Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the first bis­[ruthenium(II)–porphyrin]–dicarbene complex, μ-[1,4-phenyl­ene­bis(phenyl­methyl­idene-κC)]bis­[(ethanol-κO)(5,10,15,20-tetra-p-tolyl­porphyrinato-κ4N)ruthenium(II)] 1,2-di­chloro­ethane trisolvate, [Ru2(C20H14)(C48H36N4)2(C2H6O)2]·3C2H4Cl2, an inversion center is located at the center of the μ-phenyl­ene group, leading to a parallel arrangement for the pair of porphyrin ring systems. The bond lengths and angles compare favourably with literature values for ruthenium–porphyrin–monocarbene complexes; the Ru=C(carbene) bond length and the C(phenyl)—C(carbene)—C(phenyl­ene) angle are 1.865 (3) Å and 112.3 (3)°, respectively. The RuII ion is displaced out of the C20N4 porphyrin least-squares plane (by 0.2373 Å) toward the bridging ligand of the Ci-symmetry dimer. The porphyrin ring systems of the dimer thus exhibit mildly domed conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106043472/my3011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106043472/my3011Isup2.hkl
Contains datablock I

CCDC reference: 632921

Comment top

A number of ruthenium(II)–porphyrin–carbene complexes, which are fairly stable in air at room temperature, have been developed in the past decade. Our group has structurally characterized some of these compounds, namely a methanol-bonded diphenylcarbene complex [Ru(ttp)(CPh2)(MeOH)]·MeOH (H2ttp is 5,10,15,20-tetra-p-tolylporphyrin; Kawai et al., 2002), six-coordinate pyridine adducts [Ru(ttp)(CR2)(py)] (R = COPh and m-C6H4CF3; Harada et al., 2003) and a five-coordinate complex [Ru(ttp){C(m-C6H4CF3)2}] (Wada et al., 2003). These carbene ligands were generally prepared from ketones via hydrazone and diazomethylene compounds. According to analogous procedures, some µ-phenylene-bridging dicarbene complexes have already been synthesized (Herrmann et al., 1984; Werner et al., 1997), but their structural features have not been reported so far. In order to investigate structural details of the dicarbene complex, we have carried out a synthesis and structure determination of the first metalloporphyrin dimer linked by a µ-phenylene-bridging dicarbene ligand.

As shown in Figs. 1 and 2, an inversion center positioned at the centroid of the µ-phenylene group of the centrosymmetric bis[ruthenium(II)–porphyrin]–dicarbene complex (I) effects a parallel arrangement for the pair of porphyrin groups. The asymmetric unit includes one-half of the binuclear molecule and 1.5 molecules of 1,2-dichloroethane solvent. The bond lengths and angles in (I) are comparable to literature data for ruthenium porphyrin monocarbene complexes reported to date (Li et al., 2004). The geometry about the Ru and the carbene C atoms in (I) is similar to that reported for [Ru(ttp)(CPh2)(MeOH)]·MeOH, (II) (Kawai et al., 2002). Moreover, the six-coordinate Ru atom is bonded by the hydroxy O atom of an ethanol ligand trans to the carbene C atom in each of (I) and (II). The Ru—O bond length of 2.417 (3) Å in (I) is longer than that of 2.362 (3) Å in (II). The carbene angle [C50—C49—C56] of 112.3 (3)° in (I) is very close to that of 112.2 (3)° in (II). The Ru C(carbene) bond length [RuC49] of 1.865 (3) Å in (I) is slightly longer than that of 1.845 (3) Å in (II).

The phenyl groups of (I) are connected to the carbene donor C atoms and tilted relative to the phenylene group of the dicarbene ligand, while the phenylene group itself is oriented almost perpendicular to the carbene plane (Table 1), consistent with the phenyl group arrangements in (II). The torsion angles in (I) about the C(carbene)—C(phenyl) and the C(carbene)—C(phenylene) formal single bonds are considerably larger than the corresponding angles 23.5 (5) and 36.9 (5)° in 1,4-dibenzoylbenzene (Kolev et al., 1992), and 30.5 (2) and 39.5 (2)° in 1,4-bis(phenylvinyl)benzene (Klokkenburg et al., 2003) bearing 1,4-phenylenebis(phenylmethylidene) skeletons. The tilted phenyl group in (I) seems to repel the C21–C27 p-tolyl group of the opposite porphyrin. The dihedral angles between the porphyrin C20N4 core and the p-tolyl groups in (I) and (II) are within their usual ranges, viz. 81.05 (13), 63.14 (16), 66.66 (13) and 79.56 (13)° in (I), and 64.80 (8), 61.31 (10), 75.19 (11) and 88.44 (14)° in (II). As the RuII ion is displaced out of the least-squares plane toward the carbene C atom by 0.2373 (8) Å in (I), the porphyrin core is deformed in a dome conformation, with maximum and minimum deviations from the C20N4 least-squares plane of 0.187 (4) and −0.301 (4) Å for C8 and C13, respectively. In (I), there are some noteworthy van der Waals contacts, such as intramolecular interactions C23—H10···C54i and C55—H41···C14 and intermolecular interactions C46—H32···C15ii and Cl2···Cl3iii (symmetry codes and contact distances are given in Table 1). One final contact is the short O—H44···C46ii distance which apparently reflects a distinct O—H···π(arene) interaction (Table 2).

Experimental top

The dicarbene precursor, 1,4-bis(diazobenzyl)benzene, was prepared according to the method of Murray & Trozzolo (1961). A solution of [(ttp)Ru(CO)] (144 mg, 180 µmol) and 1,4-bis(diazobenzyl)benzene (23 mg, 74 µmol) in n-octane (50 ml) was refluxed under nitrogen atmosphere for 3 h. After removal of the volatiles in vacuo, the residue was chromatographed on a silica-gel column with CH2Cl2/n-hexane mixture (v/v 2:1). An intense red band was collected and evaporated to dryness. Recrystallization from a 1,2-dichloroethane/ethanol solution gave air-stable dark-red crystals of (I) (yield 80%). 1H NMR (CDCl3, 400 MHz, p.p.m.): δ 1.79 (s, 4H), 2.52 (s, 24H), 2.84 (d, J = 7.2 Hz, 4H), 6.19 (t, J = 7.8 Hz, 4H), 6.54 (t, J = 7.2 Hz, 2H), 7.09–7.16 (m, 16H), 7.27 (d, J = 8.1 Hz, 8H), 7.64 (d, J = 6.4 Hz, 8H), 7.91 (s, 16H). UV–vis (CH2Cl2): λmax (log ε) 397 (5.34), 427 (5.15), 532 (4.38). An analogous dicarbene complex, [{(ttp)Ru}2{(CCF3)2(C6H4)}], was successfully synthesized in 50% yield, starting from [(ttp)Ru(CO)] and 1,4-bis(2,2,2-trifluorodiazoethyl)benzene. 1H NMR (CDCl3, 400 MHz, p.p.m.): δ 1.85 (s, 4H), 2.61 (s, 24H), 7.26 (d, J = 6.9 Hz, 8H), 7.36 (d, J = 6.9 Hz, 8H), 7.44 (d, J = 6.9 Hz, 8H), 7.74 (d, J = 6.9 Hz, 8H), 8.22 (s, 16H). 19F NMR (CDCl3, 470 MHz, p.p.m.): −66.09 (s). UV–vis (C6H6): λmax (log ε) 401 (5.38), 533 (4.16). Unfortunately, crystallization for X-ray diffraction has not been achieved so far in spite of our efforts.#

Refinement top

At a late stage in the refinement, positional disorder of the C59/C60 ethyl group of the ethanol ligand and the C63 methylene group of the 1,2-dichloroethane solvent was suggested by their large U11 and U22 values. A disordered model over two sites was adopted, where the C atoms of the minor fragments (C592, C602 and C632) were found in a Fourier map. The displacement parameters of the major fragments (C59, C60 and C63) were refined anisotropically, and those of the minor were treated isotropically. The Cl—C and C—C bond lengths of the 1,2-dichloroethane molecules were restrained to 1.79 (2) and 1.53 (3) Å, respectively. The site-occupancy factors of the major fragments of the C59/C60 ethyl and the C63 methylene groups converged to the respective values 0.595 (18) and 0.68 (3), and those of the minor were to 0.405 (18) and 0.32 (3).

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H bond lengths of 0.82, C—H bond lengths of 0.96, 0.97 and 0.93 Å for CH3, CH2 and aromatic CH, respectively, and with Uiso(H) values of 1.5Ueq(O or methyl C) or 1.2Ueq(methylene or aromatic C).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. The 1,2-dichloromethane solvent molecules and the p-tolyl groups of the porphyrinato ligands have been omitted for clarity. All H and the C atoms of the minor fragment of the disordered ethanol ligand have also been omitted.
[Figure 2] Fig. 2. The unit cell packing of (I). The C and H atoms of the minor fragments of the disordered ethanol and 1,2-dichloromethane have been omitted.
µ-[1,4-phenylenebis(phenylmethylidene-κC)]bis[(ethanol-κO)(5,10,15,20- tetra-p-tolylporphyrinato-κ4N)ruthenium(II)] 1,2-dichloroethane trisolvate top
Crystal data top
[Ru2(C20H14)(C48H36N4)2(C2H6O)2]·3C2H4Cl2Z = 1
Mr = 2183.06F(000) = 1128
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 14.786 (4) ÅCell parameters from 25 reflections
b = 15.816 (4) Åθ = 14.9–15.0°
c = 13.879 (3) ŵ = 0.49 mm1
α = 98.15 (2)°T = 296 K
β = 109.047 (19)°Prism, dark red
γ = 114.12 (2)°0.50 × 0.45 × 0.18 mm
V = 2653.8 (14) Å3
Data collection top
Rigaku AFC-7R
diffractometer
7914 reflections with I > 2σ(I)
Radiation source: rotating Mo anodeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω/2θ scansh = 019
Absorption correction: ψ scan
(North et al., 1968)
k = 2018
Tmin = 0.791, Tmax = 0.917l = 1817
12659 measured reflections3 standard reflections every 150 reflections
12189 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.065P)2 + 1.3374P]
where P = (Fo2 + 2Fc2)/3
12189 reflections(Δ/σ)max = 0.001
663 parametersΔρmax = 0.44 e Å3
7 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ru2(C20H14)(C48H36N4)2(C2H6O)2]·3C2H4Cl2γ = 114.12 (2)°
Mr = 2183.06V = 2653.8 (14) Å3
Triclinic, P1Z = 1
a = 14.786 (4) ÅMo Kα radiation
b = 15.816 (4) ŵ = 0.49 mm1
c = 13.879 (3) ÅT = 296 K
α = 98.15 (2)°0.50 × 0.45 × 0.18 mm
β = 109.047 (19)°
Data collection top
Rigaku AFC-7R
diffractometer
7914 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.791, Tmax = 0.9173 standard reflections every 150 reflections
12659 measured reflections intensity decay: none
12189 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0487 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
12189 reflectionsΔρmin = 0.63 e Å3
663 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.37171 (2)0.23217 (2)0.26057 (2)0.04022 (9)
O0.3254 (3)0.1643 (2)0.0729 (2)0.0759 (9)
H440.28650.10590.06140.114*
N10.2730 (2)0.2902 (2)0.2006 (2)0.0433 (6)
N20.5016 (2)0.3492 (2)0.2616 (2)0.0445 (7)
N30.4624 (2)0.1615 (2)0.2880 (2)0.0453 (7)
N40.2374 (2)0.1067 (2)0.2394 (2)0.0416 (6)
C10.1628 (3)0.2501 (3)0.1764 (3)0.0454 (8)
C20.1249 (3)0.3149 (3)0.1394 (3)0.0548 (9)
H10.05400.30540.11860.066*
C30.2103 (3)0.3917 (3)0.1403 (3)0.0528 (9)
H20.20890.44460.11930.063*
C40.3038 (3)0.3777 (3)0.1794 (3)0.0454 (8)
C50.4101 (3)0.4433 (3)0.1955 (3)0.0460 (8)
C60.5023 (3)0.4307 (3)0.2371 (3)0.0462 (8)
C70.6114 (3)0.5005 (3)0.2576 (3)0.0534 (9)
H30.63360.56170.24830.064*
C80.6755 (3)0.4607 (3)0.2930 (3)0.0550 (10)
H40.75060.49000.31360.066*
C90.6072 (3)0.3644 (3)0.2933 (3)0.0483 (8)
C100.6405 (3)0.2954 (3)0.3144 (3)0.0506 (9)
C110.5718 (3)0.2000 (3)0.3081 (3)0.0495 (9)
C120.6011 (3)0.1248 (3)0.3159 (3)0.0564 (10)
H50.66990.13140.32870.068*
C130.5126 (3)0.0429 (3)0.3015 (3)0.0546 (9)
H60.50870.01710.30220.065*
C140.4250 (3)0.0650 (3)0.2850 (3)0.0457 (8)
C150.3197 (3)0.0005 (3)0.2713 (3)0.0459 (8)
C160.2338 (3)0.0210 (2)0.2531 (3)0.0445 (8)
C170.1264 (3)0.0442 (3)0.2426 (3)0.0538 (9)
H70.10350.10580.25110.065*
C180.0659 (3)0.0002 (3)0.2185 (3)0.0530 (9)
H80.00740.02630.20560.064*
C190.1338 (3)0.0949 (2)0.2158 (3)0.0447 (8)
C200.0989 (3)0.1603 (3)0.1862 (3)0.0445 (8)
C210.4233 (3)0.5322 (3)0.1625 (3)0.0486 (8)
C220.4342 (4)0.6133 (3)0.2282 (3)0.0630 (11)
H90.44060.61580.29760.076*
C230.4357 (4)0.6905 (3)0.1925 (4)0.0708 (12)
H100.44230.74380.23820.085*
C240.4277 (4)0.6909 (3)0.0916 (4)0.0704 (12)
C250.4199 (5)0.6124 (4)0.0276 (4)0.0831 (15)
H110.41690.61170.04050.100*
C260.4165 (4)0.5336 (3)0.0616 (4)0.0707 (12)
H120.40940.48040.01520.085*
C270.4243 (6)0.7743 (4)0.0521 (6)0.114 (2)
H130.40800.75810.02300.171*
H140.49410.83240.09160.171*
H150.36860.78560.06270.171*
C280.7580 (3)0.3231 (3)0.3404 (3)0.0522 (9)
C290.8267 (4)0.3299 (4)0.4393 (4)0.0820 (15)
H160.80060.31800.49120.098*
C300.9346 (4)0.3542 (4)0.4626 (4)0.0884 (16)
H170.97940.35920.53060.106*
C310.9770 (3)0.3710 (3)0.3897 (4)0.0679 (12)
C320.9081 (4)0.3626 (4)0.2906 (4)0.0761 (13)
H180.93420.37300.23840.091*
C330.7996 (3)0.3387 (4)0.2660 (4)0.0666 (11)
H190.75480.33330.19770.080*
C341.0950 (4)0.3960 (4)0.4161 (5)0.0916 (17)
H201.09810.36180.35540.137*
H211.12240.37690.47710.137*
H221.13890.46510.43250.137*
C350.2969 (3)0.1000 (3)0.2789 (3)0.0505 (9)
C360.3409 (4)0.1142 (3)0.3762 (3)0.0660 (11)
H230.38890.06030.43790.079*
C370.3147 (4)0.2072 (4)0.3832 (4)0.0742 (13)
H240.34470.21410.44980.089*
C380.2464 (4)0.2884 (3)0.2958 (4)0.0635 (11)
C390.2045 (5)0.2746 (3)0.1998 (4)0.0808 (15)
H250.15820.32890.13820.097*
C400.2284 (4)0.1834 (3)0.1909 (4)0.0767 (14)
H260.19740.17770.12380.092*
C410.2173 (5)0.3883 (4)0.3037 (5)0.0914 (17)
H270.20810.42940.23950.137*
H280.15010.41490.31200.137*
H290.27470.38480.36480.137*
C420.0192 (3)0.1305 (3)0.1572 (3)0.0454 (8)
C430.0561 (3)0.1354 (3)0.2361 (3)0.0626 (11)
H300.00740.15710.30800.075*
C440.1655 (3)0.1082 (4)0.2089 (4)0.0710 (13)
H310.18900.11160.26320.085*
C450.2396 (3)0.0767 (3)0.1040 (4)0.0575 (10)
C460.2028 (3)0.0708 (3)0.0262 (3)0.0626 (11)
H320.25190.04890.04560.075*
C470.0939 (3)0.0968 (3)0.0517 (3)0.0613 (11)
H330.07150.09130.00300.074*
C480.3591 (4)0.0461 (4)0.0723 (5)0.0854 (15)
H340.40140.00480.00130.128*
H350.36810.10310.08030.128*
H360.38390.01110.11770.128*
C490.3980 (3)0.2902 (2)0.4006 (3)0.0417 (7)
C500.3632 (3)0.2359 (3)0.4741 (3)0.0496 (9)
C510.3071 (4)0.2599 (4)0.5265 (4)0.0731 (13)
H370.29120.31000.51590.088*
C520.2742 (5)0.2108 (4)0.5944 (5)0.0921 (17)
H380.23650.22800.62850.111*
C530.2968 (5)0.1381 (4)0.6111 (4)0.0889 (16)
H390.27370.10470.65580.107*
C540.3534 (5)0.1134 (4)0.5626 (4)0.0808 (15)
H400.36990.06420.57530.097*
C550.3862 (4)0.1622 (3)0.4942 (3)0.0653 (11)
H410.42440.14470.46130.078*
C560.4490 (3)0.3979 (2)0.4486 (3)0.0391 (7)
C570.5616 (3)0.4532 (2)0.5114 (3)0.0426 (7)
H420.60430.42260.51960.051*
C580.6113 (3)0.5528 (2)0.5619 (3)0.0442 (8)
H430.68650.58750.60360.053*
C590.2715 (16)0.1956 (11)0.0144 (8)0.123 (6)0.595 (18)
H450.19570.17080.02590.148*0.595 (18)
H460.30640.26640.01040.148*0.595 (18)
C600.2733 (9)0.1656 (8)0.1161 (8)0.091 (4)0.595 (18)
H470.19970.12990.17140.137*0.595 (18)
H480.30660.12450.11280.137*0.595 (18)
H490.31470.22220.13200.137*0.595 (18)
C5920.3454 (14)0.2072 (11)0.0035 (12)0.080 (5)*0.405 (18)
H4520.37820.17860.03110.096*0.405 (18)
H4620.39860.27570.04160.096*0.405 (18)
C6020.249 (2)0.201 (2)0.079 (2)0.156 (11)*0.405 (18)
H4720.19090.18150.05710.233*0.405 (18)
H4820.22700.15270.14540.233*0.405 (18)
H4920.26720.26300.09000.233*0.405 (18)
Cl10.9036 (2)0.4837 (2)0.0630 (2)0.1709 (10)
C610.8984 (10)0.5568 (8)0.1652 (9)0.184 (4)
H500.83420.51690.17540.221*
H510.96190.57600.23130.221*
C620.8951 (12)0.6342 (9)0.1526 (9)0.217 (6)
H520.83180.61610.08680.326*
H530.95990.67560.14420.326*
Cl20.8884 (3)0.7013 (2)0.2595 (2)0.1868 (11)
Cl30.9486 (3)0.1086 (3)0.4997 (3)0.2232 (16)
C630.9871 (10)0.0235 (9)0.5435 (8)0.155 (9)0.68 (3)
H541.05120.05630.61200.186*0.68 (3)
H550.92800.02650.55260.186*0.68 (3)
C6320.978 (3)0.017 (2)0.4506 (17)0.158 (16)*0.32 (3)
H5420.91300.03740.39250.190*0.32 (3)
H5521.03370.04380.42410.190*0.32 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.03545 (14)0.03897 (14)0.04303 (15)0.01716 (11)0.01711 (11)0.00622 (11)
O0.088 (2)0.0639 (19)0.0591 (18)0.0309 (17)0.0262 (17)0.0054 (15)
N10.0368 (15)0.0436 (16)0.0457 (16)0.0178 (13)0.0173 (13)0.0101 (13)
N20.0380 (15)0.0460 (16)0.0471 (16)0.0198 (13)0.0195 (13)0.0073 (13)
N30.0389 (15)0.0444 (16)0.0511 (17)0.0201 (13)0.0205 (13)0.0087 (13)
N40.0368 (14)0.0404 (15)0.0425 (15)0.0176 (12)0.0154 (12)0.0061 (12)
C10.0366 (17)0.0482 (19)0.048 (2)0.0207 (16)0.0162 (15)0.0094 (16)
C20.0414 (19)0.057 (2)0.064 (2)0.0256 (18)0.0187 (18)0.0168 (19)
C30.048 (2)0.053 (2)0.059 (2)0.0274 (18)0.0206 (18)0.0209 (18)
C40.0447 (19)0.0444 (19)0.0459 (19)0.0214 (16)0.0189 (16)0.0131 (15)
C50.0463 (19)0.0426 (18)0.046 (2)0.0192 (16)0.0207 (16)0.0116 (15)
C60.0423 (19)0.0466 (19)0.047 (2)0.0189 (16)0.0213 (16)0.0094 (16)
C70.047 (2)0.049 (2)0.062 (2)0.0187 (17)0.0276 (19)0.0163 (18)
C80.041 (2)0.055 (2)0.063 (2)0.0163 (18)0.0269 (18)0.0119 (19)
C90.0377 (18)0.053 (2)0.050 (2)0.0177 (16)0.0220 (16)0.0091 (17)
C100.0400 (19)0.060 (2)0.052 (2)0.0245 (18)0.0228 (17)0.0088 (18)
C110.0436 (19)0.054 (2)0.051 (2)0.0255 (17)0.0213 (17)0.0086 (17)
C120.049 (2)0.067 (3)0.063 (2)0.036 (2)0.0257 (19)0.019 (2)
C130.057 (2)0.056 (2)0.064 (2)0.037 (2)0.030 (2)0.0196 (19)
C140.048 (2)0.048 (2)0.0429 (19)0.0265 (17)0.0200 (16)0.0100 (15)
C150.051 (2)0.0428 (18)0.0440 (19)0.0233 (16)0.0210 (16)0.0098 (15)
C160.0459 (19)0.0421 (18)0.0441 (19)0.0199 (16)0.0206 (16)0.0115 (15)
C170.049 (2)0.043 (2)0.066 (2)0.0170 (17)0.0277 (19)0.0174 (18)
C180.042 (2)0.048 (2)0.067 (2)0.0187 (17)0.0254 (18)0.0195 (18)
C190.0353 (17)0.0435 (19)0.0457 (19)0.0150 (15)0.0149 (15)0.0070 (15)
C200.0339 (17)0.0482 (19)0.0451 (19)0.0176 (15)0.0155 (15)0.0082 (15)
C210.0423 (19)0.050 (2)0.052 (2)0.0202 (16)0.0197 (16)0.0187 (17)
C220.074 (3)0.055 (2)0.052 (2)0.029 (2)0.021 (2)0.0148 (19)
C230.070 (3)0.051 (2)0.077 (3)0.028 (2)0.020 (2)0.016 (2)
C240.064 (3)0.060 (3)0.079 (3)0.023 (2)0.025 (2)0.031 (2)
C250.105 (4)0.084 (3)0.073 (3)0.042 (3)0.049 (3)0.045 (3)
C260.094 (3)0.062 (3)0.066 (3)0.035 (3)0.048 (3)0.027 (2)
C270.122 (5)0.084 (4)0.135 (6)0.050 (4)0.041 (4)0.065 (4)
C280.0377 (19)0.057 (2)0.064 (2)0.0230 (17)0.0252 (18)0.0144 (19)
C290.052 (3)0.127 (4)0.065 (3)0.041 (3)0.028 (2)0.026 (3)
C300.047 (3)0.134 (5)0.069 (3)0.041 (3)0.015 (2)0.026 (3)
C310.041 (2)0.070 (3)0.086 (3)0.025 (2)0.026 (2)0.018 (2)
C320.059 (3)0.100 (4)0.088 (3)0.043 (3)0.046 (3)0.033 (3)
C330.053 (2)0.093 (3)0.067 (3)0.039 (2)0.032 (2)0.031 (2)
C340.044 (2)0.104 (4)0.119 (5)0.034 (3)0.032 (3)0.026 (3)
C350.052 (2)0.049 (2)0.052 (2)0.0264 (18)0.0243 (18)0.0136 (17)
C360.072 (3)0.054 (2)0.056 (2)0.022 (2)0.022 (2)0.015 (2)
C370.093 (4)0.078 (3)0.069 (3)0.044 (3)0.043 (3)0.040 (3)
C380.075 (3)0.054 (2)0.078 (3)0.038 (2)0.039 (2)0.027 (2)
C390.117 (4)0.049 (2)0.073 (3)0.044 (3)0.034 (3)0.014 (2)
C400.106 (4)0.061 (3)0.054 (3)0.043 (3)0.022 (3)0.013 (2)
C410.114 (4)0.072 (3)0.118 (5)0.057 (3)0.060 (4)0.045 (3)
C420.0359 (17)0.0433 (18)0.050 (2)0.0169 (15)0.0161 (16)0.0090 (16)
C430.042 (2)0.082 (3)0.049 (2)0.026 (2)0.0150 (18)0.006 (2)
C440.050 (2)0.090 (3)0.071 (3)0.032 (2)0.031 (2)0.011 (2)
C450.0379 (19)0.057 (2)0.075 (3)0.0208 (18)0.022 (2)0.024 (2)
C460.045 (2)0.068 (3)0.053 (2)0.018 (2)0.0076 (19)0.019 (2)
C470.047 (2)0.075 (3)0.052 (2)0.022 (2)0.0209 (19)0.017 (2)
C480.048 (2)0.093 (4)0.113 (4)0.034 (3)0.032 (3)0.034 (3)
C490.0364 (17)0.0407 (17)0.0435 (18)0.0197 (14)0.0140 (15)0.0056 (14)
C500.049 (2)0.0442 (19)0.0414 (19)0.0177 (16)0.0126 (16)0.0057 (15)
C510.081 (3)0.075 (3)0.091 (3)0.042 (3)0.059 (3)0.038 (3)
C520.105 (4)0.093 (4)0.109 (4)0.045 (3)0.078 (4)0.046 (3)
C530.116 (5)0.072 (3)0.077 (3)0.032 (3)0.054 (3)0.030 (3)
C540.121 (4)0.072 (3)0.058 (3)0.051 (3)0.038 (3)0.031 (2)
C550.090 (3)0.066 (3)0.048 (2)0.045 (3)0.029 (2)0.018 (2)
C560.0371 (16)0.0400 (17)0.0378 (17)0.0180 (14)0.0157 (14)0.0094 (14)
C570.0404 (17)0.0464 (18)0.0427 (18)0.0263 (15)0.0153 (15)0.0088 (15)
C580.0322 (16)0.0467 (19)0.0425 (18)0.0183 (15)0.0086 (14)0.0042 (15)
C590.189 (16)0.184 (13)0.060 (6)0.147 (12)0.052 (8)0.038 (7)
C600.116 (8)0.099 (7)0.063 (6)0.056 (6)0.038 (5)0.028 (5)
Cl10.212 (3)0.187 (2)0.1279 (17)0.111 (2)0.0773 (18)0.0326 (16)
C610.216 (11)0.172 (10)0.219 (12)0.108 (9)0.131 (10)0.079 (9)
C620.314 (17)0.201 (12)0.204 (12)0.165 (13)0.125 (12)0.089 (10)
Cl20.224 (3)0.174 (2)0.189 (3)0.108 (2)0.111 (2)0.042 (2)
Cl30.236 (4)0.199 (3)0.145 (2)0.032 (3)0.079 (2)0.048 (2)
C630.126 (11)0.193 (17)0.074 (7)0.010 (10)0.044 (7)0.050 (8)
Geometric parameters (Å, º) top
Ru—N12.046 (3)C34—H220.9600
Ru—N22.046 (3)C35—C401.379 (6)
Ru—N32.051 (3)C35—C361.389 (6)
Ru—N42.050 (3)C36—C371.386 (6)
Ru—C491.865 (3)C36—H230.9300
Ru—O2.417 (3)C37—C381.356 (6)
O—C591.487 (12)C37—H240.9300
O—C5921.298 (14)C38—C391.365 (6)
O—H440.8200C38—C411.488 (6)
N1—C11.380 (4)C39—C401.372 (6)
N1—C41.377 (4)C39—H250.9300
N2—C61.376 (5)C40—H260.9300
N2—C91.379 (4)C41—H270.9600
N3—C111.384 (4)C41—H280.9600
N3—C141.382 (4)C41—H290.9600
N4—C161.378 (4)C42—C471.374 (5)
N4—C191.382 (4)C42—C431.380 (5)
C1—C201.404 (5)C43—C441.391 (5)
C1—C21.436 (5)C43—H300.9300
C2—C31.343 (5)C44—C451.369 (6)
C2—H10.9300C44—H310.9300
C3—C41.431 (5)C45—C461.365 (6)
C3—H20.9300C45—C481.512 (5)
C4—C51.403 (5)C46—C471.390 (6)
C5—C61.404 (5)C46—H320.9300
C5—C211.496 (5)C47—H330.9300
C6—C71.435 (5)C48—H340.9600
C7—C81.344 (5)C48—H350.9600
C7—H30.9300C48—H360.9600
C8—C91.444 (5)C49—C501.507 (5)
C8—H40.9300C49—C561.489 (4)
C9—C101.399 (5)C50—C551.382 (5)
C10—C111.404 (5)C50—C511.391 (6)
C10—C281.504 (5)C51—C521.387 (6)
C11—C121.429 (5)C51—H370.9300
C12—C131.342 (5)C52—C531.353 (7)
C12—H50.9300C52—H380.9300
C13—C141.432 (5)C53—C541.365 (7)
C13—H60.9300C53—H390.9300
C14—C151.402 (5)C54—C551.391 (6)
C15—C161.400 (5)C54—H400.9300
C15—C351.496 (5)C55—H410.9300
C16—C171.440 (5)C56—C58i1.393 (5)
C17—C181.333 (5)C56—C571.394 (5)
C17—H70.9300C57—C581.384 (5)
C18—C191.442 (5)C57—H420.9300
C18—H80.9300C58—C56i1.393 (5)
C19—C201.386 (5)C58—H430.9300
C20—C421.499 (5)C59—C601.436 (17)
C21—C261.374 (5)C59—H450.9700
C21—C221.382 (5)C59—H460.9700
C22—C231.375 (6)C60—H470.9600
C22—H90.9300C60—H480.9600
C23—C241.367 (7)C60—H490.9600
C23—H100.9300C592—C6021.46 (3)
C24—C251.360 (7)C592—H4520.9700
C24—C271.512 (6)C592—H4620.9700
C25—C261.382 (6)C602—H4720.9600
C25—H110.9300C602—H4820.9600
C26—H120.9300C602—H4920.9600
C27—H130.9600Cl1—C611.743 (9)
C27—H140.9600C61—C621.279 (10)
C27—H150.9600C61—H500.9700
C28—C331.368 (6)C61—H510.9700
C28—C291.374 (6)C62—Cl21.753 (10)
C29—C301.386 (6)C62—H520.9700
C29—H160.9300C62—H530.9700
C30—C311.357 (7)Cl3—C631.771 (14)
C30—H170.9300Cl3—C6321.785 (18)
C31—C321.368 (7)C63—C63ii1.56 (2)
C31—C341.520 (6)C63—H540.9700
C32—C331.393 (6)C63—H550.9700
C32—H180.9300C632—C632ii1.58 (3)
C33—H190.9300C632—H5420.9700
C34—H200.9600C632—H5520.9700
C34—H210.9600
C23···C54i3.617 (7)C46···C15iii3.707 (6)
H10···C54i3.011H32···C15iii2.836
C55···C143.416 (6)Cl2···Cl3iv3.462 (5)
H41···C142.593
N1—Ru—N289.84 (11)C32—C33—H19119.4
N1—Ru—N3168.18 (11)C31—C34—H20109.5
N1—Ru—N489.90 (11)C31—C34—H21109.5
N2—Ru—N389.56 (12)H20—C34—H21109.5
N2—Ru—N4172.57 (11)C31—C34—H22109.5
N3—Ru—N489.18 (11)H20—C34—H22109.5
N1—Ru—O83.22 (11)H21—C34—H22109.5
N2—Ru—O86.05 (12)C15—C35—C36121.8 (3)
N3—Ru—O84.96 (12)C15—C35—C40122.3 (4)
N4—Ru—O86.54 (12)C36—C35—C40115.8 (4)
C49—Ru—N190.83 (13)C35—C36—C37121.3 (4)
C49—Ru—N294.10 (13)C37—C36—H23119.4
C49—Ru—N3100.99 (13)C35—C36—H23119.4
C49—Ru—N493.32 (13)C36—C37—C38122.0 (4)
C49—Ru—O174.05 (13)C38—C37—H24119.0
Ru—O—C59124.0 (5)C36—C37—H24119.0
C59—O—H44109.5C37—C38—C39116.8 (4)
Ru—O—C592130.5 (7)C37—C38—C41121.9 (5)
C592—O—H44127.5C39—C38—C41121.2 (5)
Ru—O—H44101.7C38—C39—C40122.3 (4)
C1—N1—C4106.8 (3)C38—C39—H25118.9
Ru—N1—C1126.3 (2)C40—C39—H25118.9
Ru—N1—C4126.9 (2)C35—C40—C39121.8 (4)
C6—N2—C9106.7 (3)C39—C40—H26119.1
Ru—N2—C6126.6 (2)C35—C40—H26119.1
Ru—N2—C9126.6 (3)C38—C41—H27109.5
Ru—N3—C11126.5 (2)C38—C41—H28109.5
Ru—N3—C14126.7 (2)H27—C41—H28109.5
C11—N3—C14106.8 (3)C38—C41—H29109.5
Ru—N4—C16127.3 (2)H27—C41—H29109.5
Ru—N4—C19125.7 (2)H28—C41—H29109.5
C16—N4—C19106.8 (3)C20—C42—C43120.6 (3)
N1—C1—C2108.8 (3)C20—C42—C47121.3 (3)
N1—C1—C20125.3 (3)C43—C42—C47118.0 (3)
C2—C1—C20125.9 (3)C42—C43—C44120.5 (4)
C4—C5—C21116.0 (3)C42—C43—H30119.7
C6—C5—C21118.6 (3)C44—C43—H30119.7
N2—C6—C5125.6 (3)C43—C44—C45121.5 (4)
N2—C6—C7109.7 (3)C45—C44—H31119.3
C5—C6—C7124.7 (3)C43—C44—H31119.3
C6—C7—C8107.0 (3)C44—C45—C46117.7 (4)
C8—C7—H3126.5C46—C45—C48119.8 (4)
C6—C7—H3126.5C44—C45—C48122.5 (4)
C7—C8—C9108.0 (3)C45—C46—C47121.7 (4)
C7—C8—H4126.0C45—C46—H32119.2
C9—C8—H4126.0C47—C46—H32119.2
N2—C9—C10125.5 (3)C42—C47—C46120.6 (4)
N2—C9—C8108.5 (3)C42—C47—H33119.7
C8—C9—C10125.8 (3)C46—C47—H33119.7
C9—C10—C11125.2 (3)C45—C48—H34109.5
C9—C10—C28117.9 (3)C45—C48—H35109.5
C11—C10—C28116.8 (3)H34—C48—H35109.5
N3—C11—C10125.6 (3)C45—C48—H36109.5
N3—C11—C12108.5 (3)H34—C48—H36109.5
C10—C11—C12125.9 (3)H35—C48—H36109.5
C11—C12—C13108.3 (3)C50—C49—C56112.3 (3)
C11—C12—H5125.8Ru—C49—C56122.2 (3)
C13—C12—H5125.8Ru—C49—C50125.3 (2)
C12—C13—C14107.4 (3)C51—C50—C55116.9 (4)
C12—C13—H6126.3C49—C50—C55122.5 (4)
C14—C13—H6126.3C49—C50—C51120.6 (4)
N3—C14—C13109.0 (3)C50—C51—C52121.5 (5)
C1—C2—C3107.6 (3)C52—C51—H37119.3
C3—C2—H1126.2C50—C51—H37119.3
C1—C2—H1126.2C51—C52—C53120.0 (5)
C2—C3—C4107.8 (3)C53—C52—H38120.0
C2—C3—H2126.1C51—C52—H38120.0
C4—C3—H2126.1C52—C53—C54120.3 (5)
N1—C4—C5125.4 (3)C52—C53—H39119.8
N1—C4—C3109.0 (3)C54—C53—H39119.8
C3—C4—C5125.6 (3)C53—C54—C55119.8 (5)
C4—C5—C6125.3 (3)C53—C54—H40120.1
N3—C14—C15126.1 (3)C55—C54—H40120.1
C13—C14—C15124.9 (3)C50—C55—C54121.4 (4)
C14—C15—C16124.7 (3)C50—C55—H41119.3
C14—C15—C35118.4 (3)C54—C55—H41119.3
C16—C15—C35116.9 (3)C58i—C56—C57117.2 (3)
N4—C16—C15125.5 (3)C58i—C56—C49123.1 (3)
N4—C16—C17109.1 (3)C49—C56—C57119.7 (3)
C15—C16—C17125.4 (3)C56—C57—C58121.4 (3)
C16—C17—C18107.4 (3)C58—C57—H42119.3
C18—C17—H7126.3C56—C57—H42119.3
C16—C17—H7126.3C57—C58—C56i121.4 (3)
C17—C18—C19108.2 (3)C57—C58—H43119.3
C17—C18—H8125.9C56i—C58—H43119.3
C19—C18—H8125.9O—C59—C60116.6 (12)
N4—C19—C20125.7 (3)C60—C59—H45108.2
N4—C19—C18108.4 (3)O—C59—H45108.2
C18—C19—C20125.7 (3)C60—C59—H46108.2
C1—C20—C19125.9 (3)O—C59—H46108.2
C19—C20—C42117.2 (3)H45—C59—H46107.3
C1—C20—C42116.8 (3)C59—C60—H47109.5
C22—C21—C26116.8 (4)C59—C60—H48109.5
C5—C21—C26121.2 (4)H47—C60—H48109.5
C5—C21—C22121.8 (3)C59—C60—H49109.5
C21—C22—C23120.9 (4)H47—C60—H49109.5
C23—C22—H9119.5H48—C60—H49109.5
C21—C22—H9119.5O—C592—C602114.5 (18)
C22—C23—C24121.9 (5)O—C592—H452108.6
C24—C23—H10119.1C602—C592—H452108.6
C22—C23—H10119.1O—C592—H462108.6
C23—C24—C25117.4 (4)C602—C592—H462108.6
C25—C24—C27121.5 (5)H452—C592—H462107.6
C23—C24—C27121.1 (5)C592—C602—H472109.5
C24—C25—C26121.4 (5)C592—C602—H482109.5
C24—C25—H11119.3H472—C602—H482109.5
C26—C25—H11119.3C592—C602—H492109.5
C21—C26—C25121.5 (4)H472—C602—H492109.5
C21—C26—H12119.2H482—C602—H492109.5
C25—C26—H12119.2C62—C61—Cl1117.6 (9)
C24—C27—H13109.5C62—C61—H50107.9
C24—C27—H14109.5Cl1—C61—H50107.9
H13—C27—H14109.5C62—C61—H51107.9
C24—C27—H15109.5Cl1—C61—H51107.9
H13—C27—H15109.5H50—C61—H51107.2
H14—C27—H15109.5C61—C62—Cl2113.7 (9)
C29—C28—C33117.2 (4)C61—C62—H52108.8
C10—C28—C29120.9 (4)Cl2—C62—H52108.8
C10—C28—C33121.8 (4)C61—C62—H53108.8
C28—C29—C30120.8 (4)Cl2—C62—H53108.8
C28—C29—H16119.6H52—C62—H53107.7
C30—C29—H16119.6C63ii—C63—Cl3107.9 (10)
C29—C30—C31122.4 (5)C63ii—C63—H54110.1
C31—C30—H17118.8Cl3—C63—H54110.1
C29—C30—H17118.8C63ii—C63—H55110.1
C30—C31—C32116.9 (4)Cl3—C63—H55110.1
C30—C31—C34121.6 (5)H54—C63—H55108.4
C32—C31—C34121.5 (5)C632ii—C632—Cl3106.0 (18)
C31—C32—C33121.5 (4)C632ii—C632—H542110.5
C31—C32—H18119.2Cl3—C632—H542110.5
C33—C32—H18119.2C632ii—C632—H552110.5
C28—C33—C32121.2 (4)Cl3—C632—H552110.5
C28—C33—H19119.4H542—C632—H552108.7
N1—Ru—O—C5912.9 (10)Ru—C49—C56—C58i87.8 (4)
N2—Ru—O—C5977.4 (10)C50—C49—C56—C5789.5 (4)
N3—Ru—O—C59167.3 (10)C50—C49—C56—C58i87.5 (4)
N4—Ru—O—C59103.2 (10)C4—C5—C21—C2282.0 (5)
C49—Ru—O—C5914.3 (17)C6—C5—C21—C2299.5 (4)
N1—Ru—O—C59263.0 (12)C4—C5—C21—C2692.8 (5)
N2—Ru—O—C59227.3 (12)C6—C5—C21—C2685.7 (5)
N3—Ru—O—C592117.2 (12)C9—C10—C28—C29116.3 (5)
N4—Ru—O—C592153.3 (12)C11—C10—C28—C2966.7 (5)
C49—Ru—O—C59264.4 (18)C9—C10—C28—C3366.3 (5)
N1—Ru—C49—C50115.0 (3)C11—C10—C28—C33110.6 (5)
N2—Ru—C49—C50155.1 (3)C16—C15—C35—C36107.6 (4)
N3—Ru—C49—C5064.7 (3)C14—C15—C35—C3671.1 (5)
N4—Ru—C49—C5025.1 (3)C16—C15—C35—C4070.1 (5)
O—Ru—C49—C50113.6 (12)C14—C15—C35—C40111.2 (5)
N1—Ru—C49—C5659.6 (3)C1—C20—C42—C43105.8 (4)
N2—Ru—C49—C5630.3 (3)C19—C20—C42—C4377.0 (5)
N3—Ru—C49—C56120.6 (3)C1—C20—C42—C4774.9 (5)
N4—Ru—C49—C56149.6 (3)C19—C20—C42—C47102.4 (4)
O—Ru—C49—C5661.0 (14)C592—O—C59—C6051.1 (13)
Ru—C49—C50—C51129.6 (4)Ru—O—C59—C60165.6 (9)
Ru—C49—C50—C5551.5 (5)C59—O—C592—C60212.1 (19)
C56—C49—C50—C5145.5 (5)Ru—O—C592—C602109.2 (18)
C56—C49—C50—C55133.4 (4)Cl1—C61—C62—Cl2179.3 (6)
Ru—C49—C56—C5795.2 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y, z; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H44···C46iii0.822.463.227 (5)156
Symmetry code: (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Ru2(C20H14)(C48H36N4)2(C2H6O)2]·3C2H4Cl2
Mr2183.06
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)14.786 (4), 15.816 (4), 13.879 (3)
α, β, γ (°)98.15 (2), 109.047 (19), 114.12 (2)
V3)2653.8 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.50 × 0.45 × 0.18
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.791, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
12659, 12189, 7914
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 1.01
No. of reflections12189
No. of parameters663
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.63

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ru—N12.046 (3)C50—C511.391 (6)
Ru—N22.046 (3)C51—C521.387 (6)
Ru—N32.051 (3)C52—C531.353 (7)
Ru—N42.050 (3)C53—C541.365 (7)
Ru—C491.865 (3)C54—C551.391 (6)
Ru—O2.417 (3)C56—C571.394 (5)
C49—C501.507 (5)C57—C581.384 (5)
C49—C561.489 (4)C58—C56i1.393 (5)
C50—C551.382 (5)
H10···C54i3.011H32···C15ii2.836
H41···C142.593Cl2···Cl3iii3.462 (5)
N1—Ru—N289.84 (11)N4—Ru—O86.54 (12)
N1—Ru—N3168.18 (11)C49—Ru—N190.83 (13)
N1—Ru—N489.90 (11)C49—Ru—N294.10 (13)
N2—Ru—N389.56 (12)C49—Ru—N3100.99 (13)
N2—Ru—N4172.57 (11)C49—Ru—N493.32 (13)
N3—Ru—N489.18 (11)C49—Ru—O174.05 (13)
N1—Ru—O83.22 (11)C50—C49—C56112.3 (3)
N2—Ru—O86.05 (12)Ru—C49—C56122.2 (3)
N3—Ru—O84.96 (12)Ru—C49—C50125.3 (2)
Ru—C49—C50—C5551.5 (5)Ru—C49—C56—C58i87.8 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H44···C46ii0.822.4603.227 (5)156
Symmetry code: (ii) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds