
link to html
In the title compound, C26H22N2O2S, the tetra­hydro­pyridine ring has a conformation intermediate between half-chair and sofa. The tetrahydroquinoline mean plane makes a dihedral angle of 73.3 (1)° with the cyclopentene ring, which adopts an envelope conformation, and an angle of 45.45 (4)° with the indole best plane. The dihedral angle between the benzene and pyrrole rings is 2.6 (1)°. The orientations of the phenyl ring on the sulfonyl group and of the indole are governed by weak C—H...O interactions. The packing of the mol­ecule in the solid state is stabilized by C—H...O and C—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000640/na1443sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000640/na1443Isup2.hkl
Contains datablock I

Comment top

Quinolines and indoles have been of interest for many years, since a large number of natural products contain these heterocyclic nuclei, and they are found in numerous commercial products including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). Tetrahydroquinoline derivatives exhibit antitumour activities (Jaton et al., 1997) and also act as potent antipsychotic agents (Norman et al., 1996), and a compound containing the tetrahydroquinoline moiety acts as an antischistosomal drug (Billings & Heidelberger, 1982). They also possess antiinflammatory (Ohnishi et al., 1981), antiamoebic (Bailey et al., 1979), antiulcer (Uchida et al., 1989) and analgesic (Shaaban et al., 1977) activities. In order to obtain detailed information on molecular conformation, the X-ray structure determination of the title compound, (I), has been carried out and the results are presented here. \scheme

The total puckering amplitude (Cremer & Pople, 1975) of the tetrahydropyridine ring, B, is QT = 0.450 (2) Å and the values of the lowest displacement asymmetry parameters (Nardelli, 1983a), Δ2(C6—C1) = 0.053 (1) and ΔS(C12) = 0.060 (1), are indicative of a conformation intermediate between half-chair and sofa. The total puckering amplitude of the cyclopentene ring, A, is QT = 0.276 (3) Å and the value ΔS(C11) = 0.004 (2) of the lowest asymmetry parameter is indicative of an envelope conformation. The cyclopentene ring makes a dihedral angle of 73.3 (1)° with the mean plane passing through the tetrahydroquinoline. The C7—C11—C12—C13 torsion angle of 175.1 (2)° is indicative of the way the indole substituent is bonded to the tetrahydroquinoline. The best plane through the tetrahydroquinoline makes a dihedral angle of 45.45 (4)° with the mean plane passing through the indole.

The indole system is not strictly planar, the dihedral angle formed by the benzo and pyrrole planes being 2.6 (1)°. Atom N15 deviates by 0.148 (2) Å from the mean plane passing through C14, C16 and S22. This slight pyramidalization behaviour is also observed in related indoles (Yokum & Fronczek, 1997; Beddoes et al., 1986). The torsion angles O23—S22—N15—C16 = 171.2 (2) and O23—S22—C25—C26 = 43.2 (2)° describe the conformation of the phenylsulfonyl group with respect to the indole system, which causes the best planes of the indole and phenyl rings to form a dihedral angle of 85.6 (1)°, as observed in similar structures (Yokum & Fronczek, 1997).

In the indole system, the endocyclic angles at C17 and C20 are contracted to 116.7 (2) and 118.5 (2)°, respectively, while those at C16 and C19 are expanded to 122.6 (2) and 121.2 (2)°, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by angular distortion rather than by bond length distortions. A similar effect has also been observed by Govindasamy et al. (1999) and Sivaraman et al. (1996, 1994). The bond distances S22O24 = 1.432 (2), S22O23 = 1.429 (2) and S22—C25 = 1.758 (2) Å are comparable with the reported values [SO = 1.435 (5) and S—C = 1.767 (7) Å; Govindasamy et al., 1998], whereas S22—N15 = 1.659 (2) Å varies appreciably from the reported value of 1.685 (5) Å.

The orientation of the phenyl ring, D, is conditioned by the weak interaction C30—H30···O24, while the orientation of the indole substituent is influenced by the weak interaction C17—H17···O24 (Table 2). The torsion angles O24—S22—C25—C30 = -1.3 (2), N15—S22—C25—C30 = 113.3 (2), O24—S22—N15—C16 = 41.3 (2) and S22—N15—C16—C17 = -18.2 (3)° quantitatively define these orientations.

Apart from the normal van der Waals interactions, the packing of the molecule in the solid state is stabilized by C—H···O and C—H···N type intermolecular hydrogen bonds (Table 2). O23 is involved in the formation of two hydrogen bonds by acting as an acceptor for C29—H29···O23 and C2—H2···O23 hydrogen bonds.

Experimental top

To a solution of 4-phenylsulfonyl-3-[N-phenylformimidoyl]-indol (0.648 g, 0.018 mol) and cyclopentadiene (0.237 g, 0.036 mol) in acetonitrile (10 ml) protected by a guard tube was added indium trichloride (0.081 g, 20 mol%) and the mixture was stirred at room temperature for 30 min. Water (20 ml) was added to the reaction mixture, which was then extracted with chloroform (3 × 10 ml), washed with brine (10 ml), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromotography using silica gel (60–120 mesh) and eluted with petroleum ether:ethyl acetate (90:10) to afford compound (I) (yield 83%).

Refinement top

All H atoms were geometrically fixed and allowed to ride on the corresponding non-H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983b, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are omitted for clarity.
4-[1-(phenylsulfonyl)indol-3-yl]-3a,4,5,9 b-tetrahydro-3H-cyclopenta[c] quinoline top
Crystal data top
C26H22N2O2SF(000) = 896
Mr = 426.52Dx = 1.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.4515 (2) ÅCell parameters from 8192 reflections
b = 8.6572 (1) Åθ = 1.5–28.3°
c = 22.6109 (4) ŵ = 0.17 mm1
β = 90.864 (1)°T = 293 K
V = 2241.34 (6) Å3Block, pale yellow
Z = 40.48 × 0.34 × 0.28 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
3542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω scansh = 915
14562 measured reflectionsk = 1110
5435 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Calculated w = 1/[σ2(Fo2) + (0.0586P)2 + 0.9637P]
where P = (Fo2 + 2Fc2)/3
5435 reflections(Δ/σ)max = 0.003
280 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C26H22N2O2SV = 2241.34 (6) Å3
Mr = 426.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4515 (2) ŵ = 0.17 mm1
b = 8.6572 (1) ÅT = 293 K
c = 22.6109 (4) Å0.48 × 0.34 × 0.28 mm
β = 90.864 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
3542 reflections with I > 2σ(I)
14562 measured reflectionsRint = 0.040
5435 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
5435 reflectionsΔρmin = 0.49 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S220.09906 (5)0.89569 (7)0.14903 (2)0.04548 (17)
N10.17275 (15)0.7366 (2)0.08121 (7)0.0405 (4)
H10.12590.69440.05660.049*
C10.21563 (17)0.6527 (2)0.12960 (9)0.0373 (5)
C20.1558 (2)0.5209 (3)0.14855 (10)0.0458 (5)
H20.08720.49200.13000.055*
C30.1979 (2)0.4323 (3)0.19494 (11)0.0558 (6)
H30.15760.34420.20700.067*
C40.2997 (2)0.4745 (3)0.22330 (11)0.0587 (7)
H40.32700.41660.25490.070*
C50.3595 (2)0.6031 (3)0.20410 (11)0.0555 (6)
H50.42810.63070.22290.067*
C60.32030 (19)0.6942 (3)0.15712 (9)0.0435 (5)
C70.3912 (2)0.8324 (3)0.13577 (12)0.0587 (7)
H70.39580.91080.16690.070*
C80.5118 (2)0.7827 (4)0.11617 (19)0.0909 (11)
H80.57180.75890.14190.109*
C90.5215 (2)0.7773 (5)0.05875 (19)0.0963 (12)
H90.58960.74790.03880.116*
C100.4104 (2)0.8237 (4)0.02762 (13)0.0692 (8)
H10A0.42650.89350.00510.083*
H10B0.36830.73440.01330.083*
C110.3436 (2)0.9046 (3)0.07785 (11)0.0509 (6)
H110.36601.01380.07730.061*
C120.20972 (18)0.8964 (2)0.07387 (9)0.0388 (5)
H120.17470.95920.10550.047*
C130.16867 (17)0.9554 (2)0.01463 (9)0.0367 (4)
C140.13398 (18)0.8687 (2)0.03160 (9)0.0402 (5)
H140.12680.76170.03120.048*
N150.11016 (15)0.9643 (2)0.08083 (7)0.0410 (4)
C160.13558 (17)1.1183 (2)0.06448 (9)0.0376 (4)
C170.1286 (2)1.2546 (3)0.09697 (11)0.0487 (6)
H170.10861.25450.13670.058*
C180.1527 (2)1.3904 (3)0.06718 (13)0.0598 (7)
H180.14881.48370.08740.072*
C190.1828 (2)1.3911 (3)0.00749 (13)0.0614 (7)
H190.19761.48470.01110.074*
C200.1910 (2)1.2553 (3)0.02437 (11)0.0503 (6)
H200.21101.25670.06410.060*
C210.16843 (17)1.1156 (2)0.00449 (9)0.0377 (4)
O230.05471 (16)0.7424 (2)0.14217 (8)0.0607 (5)
O240.03703 (16)1.0085 (2)0.18261 (8)0.0651 (5)
C250.2432 (2)0.8834 (3)0.17661 (9)0.0454 (5)
C260.3183 (2)0.7746 (3)0.15305 (13)0.0637 (7)
H260.29420.71230.12170.076*
C270.4306 (3)0.7602 (4)0.17707 (15)0.0758 (8)
H270.48180.68760.16180.091*
C280.4654 (3)0.8522 (4)0.22296 (15)0.0769 (9)
H280.54000.84100.23910.092*
C290.3917 (3)0.9608 (4)0.24543 (14)0.0811 (9)
H290.41731.02400.27630.097*
C300.2787 (3)0.9782 (3)0.22280 (11)0.0645 (7)
H300.22841.05160.23830.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S220.0463 (3)0.0502 (3)0.0401 (3)0.0093 (3)0.0072 (2)0.0003 (2)
N10.0380 (9)0.0444 (10)0.0395 (9)0.0096 (8)0.0070 (7)0.0065 (8)
C10.0359 (11)0.0421 (11)0.0338 (10)0.0011 (9)0.0032 (8)0.0005 (9)
C20.0419 (12)0.0507 (13)0.0446 (12)0.0025 (10)0.0038 (9)0.0064 (10)
C30.0636 (16)0.0520 (14)0.0517 (14)0.0033 (12)0.0091 (12)0.0142 (11)
C40.0683 (17)0.0633 (17)0.0447 (13)0.0149 (14)0.0021 (12)0.0111 (12)
C50.0540 (14)0.0652 (17)0.0477 (13)0.0087 (13)0.0134 (11)0.0035 (12)
C60.0414 (12)0.0486 (13)0.0405 (11)0.0011 (10)0.0046 (9)0.0048 (10)
C70.0491 (14)0.0608 (16)0.0669 (16)0.0120 (12)0.0206 (12)0.0031 (13)
C80.0386 (15)0.117 (3)0.117 (3)0.0157 (17)0.0149 (16)0.038 (2)
C90.0362 (15)0.130 (3)0.122 (3)0.0020 (17)0.0197 (17)0.034 (3)
C100.0417 (14)0.087 (2)0.0782 (19)0.0050 (14)0.0117 (12)0.0167 (16)
C110.0443 (13)0.0465 (13)0.0621 (15)0.0144 (11)0.0070 (10)0.0058 (11)
C120.0397 (11)0.0376 (11)0.0391 (11)0.0012 (9)0.0004 (8)0.0001 (9)
C130.0332 (10)0.0366 (10)0.0402 (11)0.0018 (9)0.0042 (8)0.0003 (9)
C140.0456 (12)0.0347 (11)0.0401 (11)0.0029 (9)0.0017 (9)0.0046 (9)
N150.0470 (10)0.0376 (9)0.0382 (9)0.0048 (8)0.0002 (8)0.0029 (8)
C160.0334 (10)0.0336 (11)0.0456 (11)0.0001 (8)0.0048 (8)0.0009 (9)
C170.0494 (13)0.0414 (13)0.0551 (14)0.0037 (10)0.0033 (10)0.0099 (11)
C180.0648 (16)0.0350 (13)0.0793 (19)0.0038 (11)0.0043 (13)0.0110 (13)
C190.0693 (17)0.0336 (12)0.0811 (19)0.0003 (12)0.0042 (14)0.0083 (13)
C200.0537 (14)0.0413 (13)0.0558 (14)0.0006 (11)0.0026 (11)0.0084 (11)
C210.0336 (10)0.0343 (11)0.0449 (11)0.0007 (9)0.0064 (8)0.0018 (9)
O230.0629 (11)0.0585 (11)0.0607 (11)0.0264 (9)0.0002 (8)0.0088 (9)
O240.0638 (11)0.0788 (13)0.0535 (10)0.0035 (10)0.0217 (9)0.0084 (9)
C250.0514 (13)0.0461 (13)0.0386 (11)0.0091 (11)0.0018 (9)0.0051 (10)
C260.0611 (16)0.0642 (17)0.0655 (17)0.0012 (14)0.0096 (13)0.0089 (14)
C270.0642 (18)0.0701 (19)0.093 (2)0.0085 (15)0.0094 (16)0.0000 (17)
C280.0699 (19)0.073 (2)0.087 (2)0.0109 (17)0.0268 (16)0.0141 (17)
C290.097 (2)0.080 (2)0.0653 (19)0.018 (2)0.0340 (17)0.0033 (16)
C300.0802 (19)0.0637 (17)0.0491 (14)0.0035 (15)0.0099 (13)0.0071 (13)
Geometric parameters (Å, º) top
S22—O231.429 (2)C11—H110.9800
S22—O241.432 (2)C12—C131.515 (3)
S22—N151.659 (2)C12—H120.9800
S22—C251.758 (2)C13—C141.352 (3)
N1—C11.408 (3)C13—C211.452 (3)
N1—C121.456 (3)C14—N151.417 (3)
N1—H10.8600C14—H140.9300
C1—C21.394 (3)N15—C161.415 (3)
C1—C61.406 (3)C16—C171.393 (3)
C2—C31.392 (3)C16—C211.413 (3)
C2—H20.9300C17—C181.385 (3)
C3—C41.387 (4)C17—H170.9300
C3—H30.9300C18—C191.398 (4)
C4—C51.374 (4)C18—H180.9300
C4—H40.9300C19—C201.383 (3)
C5—C61.402 (3)C19—H190.9300
C5—H50.9300C20—C211.400 (3)
C6—C71.521 (3)C20—H200.9300
C7—C81.506 (4)C25—C301.385 (3)
C7—C111.557 (3)C25—C261.388 (3)
C7—H70.9800C26—C271.393 (4)
C8—C91.302 (5)C26—H260.9300
C8—H80.9300C27—C281.363 (4)
C9—C101.518 (4)C27—H270.9300
C9—H90.9300C28—C291.366 (4)
C10—C111.529 (4)C28—H280.9300
C10—H10A0.9700C29—C301.392 (4)
C10—H10B0.9700C29—H290.9300
C11—C121.539 (3)C30—H300.9300
O23—S22—O24120.9 (1)N1—C12—C13109.1 (2)
O23—S22—N15105.3 (1)N1—C12—C11109.0 (2)
O24—S22—N15107.1 (1)C13—C12—C11111.0 (2)
O23—S22—C25108.2 (1)N1—C12—H12109.2
O24—S22—C25108.9 (1)C13—C12—H12109.2
N15—S22—C25105.5 (1)C11—C12—H12109.2
C1—N1—C12118.3 (2)C14—C13—C21107.4 (2)
C1—N1—H1120.8C14—C13—C12126.5 (2)
C12—N1—H1120.8C21—C13—C12126.0 (2)
C2—C1—C6119.4 (2)C13—C14—N15110.22 (18)
C2—C1—N1119.0 (2)C13—C14—H14124.9
C6—C1—N1121.5 (2)N15—C14—H14124.9
C3—C2—C1120.6 (2)C16—N15—C14107.6 (2)
C3—C2—H2119.7C16—N15—S22126.8 (1)
C1—C2—H2119.7C14—N15—S22122.7 (2)
C4—C3—C2120.4 (2)C17—C16—C21122.6 (2)
C4—C3—H3119.8C17—C16—N15130.3 (2)
C2—C3—H3119.8C21—C16—N15107.1 (2)
C5—C4—C3119.0 (2)C18—C17—C16116.7 (2)
C5—C4—H4120.5C18—C17—H17121.7
C3—C4—H4120.5C16—C17—H17121.7
C4—C5—C6122.1 (2)C17—C18—C19121.8 (2)
C4—C5—H5118.9C17—C18—H18119.1
C6—C5—H5118.9C19—C18—H18119.1
C5—C6—C1118.5 (2)C20—C19—C18121.2 (2)
C5—C6—C7120.5 (2)C20—C19—H19119.4
C1—C6—C7121.0 (2)C18—C19—H19119.4
C8—C7—C6110.6 (2)C19—C20—C21118.5 (2)
C8—C7—C11101.4 (2)C19—C20—H20120.7
C6—C7—C11113.0 (2)C21—C20—H20120.7
C8—C7—H7110.5C20—C21—C16119.1 (2)
C6—C7—H7110.5C20—C21—C13133.2 (2)
C11—C7—H7110.5C16—C21—C13107.7 (2)
C9—C8—C7111.6 (3)C30—C25—C26121.0 (2)
C9—C8—H8124.2C30—C25—S22119.7 (2)
C7—C8—H8124.2C26—C25—S22119.3 (2)
C8—C9—C10113.2 (3)C25—C26—C27119.0 (3)
C8—C9—H9123.4C25—C26—H26120.5
C10—C9—H9123.4C27—C26—H26120.5
C9—C10—C11101.0 (2)C28—C27—C26120.1 (3)
C9—C10—H10A111.6C28—C27—H27119.9
C11—C10—H10A111.6C26—C27—H27119.9
C9—C10—H10B111.6C27—C28—C29120.7 (3)
C11—C10—H10B111.6C27—C28—H28119.7
H10A—C10—H10B109.4C29—C28—H28119.7
C10—C11—C12115.0 (2)C28—C29—C30120.9 (3)
C10—C11—C7105.3 (2)C28—C29—H29119.5
C12—C11—C7113.1 (2)C30—C29—H29119.5
C10—C11—H11107.7C25—C30—C29118.3 (3)
C12—C11—H11107.7C25—C30—H30120.9
C7—C11—H11107.7C29—C30—H30120.9
C12—N1—C1—C2159.9 (2)C13—C14—N15—S22163.8 (2)
C12—N1—C1—C623.4 (3)O23—S22—N15—C16171.2 (2)
C6—C1—C2—C31.1 (3)O24—S22—N15—C1641.3 (2)
N1—C1—C2—C3177.8 (2)C25—S22—N15—C1674.5 (2)
C1—C2—C3—C40.5 (4)O23—S22—N15—C1430.8 (2)
C2—C3—C4—C51.4 (4)O24—S22—N15—C14160.6 (2)
C3—C4—C5—C60.7 (4)C25—S22—N15—C1483.6 (2)
C4—C5—C6—C10.8 (4)C14—N15—C16—C17179.0 (2)
C4—C5—C6—C7177.8 (2)S22—N15—C16—C1718.2 (3)
C2—C1—C6—C51.7 (3)C14—N15—C16—C213.1 (2)
N1—C1—C6—C5178.4 (2)S22—N15—C16—C21163.9 (2)
C2—C1—C6—C7177.0 (2)C21—C16—C17—C181.6 (3)
N1—C1—C6—C70.3 (3)N15—C16—C17—C18176.1 (2)
C5—C6—C7—C858.8 (3)C16—C17—C18—C190.0 (4)
C1—C6—C7—C8119.9 (3)C17—C18—C19—C200.7 (4)
C5—C6—C7—C11171.7 (2)C18—C19—C20—C210.0 (4)
C1—C6—C7—C117.0 (3)C19—C20—C21—C161.5 (3)
C6—C7—C8—C9103.0 (3)C19—C20—C21—C13179.9 (2)
C11—C7—C8—C917.1 (4)C17—C16—C21—C202.3 (3)
C7—C8—C9—C100.6 (5)N15—C16—C21—C20175.8 (2)
C8—C9—C10—C1116.4 (4)C17—C16—C21—C13178.9 (2)
C9—C10—C11—C12150.9 (2)N15—C16—C21—C133.0 (2)
C9—C10—C11—C725.7 (3)C14—C13—C21—C20176.8 (2)
C8—C7—C11—C1026.3 (3)C12—C13—C21—C207.7 (4)
C6—C7—C11—C1092.0 (2)C14—C13—C21—C161.8 (2)
C8—C7—C11—C12152.7 (2)C12—C13—C21—C16173.7 (2)
C6—C7—C11—C1234.4 (3)O23—S22—C25—C30134.4 (2)
C1—N1—C12—C13171.4 (2)O24—S22—C25—C301.3 (2)
C1—N1—C12—C1150.0 (2)N15—S22—C25—C30113.3 (2)
C10—C11—C12—N166.1 (2)O23—S22—C25—C2643.2 (2)
C7—C11—C12—N154.9 (3)O24—S22—C25—C26176.3 (2)
C10—C11—C12—C1354.1 (3)N15—S22—C25—C2669.0 (2)
C7—C11—C12—C13175.1 (2)C30—C25—C26—C270.8 (4)
N1—C12—C13—C1417.7 (3)S22—C25—C26—C27176.8 (2)
C11—C12—C13—C14102.5 (2)C25—C26—C27—C280.1 (5)
N1—C12—C13—C21167.6 (2)C26—C27—C28—C290.9 (5)
C11—C12—C13—C2172.2 (3)C27—C28—C29—C301.2 (5)
C21—C13—C14—N150.2 (2)C26—C25—C30—C290.5 (4)
C12—C13—C14—N15175.7 (2)S22—C25—C30—C29177.1 (2)
C13—C14—N15—C162.1 (2)C28—C29—C30—C250.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O240.932.513.074 (3)119
C30—H30···O240.932.542.912 (3)104
C29—H29···O23i0.932.663.568 (4)166
C2—H2···O23ii0.932.613.323 (3)134
C19—H19···N1iii0.932.713.602 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H22N2O2S
Mr426.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.4515 (2), 8.6572 (1), 22.6109 (4)
β (°) 90.864 (1)
V3)2241.34 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.48 × 0.34 × 0.28
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14562, 5435, 3542
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.149, 1.02
No. of reflections5435
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.49

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), ZORTEP (Zsolnai, 1997), SHELXL97 and PARST (Nardelli, 1983b, 1995).

Selected geometric parameters (Å, º) top
S22—O231.429 (2)S22—O241.432 (2)
O23—S22—O24120.9 (1)N15—S22—C25105.5 (1)
O23—S22—N15105.3 (1)C16—N15—C14107.6 (2)
O24—S22—N15107.1 (1)C16—N15—S22126.8 (1)
O23—S22—C25108.2 (1)C14—N15—S22122.7 (2)
O24—S22—C25108.9 (1)
C1—N1—C12—C13171.4 (2)N15—S22—C25—C2669.0 (2)
C7—C11—C12—C13175.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O240.932.513.074 (3)119
C30—H30···O240.932.542.912 (3)104
C29—H29···O23i0.932.663.568 (4)166
C2—H2···O23ii0.932.613.323 (3)134
C19—H19···N1iii0.932.713.602 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds