Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of rac-bis­(ethane-1,2-diamine)(oxamato-κ2O1,O2)cobalt(III) bis­(trifluoro­methane­sulfonate) dihydrate, [Co(C2H2NO3)(C2H8N2)2](CF3SO3)2·2H2O, (I), and Λ(+)578-bis­(ethane-1,2-diamine)[oxamato(2−)-κ2N,O1]cobalt(III) trifluoro­methane­sulfonate, [Co(C2HNO3)(C2H8N2)2]CF3SO3, (II), are compared. Together, the two complexes constitute the first pair of linkage isomers of bidentate oxamate available for structural comparison.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109013122/mx3011sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109013122/mx3011Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109013122/mx3011IIsup3.hkl
Contains datablock II

CCDC references: 735110; 735111

Comment top

The production of multidimensional magnetic materials through self-assembly of paramagnetic metal ions with small anionic ligands has to a large degree relied on oxalate as the bridging ligand (Pilkington & Decurtins, 2004; Kou et al., 2008, and references therein). However, anionic forms of derivatives such as oxamide (H2NCOCONH2), dithiooxamide (H2NCSCSNH2), oxamic acid (H2NCOCO2H) and their derivatives are also employed in bridging capacities, due to the structural and electronic variation offered by such species (Verdaguer et al., 1985; Kahn, 2000; Cangussu et al., 2008).

The unsymmetrical nature of oxamic acid, whether singly or doubly deprotonated, gives rise to different coordination modes for the oxamate entity in both bridging and non-bridging roles (Novosad et al., 2000; Rodrígez-Martín et al., 2001). For bidentate oxamate in mononuclear systems, both the O,O'- and N,O-coordination modes are possible. However, essentially all reported crystal structures of mononuclear oxamate complexes have the ligand O,O' bound at a labile metal centre (Braibanti et al., 1971; Pellinghelli et al., 1972; Skoulika et al., 1988a,b; Veltsistas et al., 1995, 1999; Papadimitriou et al., 1998; Novosad et al., 2000; Rodrígez-Martín et al., 2001; Wang et al., 2003). The sole example of a robust metal centre is the cobalt(III) complex p-[Co(tren)(O2CCONH2-O,O')]Cl2.2H2O (tren is what?; Chun et al., 1999).

The two cobalt(III) complexes of this study constitute oxamate linkage isomers covering both coordination modes. However, the two complexes do differ with respect to the level of deprotonation of the oxamate ligand. Thus, the O,O' isomer, rac-[Co(en)2(O2CCONH2-O,O')](O3SCF3)2.2H2O, (I), comprises the oxamate monoanion, whereas the N,O isomer, Λ(+)578-[Co(en)2(O2CCONH-N,O)](O3SCF3), (II), comprises the dianion, with the oxamate also deprotonated at the N atom, as expected for an N-bound amide (Sigel & Martin, 1982). Reprotonation of (II), presumably at the amide exo-O atom, only occurs in strong acids, consistent with a pKa value of 0.7 for the protonated form, as determined spectrophotometrically for the chloride salt (Grøndahl, Hammershøi et al., 1995).

To our knowledge, compound (II) represents the first structurally unambiguous example of an N,O-linkage isomer of oxamate in a mononuclear complex. Together, complexes (I) and (II) constitute the first pair of linkage isomers of bidentate oxamate available for structural comparison (Tables 1 and 3). The two isomers differ significantly with respect to the bond distances of their oxamate amide segments. These segments are both polarized by coordination to the metal, but to different degrees in each linkage isomer. A valid comparison of these differences should take unbound oxamate as the point of reference. Aakeröy et al. (1996) reported structures of six independent oxamate salts in which the oxamate anion is not coordinated. The C—O and C—N bond distances of the oxamate amide moieties of these structures are all very similar (±0.01 Å), averaging 1.236 and 1.320 Å, respectively. Comparing these values with those from the chelated compounds, it transpires that the O-bound amide moiety of (I) has the C1—O1 bond length [1.2657 (11) Å] increased by ca 0.03 Å and the C1—N1 bond length [1.2979 (12) Å] decreased by ca 0.02 Å relative to the unbound anion. This is consistent with a relative shift of double-bond character from the C1—O1 bond towards the C1—N1 bond, induced by the metal. The same trend, albeit less pronounced, is evident in (II), with C1—O1 and C1—N1 bond lengths of 1.2578 (9) and 1.3139 (9) Å, respectively. In (II), the metal centre has formally replaced an H atom at the amidic N atom. The smaller charge-to-radius ratio of the cobalt(III) centre renders it less polarizing than an H atom (Dixon & Sargeson, 1993), and the relative effect of such an H+/CoIII replacement would be to release electron density into the N—C bond, albeit on a minor scale, as judged from the small bond-length changes compared with the unbound anion. The Co1—N1(amide) bond distance of 1.9039 (7) Å is the shortest such bond in (II), with the other Co1—N(primary amine) distances ranging from 1.9444 (7) to 1.9699 (6) Å. The structure of the closely related 2-thiooxamate complex, [Co(en)2(O2CCSNH-N,O)]O3SCF3.H2O (Grøndahl, Hammershøi & Larsen, 1995) shows the same features, with thioamide Co—N and C—N bond distances of 1.896 (2) and 1.310 (4) Å, respectively, which closely match those of (II). The Co1—N1 distance of 1.9039 (7) Å in (II) is significantly shorter than the corresponding distance of 1.960 (2) Å in the N-formyloxamate complex, Λ(+)578-[Co(en)2(O2CCONCHO-N,O)]ClO4 (Grøndahl, Hammershøi et al., 1995). Thus, the introduction of a formyl group has a dramatic effect on the Co—N distance. A parallel trend holds for 2-iminoacetate versus 2-methyliminoacetate as ligands. Thus, the introduction of a methyl group at the imine N atom increases the Co—N(imine) distance from 1.904 (4) Å in [Co(en)2(O2CC NH)]Br2.H2O to 1.951 (2) Å in [Co(en)2(O2CC=NCH3)]S2O6.1.5H2O (Bendahl et al., 2002). The oxamate and oxamate-to-metal bond parameters of (I) are almost identical to those of the corresponding tren complex, p-[Co(tren)(O2CCONH2-O,O')]Cl2.2H2O.

The study of Chun et al. (1999) was initiated against the background that certain racemic halide salts of the [Co(en)2(ox)]+ cation were known to display conglomerate crystallization (spontaneous resolution) from aqueous solution (Yamanari et al., 1973). Therefore, it was of interest to detect whether this property is retained if the oxalate ligand is replaced by structurally related ligands, e.g. oxamate. Indeed, the racemic chloride salt of (II), rac-[Co(en)2(O2CCONH-N,O)]Cl.H2O, has been demonstrated to display conglomerate crystallization from a comparison of the X-ray powder diffraction pattern of the racemate with that of one enantiomer, Λ(+)578-[Co(en)2(O2CCONH-N,O)]Cl.H2O (Grøndahl, Hammershøi et al., 1995). These patterns are identical, implying that the racemate must crystallize in the same noncentrosymmetric space group as the enantiomer (Galsbøl et al., 1978).

The structures of both (I) and (III) are characterized by extensive hydrogen-bonding networks; for details, see Tables 2 and 4. [Do you wish to add any comment on the nature of these networks? e.g. two- or three-dimensional, ribbons, chains, sheets etc. Also, do you wish to add hydrogen-bond diagrams?]

Experimental top

The O,O' isomer, (I), was synthesized here anew. Earlier attempts at producing this complex from trans-[Co(en)2Cl2]Cl by reaction with sodium oxamate in water only resulted in the oxalate complex, [Co(en)2(ox)]Cl.4H2O (Chun et al., 1999), evidently due to adverse hydrolysis of oxamate in the aqueous conditions. This difficulty was circumvented here by allowing ethyl oxamate in acetone to replace the coordinated trifluoromethanesulfonate ions in cis-[Co(en)2(O3SCF3)2]O3SCF3 (Barfod et al., 2005). During aqueous work-up, the ester part of ethyl oxamate, once coordinated, readily hydrolyzes (Browne et al., 2000). Thus, for the synthesis of (I), a solution of cis-[Co(en)2(O3SCF3)2]O3SCF3 (4.82 g, 10.0 mmol) and ethyl oxamate (2.34 g, 20.0 mmol) in acetone (20 ml) was stirred at 313–318 K for 0.5 h. The solvent was then removed by rotary evaporation, the resulting residue taken up in water (15 ml) and the solution extracted with diethyl ether (2 × 20 ml). The aqueous phase was concentrated almost to dryness and the resulting residue redissolved in water (ca 5 ml). Gradual addition of LiCl (1.7 g) and EtOH (10 ml), followed by cooling in ice, deposited the chloride salt, rac-[Co(en)2(O2CCONH2)]Cl2.2H2O, as red crystals (1.81 g). These were recrystallized from hot water (5.5 ml) and EtOH (10 ml) (1.64 g, 44%). Large ruby-coloured crystals of the trifluoromethanesulfonate salt, (I), suitable for X-ray crystallography, were grown from an aqueous solution of the chloride salt to which was added excess NaO3SCF3.H2O. The N,O isomer, (II), was obtained from the known chloride salt (Grøndahl, Hammershøi et al., 1995). A solution of Λ(+)578-[Co(en)2(O2CCONH-N,O)]Cl.H2O (0.25 g) and KO3SCF3 (0.50 g) in hot water (5 ml, 323 K) was cooled slowly to 298 K, depositing orange–red crystals (0.28 g). These were recrystallized from boiling water (15 ml) to produce crystals of (II) (0.10 g) of crystallographic quality.

Refinement top

Space groups were determined from analysis of the systematically absent reflections. H atoms were found in a difference Fourier map and included in the refinement as constrained idealized H atoms riding on the parent atom, with C—H = 0.99 and N—H = 0.92 Å. In the final refinement of (I) and (II), the H atoms at the oxamate N atom were refined semi-free, with Uiso(H) = 1.2Ueq(N). The H atoms of the solvent water molecules in (I) were also refined semi-free, with a distance restraint [Please state O—H restraint used] and with Uiso(H) = 1.5Ueq(O).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (II), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) rac-bis(ethane-1,2-diamine)(oxamato- κ2O1,O2)cobalt(III) bis(trifluoromethanesulfonate) dihydrate top
Crystal data top
[Co(C2H2NO3)(C2H8N2)2](CF3SO3)2·2H2OZ = 2
Mr = 601.36F(000) = 612
Triclinic, P1Dx = 1.846 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2621 (9) ÅCell parameters from 27593 reflections
b = 10.6826 (7) Åθ = 1.9–45.0°
c = 16.4111 (6) ŵ = 1.10 mm1
α = 92.214 (5)°T = 122 K
β = 94.350 (5)°Prism, red
γ = 98.257 (7)°0.35 × 0.23 × 0.06 mm
V = 1081.95 (18) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
13446 independent reflections
Radiation source: fine-focus sealed tube10801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 40.1°, θmin = 2.2°
Absorption correction: integration
Gaussian integration (Coppens, 1970)
h = 1111
Tmin = 0.693, Tmax = 0.933k = 1919
68590 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.6052P]
where P = (Fo2 + 2Fc2)/3
13446 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.70 e Å3
6 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co(C2H2NO3)(C2H8N2)2](CF3SO3)2·2H2Oγ = 98.257 (7)°
Mr = 601.36V = 1081.95 (18) Å3
Triclinic, P1Z = 2
a = 6.2621 (9) ÅMo Kα radiation
b = 10.6826 (7) ŵ = 1.10 mm1
c = 16.4111 (6) ÅT = 122 K
α = 92.214 (5)°0.35 × 0.23 × 0.06 mm
β = 94.350 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
13446 independent reflections
Absorption correction: integration
Gaussian integration (Coppens, 1970)
10801 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.933Rint = 0.044
68590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.70 e Å3
13446 reflectionsΔρmin = 0.70 e Å3
316 parameters
Special details top

Experimental. General: NMR spectra (13C) were recorded on a Bruker (400 MHz) spectrometer using 1,4-dioxane (δ = 69.14 relative to Me4Si) in D2O as internal standard. [Co(en)2(O3SCF3)2]O3SCF3 (Barfod et al., 2005) was synthesized according to a published procedure. NaO3SCF3.H2O and KO3SCF3 were obtained from aqueous HO3SCF3 and NaOH or KOH, respectively, followed by evaporation and recrystallization from EtOH. Routine concentration of solutions was carried out at reduced pressure (ca 20 Torr) in a Büchi rotary evaporator using a vacuum pump and water bath (ca 50 °C).

Synthesis of rac-[Co(en)2(O2CCONH2-O,O')]Cl2.2H2O: a solution of cis-[Co(en)2(O3SCF3)2]O3SCF3 (4.82 g, 10.0 mmol) and ethyl oxamate (2.34 g, 20.0 mmol) in acetone (20 ml) was stirred at 40–45 °C for 0.5 h while the colour changed from purple to deep red. The solvent was removed by rotary evaporation and the resulting residue was taken up in water (15 ml). The solution was extracted with diethylether (2 × 20 ml) before the aqueous phase was concentrated to almost dryness. The residue was redissolved in water (ca 5 ml) followed by gradual addition of LiCl (1.7 g) and EtOH (10 ml) followed by cooling in ice. The red crystals (1.81 g) that separated were collected and recrystallized from hot water (5.5 ml) and EtOH (10 ml). After cooling in ice the crystals were collected and washed with EtOH, Et2O and airdried. Yield: 1.64 g, 44%. C6H18Cl2CoN5O3 (374.11): calcd. C 19.26, H 5.93, Cl 18.95, Co 15.75, N 18.72; found C 19.1, H 6.1, Cl 18.7, Co 15.7 N 18.8. 13C NMR (400 MHz, D2O): δ = 172.6, 169.7 (CO); 48.5, 48.4, 46.2, 46.0 (4 × CH2).

Synthesis of rac-[Co(en)2(O2CCONH2-O,O')](O3SCF3)2.2H2O, (I): Crystals of the trifluoromethanesulfonate salt suitable for X-ray crystallography were grown from an aqueous solution of rac-[Co(en)2(O2CCONH2-O,O')]Cl2.2H2O to which was added excess NaO3SCF3.H2O. The large ruby coloured crystals were dried between filter paper. C8H22CoF6N5O11S2 (601.36): calcd. C 15.98, H 3.69, Co 9.80, N 11.65; found C 15.8, H 3.2, Co 9.5 N 11.0.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.58257 (2)0.558060 (12)0.247322 (7)0.00964 (3)
O10.52488 (11)0.46540 (7)0.14387 (4)0.01245 (11)
O20.86506 (11)0.61190 (7)0.21181 (4)0.01336 (12)
N20.65704 (13)0.66399 (8)0.34608 (5)0.01381 (13)
H2A0.55850.64190.38380.017*
H2B0.79210.65340.36840.017*
N30.29795 (13)0.48869 (8)0.27774 (5)0.01239 (12)
H3A0.23630.55110.30330.015*
H3B0.21010.45850.23160.015*
N40.47283 (14)0.70318 (8)0.19963 (5)0.01354 (13)
H4A0.56260.73590.16140.016*
H4B0.33700.67790.17380.016*
N50.68243 (14)0.40949 (9)0.29510 (5)0.01425 (13)
H5A0.77610.37740.26210.017*
H5B0.75410.43150.34580.017*
C10.68708 (14)0.48048 (9)0.10181 (5)0.01163 (13)
N10.68787 (14)0.42549 (9)0.02993 (5)0.01440 (13)
H1A0.575 (2)0.3727 (14)0.0114 (10)0.017*
H1B0.802 (2)0.4403 (16)0.0031 (10)0.017*
C20.88950 (14)0.56700 (9)0.13995 (6)0.01223 (14)
O31.05471 (12)0.58539 (8)0.10379 (5)0.01639 (13)
C210.65566 (19)0.79857 (10)0.32557 (7)0.01879 (17)
H21A0.79110.83180.30130.023*
H21B0.64390.85130.37550.023*
C310.31784 (16)0.38387 (10)0.33392 (6)0.01604 (16)
H31A0.17820.32700.33340.019*
H31B0.36110.41820.39060.019*
C410.46228 (19)0.80178 (10)0.26493 (7)0.01824 (17)
H41A0.32600.78340.29200.022*
H41B0.46860.88620.24160.022*
C510.48942 (17)0.31302 (10)0.30262 (7)0.01683 (16)
H51A0.52490.24880.34140.020*
H51B0.43850.26970.24880.020*
S10.19943 (4)0.68254 (2)0.482812 (14)0.01360 (4)
O110.10287 (13)0.64823 (8)0.40011 (5)0.01720 (13)
O120.07976 (14)0.62913 (9)0.54759 (5)0.02102 (15)
O130.42959 (13)0.67880 (9)0.49207 (5)0.02202 (16)
C610.1749 (2)0.85089 (11)0.49388 (7)0.0228 (2)
F110.26565 (16)0.90144 (8)0.56570 (5)0.03358 (19)
F120.2688 (2)0.91590 (9)0.43535 (6)0.0427 (2)
F130.03322 (16)0.86529 (9)0.48914 (7)0.0385 (2)
S20.87661 (4)0.18319 (2)0.133795 (16)0.01574 (4)
O210.96896 (13)0.30076 (8)0.17845 (5)0.01883 (14)
O220.64444 (14)0.15369 (9)0.13392 (6)0.02658 (18)
O230.96088 (16)0.16275 (9)0.05572 (5)0.02525 (17)
C710.9767 (2)0.06338 (11)0.19693 (8)0.0239 (2)
F210.90012 (16)0.05303 (7)0.16606 (6)0.03400 (19)
F221.19123 (16)0.07597 (9)0.20275 (7)0.0406 (2)
F230.9135 (2)0.07378 (10)0.27244 (6)0.0448 (3)
O600.67060 (14)0.74754 (8)0.03708 (5)0.02022 (15)
H60A0.610 (3)0.8087 (16)0.0389 (12)0.030*
H60B0.772 (3)0.7646 (18)0.0099 (11)0.030*
O700.39841 (17)0.91299 (10)0.07357 (6)0.02724 (18)
H70A0.445 (3)0.9930 (15)0.0834 (13)0.041*
H70B0.280 (3)0.910 (2)0.0409 (12)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00763 (4)0.01407 (5)0.00712 (5)0.00144 (4)0.00104 (3)0.00097 (4)
O10.0096 (2)0.0182 (3)0.0093 (2)0.0013 (2)0.0018 (2)0.0021 (2)
O20.0100 (2)0.0198 (3)0.0096 (3)0.0000 (2)0.0017 (2)0.0025 (2)
N20.0125 (3)0.0185 (3)0.0100 (3)0.0012 (3)0.0013 (2)0.0022 (3)
N30.0099 (3)0.0160 (3)0.0113 (3)0.0019 (2)0.0018 (2)0.0007 (2)
N40.0135 (3)0.0161 (3)0.0113 (3)0.0028 (3)0.0015 (2)0.0007 (2)
N50.0126 (3)0.0190 (4)0.0120 (3)0.0049 (3)0.0018 (2)0.0009 (3)
C10.0097 (3)0.0166 (4)0.0087 (3)0.0028 (3)0.0008 (2)0.0008 (3)
N10.0126 (3)0.0205 (4)0.0097 (3)0.0014 (3)0.0018 (2)0.0034 (3)
C20.0095 (3)0.0172 (4)0.0099 (3)0.0021 (3)0.0009 (2)0.0006 (3)
O30.0106 (3)0.0253 (4)0.0129 (3)0.0004 (2)0.0040 (2)0.0018 (3)
C210.0218 (4)0.0162 (4)0.0168 (4)0.0007 (3)0.0007 (3)0.0036 (3)
C310.0154 (4)0.0191 (4)0.0140 (4)0.0018 (3)0.0045 (3)0.0024 (3)
C410.0225 (4)0.0168 (4)0.0162 (4)0.0056 (3)0.0027 (3)0.0013 (3)
C510.0181 (4)0.0163 (4)0.0167 (4)0.0032 (3)0.0037 (3)0.0016 (3)
S10.01436 (9)0.01734 (10)0.00975 (8)0.00448 (7)0.00205 (7)0.00117 (7)
O110.0188 (3)0.0222 (3)0.0112 (3)0.0066 (3)0.0001 (2)0.0028 (2)
O120.0231 (4)0.0263 (4)0.0136 (3)0.0012 (3)0.0056 (3)0.0006 (3)
O130.0157 (3)0.0355 (5)0.0163 (3)0.0092 (3)0.0016 (3)0.0010 (3)
C610.0292 (5)0.0194 (5)0.0201 (5)0.0065 (4)0.0001 (4)0.0037 (4)
F110.0446 (5)0.0263 (4)0.0277 (4)0.0068 (4)0.0072 (4)0.0127 (3)
F120.0710 (7)0.0226 (4)0.0354 (5)0.0033 (4)0.0145 (5)0.0070 (3)
F130.0336 (4)0.0341 (5)0.0500 (6)0.0212 (4)0.0069 (4)0.0119 (4)
S20.01498 (9)0.01595 (10)0.01560 (10)0.00039 (8)0.00241 (8)0.00314 (8)
O210.0190 (3)0.0155 (3)0.0208 (3)0.0009 (3)0.0001 (3)0.0042 (3)
O220.0151 (3)0.0292 (4)0.0337 (5)0.0004 (3)0.0029 (3)0.0091 (4)
O230.0283 (4)0.0289 (4)0.0177 (4)0.0005 (3)0.0079 (3)0.0045 (3)
C710.0288 (5)0.0166 (4)0.0246 (5)0.0000 (4)0.0009 (4)0.0004 (4)
F210.0442 (5)0.0145 (3)0.0400 (5)0.0031 (3)0.0016 (4)0.0028 (3)
F220.0292 (4)0.0259 (4)0.0648 (7)0.0070 (3)0.0132 (4)0.0003 (4)
F230.0786 (8)0.0339 (5)0.0212 (4)0.0030 (5)0.0080 (4)0.0055 (3)
O600.0193 (3)0.0217 (4)0.0185 (3)0.0015 (3)0.0028 (3)0.0000 (3)
O700.0294 (5)0.0255 (4)0.0255 (4)0.0025 (4)0.0017 (3)0.0021 (3)
Geometric parameters (Å, º) top
Co1—O11.9150 (7)C21—H21B0.9900
Co1—O21.9208 (7)C31—C511.5094 (15)
Co1—N21.9280 (8)C31—H31A0.9900
Co1—N31.9389 (8)C31—H31B0.9900
Co1—N41.9510 (9)C41—H41A0.9900
Co1—N51.9575 (9)C41—H41B0.9900
C1—O11.2657 (11)C51—H51A0.9900
C1—N11.2979 (12)C51—H51B0.9900
C2—O21.2841 (11)S1—O121.4360 (9)
C2—O31.2268 (11)S1—O131.4442 (9)
N2—C211.4904 (15)S1—O111.4545 (8)
N2—H2A0.9200S1—C611.8301 (12)
N2—H2B0.9200C61—F111.3285 (14)
N3—C311.4906 (13)C61—F121.3306 (16)
N3—H3A0.9200C61—F131.3309 (16)
N3—H3B0.9200S2—O221.4428 (9)
N4—C411.4853 (13)S2—O231.4429 (9)
N4—H4A0.9200S2—O211.4509 (8)
N4—H4B0.9200S2—C711.8271 (13)
N5—C511.4876 (14)C71—F221.3267 (16)
N5—H5A0.9200C71—F211.3328 (14)
N5—H5B0.9200C71—F231.3344 (16)
C1—C21.5334 (13)O60—H60A0.803 (14)
N1—H1A0.865 (13)O60—H60B0.809 (14)
N1—H1B0.864 (13)O70—H70A0.867 (15)
C21—C411.5131 (16)O70—H70B0.878 (15)
C21—H21A0.9900
O1—Co1—O285.49 (3)N2—C21—C41107.26 (8)
O1—Co1—N2174.45 (3)N2—C21—H21A110.3
O2—Co1—N290.03 (3)C41—C21—H21A110.3
O1—Co1—N390.11 (3)N2—C21—H21B110.3
O2—Co1—N3174.65 (3)C41—C21—H21B110.3
N2—Co1—N394.53 (4)H21A—C21—H21B108.5
O1—Co1—N490.20 (3)N3—C31—C51106.23 (8)
O2—Co1—N491.19 (4)N3—C31—H31A110.5
N2—Co1—N486.61 (4)C51—C31—H31A110.5
N3—Co1—N491.87 (4)N3—C31—H31B110.5
O1—Co1—N589.26 (3)C51—C31—H31B110.5
O2—Co1—N590.66 (4)H31A—C31—H31B108.7
N2—Co1—N594.08 (4)N4—C41—C21106.39 (9)
N3—Co1—N586.24 (4)N4—C41—H41A110.4
N4—Co1—N5178.03 (4)C21—C41—H41A110.4
C1—O1—Co1111.65 (6)N4—C41—H41B110.4
C2—O2—Co1113.20 (6)C21—C41—H41B110.4
C21—N2—Co1108.67 (6)H41A—C41—H41B108.6
C21—N2—H2A110.0N5—C51—C31106.25 (8)
Co1—N2—H2A110.0N5—C51—H51A110.5
C21—N2—H2B110.0C31—C51—H51A110.5
Co1—N2—H2B110.0N5—C51—H51B110.5
H2A—N2—H2B108.3C31—C51—H51B110.5
C31—N3—Co1109.46 (6)H51A—C51—H51B108.7
C31—N3—H3A109.8O12—S1—O13115.24 (5)
Co1—N3—H3A109.8O12—S1—O11115.92 (5)
C31—N3—H3B109.8O13—S1—O11113.43 (5)
Co1—N3—H3B109.8O12—S1—C61102.84 (6)
H3A—N3—H3B108.2O13—S1—C61104.62 (6)
C41—N4—Co1109.72 (6)O11—S1—C61102.48 (5)
C41—N4—H4A109.7F11—C61—F12108.06 (11)
Co1—N4—H4A109.7F11—C61—F13107.99 (10)
C41—N4—H4B109.7F12—C61—F13108.13 (12)
Co1—N4—H4B109.7F11—C61—S1111.31 (9)
H4A—N4—H4B108.2F12—C61—S1111.45 (9)
C51—N5—Co1107.98 (6)F13—C61—S1109.78 (9)
C51—N5—H5A110.1O22—S2—O23115.00 (6)
Co1—N5—H5A110.1O22—S2—O21114.17 (5)
C51—N5—H5B110.1O23—S2—O21115.15 (5)
Co1—N5—H5B110.1O22—S2—C71103.54 (6)
H5A—N5—H5B108.4O23—S2—C71103.96 (6)
O1—C1—N1122.93 (9)O21—S2—C71102.79 (5)
O1—C1—C2116.93 (8)F22—C71—F21108.06 (11)
N1—C1—C2120.14 (8)F22—C71—F23107.83 (12)
C1—N1—H1A118.3 (11)F21—C71—F23107.94 (11)
C1—N1—H1B119.4 (11)F22—C71—S2111.61 (9)
H1A—N1—H1B122.2 (15)F21—C71—S2111.10 (9)
O3—C2—O2126.11 (9)F23—C71—S2110.16 (9)
O3—C2—C1121.14 (8)H60A—O60—H60B107.0 (19)
O2—C2—C1112.73 (8)H70A—O70—H70B105 (2)
O1—C1—C2—O20.78 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60i0.87 (1)1.95 (1)2.8181 (12)176 (2)
N1—H1B···O3ii0.86 (1)2.06 (1)2.8281 (11)148 (2)
N2—H2A···O130.922.052.8890 (12)150
N2—H2B···O11iii0.921.982.8947 (12)170
N3—H3A···O110.922.153.0225 (11)158
N3—H3B···O21iv0.922.202.9966 (12)145
N4—H4A···O600.922.203.0504 (12)153
N4—H4B···O3iv0.922.133.0313 (12)167
N5—H5A···O210.922.113.0301 (12)175
N5—H5B···O12v0.922.142.9543 (12)147
O60—H60A···O700.80 (1)1.95 (2)2.7067 (14)157 (2)
O60—H60B···O23ii0.81 (1)2.13 (2)2.9280 (13)172 (2)
O70—H70A···O22vi0.87 (2)2.08 (2)2.8984 (14)158 (2)
O70—H70B···O23i0.88 (2)2.14 (2)2.9730 (14)158 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.
(II) Λ(+)578-bis(ethane-1,2-diamine)[oxamato(2-)- κ2N,O1]cobalt(III) trifluoromethanesulfonate top
Crystal data top
[Co(C2HNO3)(C2H8N2)2](CF3SO3)F(000) = 424
Mr = 415.25Dx = 1.930 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 29543 reflections
a = 6.6398 (4) Åθ = 1.7–50.0°
b = 11.6663 (8) ŵ = 1.42 mm1
c = 9.2846 (10) ÅT = 122 K
β = 96.517 (11)°Prism, orange red
V = 714.55 (10) Å30.20 × 0.13 × 0.06 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
8895 independent reflections
Radiation source: fine-focus sealed tube8611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 40.1°, θmin = 2.8°
Absorption correction: integration
Gaussian integration (Coppens, 1970)
h = 1211
Tmin = 0.714, Tmax = 0.919k = 2121
35436 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0149P)2 + 0.1524P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
8895 reflectionsΔρmax = 0.48 e Å3
211 parametersΔρmin = 0.75 e Å3
1 restraintAbsolute structure: Flack (1983), with 4283 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (4)
Crystal data top
[Co(C2HNO3)(C2H8N2)2](CF3SO3)V = 714.55 (10) Å3
Mr = 415.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6398 (4) ŵ = 1.42 mm1
b = 11.6663 (8) ÅT = 122 K
c = 9.2846 (10) Å0.20 × 0.13 × 0.06 mm
β = 96.517 (11)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
8895 independent reflections
Absorption correction: integration
Gaussian integration (Coppens, 1970)
8611 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.919Rint = 0.033
35436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047Δρmax = 0.48 e Å3
S = 1.06Δρmin = 0.75 e Å3
8895 reflectionsAbsolute structure: Flack (1983), with 4283 Friedel pairs
211 parametersAbsolute structure parameter: 0.000 (4)
1 restraint
Special details top

Experimental. General: Optical rotations were measured on a Perkin–Elmer P22 polarimeter (±0.002°) in a 1 dm quartz cell; within experimental error all listed values for specific rotations ([α]λ, in units of 10-1 ° cm2 g-1) of the chiral product did not change on further recrystallization, and this was taken as evidence of optical purity. Synthesis of Λ(+)578Co(en)2(O2CCONH-N,O)](O3SCF3) (II): A solution of Λ(+)578Co(en)2(O2CCONH-N,O)]Cl.H2O (0.25 g) (Grøndahl, Hammershøi et al., 1995) and KO3SCF3 (0.50 g) in hot water (5 ml, 50 °C) was slowly cooled to 25 °C whereby orange–red crystals (0.28 g) deposited. These were recrystallized from boiling water (15 ml) to produce crystals (0.10 g) of crystallographic quality. [α]578 800, [α]546 1280, [α]436 -1660, [α]364 -1500, [α]313 -1760; C7H17CoF3N5O6S (415.17): calcd. C 20.25, H 4.13, Co 14.19, N 16.87; found C 20.1, H 4.0, Co 14.1, N 16.7.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.174374 (13)0.001318 (8)0.537607 (10)0.00677 (2)
N10.44856 (9)0.02313 (5)0.61600 (7)0.00922 (9)
H10.527 (2)0.0286 (13)0.6563 (16)0.011*
N20.10023 (9)0.00975 (7)0.43266 (7)0.00985 (9)
H2A0.17330.05420.45240.012*
H2B0.16650.07340.46210.012*
N30.16535 (11)0.15728 (6)0.61048 (8)0.01126 (10)
H3A0.29390.18150.64430.014*
H3B0.11400.20580.53720.014*
N40.26676 (10)0.05468 (6)0.35651 (7)0.01059 (10)
H4A0.35870.11320.37570.013*
H4B0.33050.00430.31400.013*
N50.07523 (10)0.04527 (6)0.72081 (7)0.00990 (9)
H5A0.05620.07100.70300.012*
H5B0.15380.10410.76230.012*
O10.70271 (8)0.15963 (5)0.61593 (7)0.01192 (9)
O20.18307 (8)0.15761 (5)0.48554 (6)0.00942 (8)
O30.38798 (9)0.30953 (5)0.51618 (7)0.01139 (9)
C20.35527 (10)0.20579 (6)0.52516 (8)0.00804 (9)
C10.52292 (10)0.12468 (6)0.59115 (8)0.00829 (10)
C210.08354 (11)0.01674 (7)0.27406 (8)0.01256 (12)
H21A0.21040.04760.22190.015*
H21B0.05850.06020.23480.015*
C310.03376 (12)0.15925 (7)0.72986 (9)0.01249 (11)
H31A0.11090.15820.68980.015*
H31B0.05950.22950.78890.015*
C410.09210 (13)0.09580 (7)0.25582 (9)0.01359 (12)
H41A0.12520.09360.15450.016*
H41B0.05760.17560.27960.016*
C510.08452 (13)0.05417 (7)0.82150 (9)0.01278 (11)
H51A0.22190.06120.87460.015*
H51B0.01420.04450.89280.015*
S10.58537 (3)0.297614 (17)0.86318 (2)0.01214 (3)
O110.57971 (13)0.17529 (6)0.84105 (9)0.02082 (13)
O120.46085 (12)0.36143 (7)0.75216 (8)0.02138 (13)
O130.78102 (11)0.34777 (8)0.90628 (10)0.02459 (15)
C110.45637 (13)0.31675 (8)1.02577 (9)0.01527 (13)
F110.44080 (12)0.42713 (6)1.05828 (8)0.02451 (13)
F120.56277 (12)0.26538 (7)1.13906 (7)0.02750 (14)
F130.27067 (11)0.27239 (8)1.01103 (8)0.02872 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00602 (3)0.00596 (3)0.00827 (3)0.00011 (3)0.00057 (2)0.00038 (3)
N10.0078 (2)0.0080 (2)0.0116 (2)0.00110 (15)0.00006 (17)0.00100 (17)
N20.00806 (18)0.0097 (2)0.0117 (2)0.00078 (19)0.00079 (16)0.0005 (2)
N30.0134 (2)0.0085 (2)0.0118 (2)0.00030 (19)0.00118 (19)0.00099 (19)
N40.0104 (2)0.0111 (2)0.0103 (2)0.00168 (19)0.00144 (18)0.00015 (19)
N50.0090 (2)0.0100 (2)0.0106 (2)0.00011 (17)0.00080 (18)0.00027 (18)
O10.00647 (19)0.0122 (2)0.0167 (2)0.00086 (16)0.00049 (17)0.00014 (19)
O20.00674 (18)0.00807 (18)0.0131 (2)0.00059 (15)0.00046 (15)0.00130 (16)
O30.0102 (2)0.00708 (19)0.0165 (2)0.00027 (15)0.00019 (17)0.00053 (17)
C20.0070 (2)0.0076 (2)0.0096 (2)0.00017 (18)0.00113 (18)0.00002 (19)
C10.0069 (2)0.0082 (2)0.0096 (2)0.00082 (18)0.00057 (18)0.00048 (19)
C210.0113 (2)0.0146 (3)0.0112 (2)0.0018 (2)0.0015 (2)0.0002 (2)
C310.0134 (3)0.0120 (3)0.0120 (3)0.0034 (2)0.0009 (2)0.0027 (2)
C410.0145 (3)0.0141 (3)0.0116 (3)0.0027 (2)0.0008 (2)0.0029 (2)
C510.0144 (3)0.0140 (3)0.0098 (3)0.0013 (2)0.0009 (2)0.0012 (2)
S10.01220 (7)0.01227 (7)0.01242 (7)0.00151 (6)0.00341 (6)0.00148 (6)
O110.0303 (4)0.0130 (2)0.0203 (3)0.0022 (2)0.0077 (3)0.0046 (2)
O120.0239 (3)0.0262 (3)0.0148 (3)0.0068 (3)0.0051 (2)0.0051 (2)
O130.0143 (3)0.0281 (4)0.0323 (4)0.0077 (3)0.0065 (3)0.0096 (3)
C110.0166 (3)0.0181 (3)0.0114 (3)0.0033 (3)0.0026 (2)0.0032 (2)
F110.0309 (3)0.0201 (3)0.0236 (3)0.0017 (2)0.0079 (3)0.0086 (2)
F120.0369 (4)0.0331 (4)0.0118 (2)0.0070 (3)0.0004 (2)0.0012 (2)
F130.0209 (3)0.0449 (4)0.0222 (3)0.0162 (3)0.0101 (2)0.0094 (3)
Geometric parameters (Å, º) top
Co1—N11.9039 (7)N5—H5A0.9200
Co1—O21.9185 (6)N5—H5B0.9200
Co1—N21.9699 (6)C2—C11.5347 (10)
Co1—N31.9444 (7)C21—C411.5114 (11)
Co1—N41.9558 (7)C21—H21A0.9900
Co1—N51.9689 (7)C21—H21B0.9900
C1—O11.2578 (9)C31—C511.5084 (12)
C1—N11.3139 (9)C31—H31A0.9900
C2—O21.2896 (9)C31—H31B0.9900
C2—O31.2340 (9)C41—H41A0.9900
N1—H10.856 (15)C41—H41B0.9900
N2—C211.4915 (10)C51—H51A0.9900
N2—H2A0.9200C51—H51B0.9900
N2—H2B0.9200S1—O131.4395 (8)
N3—C311.4874 (11)S1—O111.4416 (8)
N3—H3A0.9200S1—O121.4516 (8)
N3—H3B0.9200S1—C111.8320 (9)
N4—C411.4843 (11)C11—F111.3293 (11)
N4—H4A0.9200C11—F131.3299 (11)
N4—H4B0.9200C11—F121.3402 (11)
N5—C511.4868 (11)
N1—Co1—O284.07 (3)O3—C2—O2124.42 (7)
N1—Co1—N394.19 (3)O3—C2—C1120.43 (6)
O2—Co1—N3174.22 (3)O2—C2—C1115.12 (6)
N1—Co1—N489.81 (3)O1—C1—N1128.90 (7)
O2—Co1—N493.99 (3)O1—C1—C2120.24 (6)
N3—Co1—N491.51 (3)N1—C1—C2110.86 (6)
N1—Co1—N591.57 (3)N2—C21—C41106.78 (6)
O2—Co1—N588.48 (3)N2—C21—H21A110.4
N3—Co1—N586.05 (3)C41—C21—H21A110.4
N4—Co1—N5177.28 (3)N2—C21—H21B110.4
N1—Co1—N2171.06 (3)C41—C21—H21B110.4
O2—Co1—N288.64 (3)H21A—C21—H21B108.6
N3—Co1—N293.56 (3)N3—C31—C51107.17 (6)
N4—Co1—N285.52 (3)N3—C31—H31A110.3
N5—Co1—N293.42 (3)C51—C31—H31A110.3
C1—N1—Co1115.47 (5)N3—C31—H31B110.3
C1—N1—H1119.3 (10)C51—C31—H31B110.3
Co1—N1—H1124.9 (10)H31A—C31—H31B108.5
C21—N2—Co1108.83 (4)N4—C41—C21106.85 (6)
C21—N2—H2A109.9N4—C41—H41A110.4
Co1—N2—H2A109.9C21—C41—H41A110.4
C21—N2—H2B109.9N4—C41—H41B110.4
Co1—N2—H2B109.9C21—C41—H41B110.4
H2A—N2—H2B108.3H41A—C41—H41B108.6
C31—N3—Co1108.52 (5)N5—C51—C31106.78 (6)
C31—N3—H3A110.0N5—C51—H51A110.4
Co1—N3—H3A110.0C31—C51—H51A110.4
C31—N3—H3B110.0N5—C51—H51B110.4
Co1—N3—H3B110.0C31—C51—H51B110.4
H3A—N3—H3B108.4H51A—C51—H51B108.6
C41—N4—Co1110.21 (5)O13—S1—O11116.75 (5)
C41—N4—H4A109.6O13—S1—O12114.35 (6)
Co1—N4—H4A109.6O11—S1—O12113.76 (5)
C41—N4—H4B109.6O13—S1—C11102.30 (5)
Co1—N4—H4B109.6O11—S1—C11103.36 (4)
H4A—N4—H4B108.1O12—S1—C11103.93 (4)
C51—N5—Co1109.50 (5)F11—C11—F13107.78 (8)
C51—N5—H5A109.8F11—C11—F12107.61 (7)
Co1—N5—H5A109.8F13—C11—F12107.87 (8)
C51—N5—H5B109.8F11—C11—S1111.15 (6)
Co1—N5—H5B109.8F13—C11—S1112.49 (6)
H5A—N5—H5B108.2F12—C11—S1109.77 (6)
C2—O2—Co1113.60 (5)
N1—C1—C2—O210.18 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.856 (15)2.421 (15)3.1733 (10)147.1 (12)
N2—H2A···O1i0.922.193.0029 (9)148
N2—H2B···O3ii0.922.032.9202 (9)161
N3—H3A···O110.922.483.2955 (12)148
N3—H3A···O120.922.533.2660 (11)138
N3—H3B···O1iii0.922.523.1887 (10)130
N3—H3B···O2ii0.922.533.2160 (9)132
N4—H4A···O3iii0.922.072.9236 (9)155
N4—H4B···O12iv0.922.223.1282 (11)168
N5—H5A···O1i0.922.002.8809 (9)160
N5—H5B···F12v0.922.513.4117 (11)166
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1; (v) x+1, y1/2, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C2H2NO3)(C2H8N2)2](CF3SO3)2·2H2O[Co(C2HNO3)(C2H8N2)2](CF3SO3)
Mr601.36415.25
Crystal system, space groupTriclinic, P1Monoclinic, P21
Temperature (K)122122
a, b, c (Å)6.2621 (9), 10.6826 (7), 16.4111 (6)6.6398 (4), 11.6663 (8), 9.2846 (10)
α, β, γ (°)92.214 (5), 94.350 (5), 98.257 (7)90, 96.517 (11), 90
V3)1081.95 (18)714.55 (10)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.101.42
Crystal size (mm)0.35 × 0.23 × 0.060.20 × 0.13 × 0.06
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
Gaussian integration (Coppens, 1970)
Integration
Gaussian integration (Coppens, 1970)
Tmin, Tmax0.693, 0.9330.714, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
68590, 13446, 10801 35436, 8895, 8611
Rint0.0440.033
(sin θ/λ)max1)0.9060.907
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.09 0.019, 0.047, 1.06
No. of reflections134468895
No. of parameters316211
No. of restraints61
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.700.48, 0.75
Absolute structure?Flack (1983), with 4283 Friedel pairs
Absolute structure parameter?0.000 (4)

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) for (I) top
Co1—O11.9150 (7)Co1—N51.9575 (9)
Co1—O21.9208 (7)C1—O11.2657 (11)
Co1—N21.9280 (8)C1—N11.2979 (12)
Co1—N31.9389 (8)C2—O21.2841 (11)
Co1—N41.9510 (9)C2—O31.2268 (11)
O1—C1—C2—O20.78 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60i0.865 (13)1.954 (13)2.8181 (12)176.3 (16)
N1—H1B···O3ii0.864 (13)2.058 (14)2.8281 (11)148.0 (15)
N2—H2A···O130.922.052.8890 (12)150.2
N2—H2B···O11iii0.921.982.8947 (12)169.7
N3—H3A···O110.922.153.0225 (11)158.0
N3—H3B···O21iv0.922.202.9966 (12)144.5
N4—H4A···O600.922.203.0504 (12)153.4
N4—H4B···O3iv0.922.133.0313 (12)167.3
N5—H5A···O210.922.113.0301 (12)175.0
N5—H5B···O12v0.922.142.9543 (12)147.4
O60—H60A···O700.803 (14)1.950 (15)2.7067 (14)156.6 (19)
O60—H60B···O23ii0.809 (14)2.125 (15)2.9280 (13)171.6 (19)
O70—H70A···O22vi0.867 (15)2.077 (16)2.8984 (14)158 (2)
O70—H70B···O23i0.878 (15)2.143 (16)2.9730 (14)157.5 (19)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
Co1—N11.9039 (7)Co1—N51.9689 (7)
Co1—O21.9185 (6)C1—O11.2578 (9)
Co1—N21.9699 (6)C1—N11.3139 (9)
Co1—N31.9444 (7)C2—O21.2896 (9)
Co1—N41.9558 (7)C2—O31.2340 (9)
N1—C1—C2—O210.18 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.856 (15)2.421 (15)3.1733 (10)147.1 (12)
N2—H2A···O1i0.922.193.0029 (9)147.5
N2—H2B···O3ii0.922.032.9202 (9)161.3
N3—H3A···O110.922.483.2955 (12)147.7
N3—H3A···O120.922.533.2660 (11)137.6
N3—H3B···O1iii0.922.523.1887 (10)129.6
N3—H3B···O2ii0.922.533.2160 (9)132.1
N4—H4A···O3iii0.922.072.9236 (9)154.7
N4—H4B···O12iv0.922.223.1282 (11)167.6
N5—H5A···O1i0.922.002.8809 (9)160.3
N5—H5B···F12v0.922.513.4117 (11)166.2
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1; (v) x+1, y1/2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds