Download citation
Download citation
link to html
Two diazapyrenes, 5,10-dimethyl-4,9-diazapyrene (1) and novel 2,7-dimethyl-4,9-diazapyrene (2) have been synthesized. Their crystal structures are reported here and are the first representatives of diazapyrenes. Crystal data: (1) monoclinic, P21/c, a = 4.0246 (5), b = 15.5147 (5), c = 9.1453 (9) Å, β = 101.23 (1)°, V = 560.1 (1) Å3, Z = 2, R = 0.043; (2) monoclinic, C2/m, a = 12.4968 (3), b = 11.4751 (4), c = 3.9615 (5) Å, β = 96.80 (1)°, V = 564.09 (5) Å3, Z = 2, R = 0.0405. The experimental bond lengths are compared with those calculated by molecular mechanics (MM3), semi-empirical methods (MOPAC6.0-PM3, AM1, MNDO) and values predicted by valence-bond and variable-electronegativity self-consistent field (VESCF) methods. π\cdotsπ interactions in (1), (2) and seventeen other pyrene and pyrene-like molecules selected from the Cambridge Structural Database [Allen & Kennard (1993). Chem. Des. Autom. News, 8, 131–137] have been studied. The following quantitative parameters of π\cdotsπ interactions have been calculated: the shortest crystallographic axis, the offset parameter, the interplanar angle, the interactive volume and the overlapping surfaces. They are used for the classification of crystal-packing motifs; a high predominance of β and a few cases of γ and sandwich-herringbone types are observed. In addition, electronegativity, the sum of partial atomic charges of the ring non-H atoms and the number of aromatic skeleton electrons are used as parameters for classification. MOPAC-PM3 was used to calculate the partial atomic charges in (1), (2) and pyrene analogues. Correlations between geometrical and electronic structure parameters reveal an analogy between the β-type structures and the crystal structure of graphite.

Supporting information

cif

Crystallographic Information File (CIF)
Contains datablocks global, DIAZA1, DIAZA2

fcf

Structure factor file (CIF format)
Contains datablock pppp

fcf

Structure factor file (CIF format)
Contains datablock pian1

pdf

Portable Document Format (PDF) file
Supplementary material

CCDC references: 131753; 131754

Computing details top

For both compounds, data collection: EXPRESS-CAD4 (Enraf Nonius 1992) software; cell refinement: CAD4 (Enraf Nonius 1988) software <CELDIM> routine; data reduction: HELENA (Spek, 1994). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985, 1990) for DIAZA1; SHELXS86 (Sheldrick, 1990) for DIAZA2. Program(s) used to refine structure: SHELX76 (Sheldrick, 1976) for DIAZA1; SHELXL93 (Sheldrick, 1993) for DIAZA2. For both compounds, molecular graphics: PLATON93 (Spek, 1982, 1990) & ORTEP (Johnson, 1965), PLUTON93 (Spek 1991); software used to prepare material for publication: PLATON93 (Spek 1982, 1990).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
(DIAZA1) 5,10-dimethyl-4,9-diazapyrene top
Crystal data top
C16H12N2F(000) = 244
Mr = 232.29Dx = 1.377 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 18 reflections
a = 4.0246 (5) Åθ = 11–42°
b = 15.5147 (5) ŵ = 0.60 mm1
c = 9.1453 (9) ÅT = 295 K
β = 101.23 (1)°Needle, colourless
V = 560.1 (1) Å30.3 × 0.04 × 0.04 mm
Z = 2
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.036
Radiation source: fine-focused sealed tubeθmax = 74.2°, θmin = 5.7°
Graphite monochromatorh = 50
ω/2θ scansk = 190
1297 measured reflectionsl = 1111
1135 independent reflections3 standard reflections every 41 reflections
425 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.427All H-atom parameters refined
S = 0.63Calculated w = 1/[σ2(Fo2) + (0.1673P)2 + 0.5865P]
where P = (Fo2 + 2Fc2)/3
660 reflections(Δ/σ)max = 0.031
106 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H12N2V = 560.1 (1) Å3
Mr = 232.29Z = 2
Monoclinic, P21/cCu Kα radiation
a = 4.0246 (5) ŵ = 0.60 mm1
b = 15.5147 (5) ÅT = 295 K
c = 9.1453 (9) Å0.3 × 0.04 × 0.04 mm
β = 101.23 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
425 reflections with I > 2σ(I)
1297 measured reflectionsRint = 0.036
1135 independent reflections3 standard reflections every 41 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.427All H-atom parameters refined
S = 0.63Δρmax = 0.14 e Å3
660 reflectionsΔρmin = 0.15 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 475 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.1676 (8)0.35583 (19)0.1291 (3)0.0470 (11)
C10.4509 (10)0.6138 (3)0.2271 (4)0.0500 (17)
C20.5860 (11)0.5469 (3)0.3198 (4)0.0536 (16)
C30.4908 (11)0.4623 (3)0.2872 (4)0.0530 (17)
C50.0548 (10)0.3387 (2)0.0075 (4)0.0454 (14)
C110.1207 (9)0.5102 (3)0.0649 (3)0.0395 (12)
C310.2587 (10)0.4415 (3)0.1597 (4)0.0444 (12)
C510.2135 (10)0.4036 (2)0.0975 (4)0.0435 (12)
C530.1415 (15)0.2452 (3)0.0233 (6)0.062 (2)
H10.511 (11)0.675 (3)0.248 (5)0.067 (13)*
H20.756 (11)0.559 (3)0.412 (5)0.069 (13)*
H30.613 (10)0.421 (3)0.352 (4)0.057 (13)*
H5310.055 (11)0.226 (3)0.116 (5)0.073 (15)*
H5320.394 (14)0.237 (3)0.039 (6)0.103 (19)*
H5330.024 (13)0.214 (3)0.062 (5)0.089 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.050 (2)0.0373 (18)0.055 (2)0.0011 (17)0.0137 (17)0.0012 (17)
C10.050 (3)0.045 (3)0.056 (3)0.002 (2)0.013 (2)0.000 (2)
C20.058 (3)0.056 (3)0.046 (2)0.001 (2)0.008 (2)0.003 (2)
C30.060 (3)0.048 (3)0.051 (3)0.009 (2)0.011 (2)0.010 (2)
C50.051 (2)0.033 (2)0.055 (3)0.0051 (18)0.017 (2)0.0039 (19)
C110.044 (2)0.035 (2)0.043 (2)0.0039 (17)0.0174 (18)0.0000 (17)
C310.046 (2)0.042 (2)0.048 (2)0.001 (2)0.0163 (18)0.002 (2)
C510.048 (2)0.037 (2)0.049 (2)0.0013 (18)0.0178 (19)0.0022 (18)
C530.070 (4)0.038 (3)0.080 (4)0.002 (2)0.016 (3)0.007 (3)
Geometric parameters (Å, º) top
N4—C51.312 (5)C11—C11i1.416 (4)
N4—C311.393 (5)C11—C51i1.405 (6)
C1—C21.383 (6)C1—H10.99 (5)
C1—C51i1.396 (5)C2—H20.99 (5)
C2—C31.383 (7)C3—H30.94 (4)
C3—C311.383 (5)C53—H5311.02 (5)
C5—C511.451 (5)C53—H5321.01 (6)
C5—C531.506 (6)C53—H5330.96 (5)
C11—C311.417 (6)
C5—N4—C31118.2 (3)C5—C51—C11i117.1 (3)
C2—C1—C51i119.8 (4)C1i—C51—C11i118.3 (3)
C1—C2—C3121.4 (4)C2—C1—H1123 (3)
C2—C3—C31121.1 (4)C51i—C1—H1117 (3)
N4—C5—C51124.1 (3)C1—C2—H2120 (3)
N4—C5—C53116.7 (3)C3—C2—H2119 (3)
C51—C5—C53119.3 (4)C2—C3—H3115 (3)
C11i—C11—C31117.9 (4)C31—C3—H3124 (3)
C31—C11—C51i122.0 (3)C5—C53—H531109 (3)
C11i—C11—C51i120.1 (4)C5—C53—H532110 (3)
N4—C31—C3120.0 (4)C5—C53—H533106 (3)
N4—C31—C11122.6 (3)H531—C53—H532110 (4)
C3—C31—C11117.4 (4)H531—C53—H533109 (4)
C1i—C51—C5124.6 (3)H532—C53—H533112 (4)
C31—N4—C5—C53178.8 (4)N4—C5—C51—C11i0.2 (6)
C5—N4—C31—C110.0 (19)N4—C5—C51—C1i179.9 (5)
C5—N4—C31—C3179.6 (4)C51i—C11—C31—N4179.7 (4)
C31—N4—C5—C510.2 (6)C11i—C11—C31—N40.5 (5)
C51i—C1—C2—C30.1 (6)C11i—C11—C31—C3179.1 (4)
C2—C1—C51i—C5i179.8 (4)C31—C11—C11i—C31i180 (2)
C2—C1—C51i—C110.4 (6)C51i—C11—C11i—C51180.0 (16)
C1—C2—C3—C310.6 (6)C31—C11—C51i—C10.4 (6)
C2—C3—C31—N4179.8 (4)C31—C11—C51i—C5i179.8 (3)
C2—C3—C31—C110.5 (6)C11i—C11—C51i—C1179.6 (4)
C53—C5—C51—C1i1.2 (6)C51i—C11—C31—C30.0 (12)
C53—C5—C51—C11i179.1 (4)C31—C11—C11i—C510.8 (5)
Symmetry code: (i) x, y+1, z.
(DIAZA2) 2,7-dimethyl-4,9-diazapyrene top
Crystal data top
C16H12N2F(000) = 244
Mr = 232.29Dx = 1.369 Mg m3
Monoclinic, C2/mCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yCell parameters from 21 reflections
a = 12.4968 (3) Åθ = 10.5–42.6°
b = 11.4751 (4) ŵ = 0.60 mm1
c = 3.9615 (3) ÅT = 295 K
β = 96.80 (1)°Prism, colourless
V = 564.09 (5) Å30.32 × 0.14 × 0.11 mm
Z = 2
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 65.2°, θmin = 5.3°
Graphite monochromatorh = 04
ω/2θ scansk = 99
1108 measured reflectionsl = 99
508 independent reflections3 standard reflections every 44 reflections
322 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difmap,geom
wR(F2) = 0.138All H-atom parameters refined
S = 0.90Calculated w = 1/[σ2(Fo2) + (0.0966P)2 + 0.0939P]
where P = (Fo2 + 2Fc2)/3
508 reflections(Δ/σ)max = 0.005
70 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.12 e Å3
15 constraints
Crystal data top
C16H12N2V = 564.09 (5) Å3
Mr = 232.29Z = 2
Monoclinic, C2/mCu Kα radiation
a = 12.4968 (3) ŵ = 0.60 mm1
b = 11.4751 (4) ÅT = 295 K
c = 3.9615 (3) Å0.32 × 0.14 × 0.11 mm
β = 96.80 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
322 reflections with I > 2σ(I)
1108 measured reflectionsRint = 0.043
508 independent reflections3 standard reflections every 44 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.138All H-atom parameters refined
S = 0.90Δρmax = 0.19 e Å3
508 reflectionsΔρmin = 0.12 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N40.0454 (9)0.2129 (8)0.940 (3)0.067 (5)0.5
C10.20167 (13)0.10471 (15)0.7671 (4)0.0577 (6)
C20.25315 (17)0.000000.7111 (6)0.0574 (8)0.5
C40.0510 (9)0.2091 (11)0.953 (4)0.064 (5)0.5
C110.05070 (15)0.000000.9407 (5)0.0456 (7)0.5
C210.3642 (2)0.000000.5974 (9)0.0764 (11)0.5
C510.10093 (12)0.10675 (14)0.8818 (4)0.0512 (6)
H10.2365 (13)0.1769 (19)0.727 (5)0.075 (5)*
H40.073 (3)0.286 (3)0.892 (8)0.055 (9)*0.5
H2110.3727 (19)0.064 (2)0.456 (7)0.145 (11)*
H2120.422 (3)0.000000.773 (11)0.155 (16)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.105 (12)0.034 (4)0.060 (6)0.009 (4)0.003 (4)0.003 (3)
C10.0543 (11)0.0636 (12)0.0539 (10)0.0104 (8)0.0012 (8)0.0054 (7)
C20.0513 (14)0.0742 (16)0.0450 (13)0.00000.0009 (10)0.0000
C40.045 (8)0.067 (8)0.083 (8)0.015 (5)0.014 (4)0.013 (5)
C110.0475 (12)0.0466 (12)0.0404 (11)0.00000.0044 (9)0.0000
C210.0547 (17)0.105 (2)0.0714 (19)0.00000.0157 (14)0.0000
C510.0509 (10)0.0516 (11)0.0492 (10)0.0019 (7)0.0015 (7)0.0013 (6)
Geometric parameters (Å, º) top
N4—C511.434 (10)C11—C511.4084 (18)
N4—H40.94 (4)C11—C11i1.403 (3)
C1—C511.388 (2)C1—H10.96 (2)
C1—C21.393 (2)C4—H40.96 (4)
C2—C211.509 (3)C21—H2110.94 (2)
C4—C511.375 (13)C21—H2120.94 (4)
C51—N4—H4122 (2)C4—C51—C11119.1 (5)
C2—C1—C51121.36 (16)C1—C51—C4122.2 (5)
C1—C2—C21120.39 (10)C2—C1—H1119.5 (11)
C1—C2—C1ii119.20 (18)C51—C1—H1119.2 (11)
C1ii—C2—C21120.39 (10)C51—C4—H4126 (2)
C11i—C11—C51119.57 (9)C2—C21—H211110.6 (15)
C51—C11—C51ii120.86 (16)C2—C21—H212116 (2)
C11i—C11—C51ii119.57 (9)C2—C21—H211ii110.6 (15)
N4—C51—C42.9 (8)H211—C21—H212108 (2)
N4—C51—C11118.6 (4)H211—C21—H211ii103 (2)
N4—C51—C1122.8 (5)H211ii—C21—H212108 (2)
C1—C51—C11118.60 (15)
C51—C1—C2—C21178.0 (2)C11i—C11—C51—C42.2 (8)
C2—C1—C51—C4177.0 (8)C51ii—C11—C51—C10.6 (3)
C51—C1—C2—C1ii0.9 (3)C51ii—C11—C51—C4177.9 (7)
C2—C1—C51—N4179.6 (6)C51ii—C11—C51—N4178.9 (5)
C2—C1—C51—C110.2 (3)C11i—C11—C51—N41.1 (6)
C11i—C11—C51—C1179.48 (16)
Symmetry codes: (i) x, y, z+2; (ii) x+1/2, y+1/2, z.

Experimental details

(DIAZA1)(DIAZA2)
Crystal data
Chemical formulaC16H12N2C16H12N2
Mr232.29232.29
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/m
Temperature (K)295295
a, b, c (Å)4.0246 (5), 15.5147 (5), 9.1453 (9)12.4968 (3), 11.4751 (4), 3.9615 (3)
β (°) 101.23 (1) 96.80 (1)
V3)560.1 (1)564.09 (5)
Z22
Radiation typeCu KαCu Kα
µ (mm1)0.600.60
Crystal size (mm)0.3 × 0.04 × 0.040.32 × 0.14 × 0.11
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1297, 1135, 425 1108, 508, 322
Rint0.0360.043
(sin θ/λ)max1)0.6240.589
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.427, 0.63 0.041, 0.138, 0.90
No. of reflections660508
No. of parameters10670
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.150.19, 0.12

Computer programs: EXPRESS-CAD4 (Enraf Nonius 1992) software, CAD4 (Enraf Nonius 1988) software <CELDIM> routine, HELENA (Spek, 1994), SHELXS86 (Sheldrick, 1985, 1990), SHELXS86 (Sheldrick, 1990), SHELX76 (Sheldrick, 1976), SHELXL93 (Sheldrick, 1993), PLATON93 (Spek, 1982, 1990) & ORTEP (Johnson, 1965), PLUTON93 (Spek 1991), PLATON93 (Spek 1982, 1990).

 
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds