research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-amino-2-oxo­ethyl 4-bromo­benzoate, 2-amino-2-oxo­ethyl 4-nitro­benzoate and 2-amino-2-oxo­ethyl 4-amino­benzoate monohydrate

CROSSMARK_Color_square_no_text.svg

aNational University of Uzbekistan named after Mirzo Ulugbek, 100174, Massif Universitet Shakharchasi 4, Tashkent, Uzbekistan, and bS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan 100170, Mirzo Ulugbek Str., 77, Tashkent, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

Edited by J. T. Mague, Tulane University, USA (Received 30 September 2020; accepted 29 October 2020; online 3 November 2020)

The title mol­ecules were synthesized by the reaction of 4-substituted sodium benzoates with chloro­acetic acid amide in the presence of di­methyl­formamide. The yields of 2-amino-2-oxoethyl 4-bromo­benzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitro­benzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-amino­benzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the mol­ecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring. Single crystals were obtained from the products under the same (temperature and solvent) conditions. In the case of III, the crystals formed as a monohydrate. In all three crystal structures, the same type of inter­molecular N—H⋯O hydrogen bonds are observed, but the mol­ecules differ in some torsion angles as well as in the dihedral angles between the mean planes of the benzene rings and the amide groups.

1. Chemical context

Mol­ecules containing an aromatic ring, a carboxyl and an amino group represent an important class of organic compounds and, with several reaction centers, they are important inter­mediates in industry. They are often used as synthons in organic synthesis and are also widely used as ligands in the coordination chemistry of various transition metals. These ligands can form a variety of complex compounds as they possess several Lewis base sites.

[Scheme 1]

The new crystalline compounds 2-amino-2-oxoethyl 4-bromo­benzoate (I), 2-amino-2-oxoethyl 4-nitro­benzoate (II) and 2-amino-2-oxoeth­yl)-4-amino­benzoate monohydrate (III) (Fig. 1[link]) were synthesized from the reaction of 4-substituted sodium benzoates with chloro­acetic acid amide in the presence of di­methyl­formamide. Their structures were determined by X-ray crystallographic analysis.

[Figure 1]
Figure 1
Reaction scheme for the synthesis of (2-amino-2-oxoeth­yl)benzoate derivatives.

2. Structural commentary

All of the title structures have planar benzoate (C1–C7/O1/O2) and amide (O3/C9/N1) units but the dihedral angle between these planes is different in each case because of the torsion angle about the bridging methyl­ene group (C8; Tables 1[link]–3[link][link]). The asymmetric unit of each crystal structure is illus­trated in Fig. 2[link]. That of I consists of two independent mol­ecules (A and B), which differ in the position of the amide groups relative to the benzoate (r.m.s. deviations of 0.021 Å for A and 0.031 Å for B) fragments, as indicated by the dihedral angles of 82.5 (4) and 75.9 (3)° in A and B, respectively. The asymmetric unit of II contains only one mol­ecule of 2-amino-2-oxoethyl 4-nitro­benzoate. The dihedral angle between the mean planes of the amide and the benzoate (r.m.s. deviation = 0.070 Å) groups is 89.4 (2)°. The asymmetric unit of III contains one water mol­ecule and one 2-amino-2-oxoethyl 4-amino­benzoate mol­ecule (Fig. 2[link]). The dihedral angle between the mean planes of the amide and benzoate (r.m.s. deviation = 0.027 Å) groups is 4.4 (5)°. Analysis of the bond lengths and bond angles of IIII shows slight differences, but these data are in the expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

Table 1
Selected torsion angles (°) for (I)[link]

C8A—O2A—C7A—C1A 179.4 (3) C8B—O2B—C7B—C1B 177.1 (3)
C6A—C1A—C7A—O2A 178.3 (3) C6B—C1B—C7B—O2B −176.7 (3)
C7A—O2A—C8A—C9A −72.9 (5) C7B—O2B—C8B—C9B −69.1 (5)
O2A—C8A—C9A—O3A −16.9 (6) O2B—C8B—C9B—O3B −17.6 (6)

Table 2
Selected torsion angles (°) for (II)[link]

C8—O2—C7—C1 −176.52 (14) C7—O2—C8—C9 −95.53 (19)
C6—C1—C7—O2 −170.76 (15) O2—C8—C9—O3 175.79 (17)

Table 3
Selected torsion angles (°) for (III)[link]

C8—O2—C7—C1 −178.9 (2) C7—O2—C8—C9 −179.2 (2)
C6—C1—C7—O2 −177.0 (2) O2—C8—C9—O3 177.4 (2)
[Figure 2]
Figure 2
The asymmetric units of IIII with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal structures, several types of inter­molecular inter­actions are observed but all contain inter­molecular N—H⋯O hydrogen bonds.

In I, inter­molecular AA (N1A—H1A⋯O3Ai), BB (N1B—H2B⋯O3Bii) and BA (N1B—H2B⋯O3Biii) inter­actions cross-link the mol­ecules, generating rings with an R33(12) graph-set motif (Fig. 3[link], Table 4[link]) (Grell et al., 1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]). Although both the A and B mol­ecules contain a bromine atom, a short inter­molecular Br⋯Br inter­action only occurs between B mol­ecules [Br1B⋯Br1B(−x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]) = 3.519 (1) Å, 0.18 Å less than the sum of the van der Waals radii]. This inter­action connects the mol­ecules into chains extending along the b-axis direction (Fig. 3[link]). A similar short Br ⋯ Br inter­action was observed in the crystal structures of 4-chloro­phenyl-4-bromo­benzoate (TAYNEP; Saha & Desiraju, 2017[Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975-1983.]) and 4-bromo­phenyl-4-bromo­benzoate (VEWSIC; Saha & Desiraju, 2018[Saha, S. & Desiraju, G. R. (2018). Chem. Commun. 54, 6348-6351.]).

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O3Ai 0.85 (6) 2.18 (7) 2.969 (5) 153
N1B—H1B⋯O3Aii 0.93 (6) 2.24 (6) 3.163 (5) 170
N1B—H2B⋯O3Biii 0.86 (9) 1.97 (9) 2.825 (5) 178
Symmetry codes: (i) x, y+1, z; (ii) [x-1, y-1, z]; (iii) [x, y-1, z].
[Figure 3]
Figure 3
Hydrogen bonds (formation of rings) and inter­molecular Br⋯Br contacts in I.

In II, the angle between the mean planes of the nitro group and the aromatic ring is 4.1 (1)°. A characteristic inter­molecular inter­action for II is the formation of centrosymmetric dimers as a result of the N1—H1⋯O3i hydrogen bonds formed between amide fragments (Table 5[link]). Short inter­molecular O5⋯O5(−x + 1, −y + 2, −z + 1) inter­actions [at 2.874 (4) Å these are 0.14 Å less than the sum of the van der Waals radii] are observed between the nitro groups of the dimers (Fig. 4[link]). A similar inter­molecular O⋯O contact was observed in the crystal structure of meta-di­nitro­benzene (DNBENZ11, DNBENZ12; Wójcik et al., 2002[Wójcik, G., Mossakowska, I., Holband, J. & Bartkowiak, W. (2002). Acta Cryst. B58, 998-1004.]).

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.93 (2) 1.97 (2) 2.898 (2) 174 (2)
Symmetry code: (i) [-x+1, -y-1, -z].
[Figure 4]
Figure 4
Hydrogen bonds and inter­molecular O⋯O contacts in II.

In III, as in II, inversion dimers are formed by N1—H1⋯O3i hydrogen bonds (Fig. 5[link], Table 6[link]). An inter­molecular hydrogen bond is also observed between the oxygen of the amide fragment and the water mol­ecule (Fig. 6[link]), although the angle is only 101°, and the water mol­ecules are further connected by hydrogen bonds to form an infinite chain along the b-axis direction.

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.87 (4) 2.06 (4) 2.915 (3) 168
N2—H3⋯O1ii 0.96 (3) 1.98 (3) 2.919 (4) 163
O1W—H1W⋯O3 0.78 (4) 2.14 (4) 2.916 (4) 169 (4)
O1W—H2W⋯O1Wiii 0.91 (9) 2.46 (9) 2.782 (7) 101
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [x-1, y, z]; (iii) [-x+2, -y+1, -z+1].
[Figure 5]
Figure 5
Dimer formation in III.
[Figure 6]
Figure 6
Inter­molecular hydrogen bonds between water and 2-amino-2-oxoethyl 4-amino­benzoate mol­ecules in III.

4. Database survey

A search for the 2-amino-2-oxoethyl benzoate (carbamoyl­methyl­benzoate) scaffold in the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 34 hits. Of these, the structures most closely related to the title compounds are MAMJOC [2-(di­methyl­amino)-2-oxo­ethyl 5-bromo-2-hy­droxy­benzoate; Santra et al., 2016[Santra, S. K., Banerjee, A., Rajamanickam, S., Khatun, N. & Patel, B. K. (2016). Chem. Commun. 52, 4501-4504.]], CEPWID (1-benzo­yloxy-1-meth­oxy-N-methyl­acetamide; Nishio et al., 1984[Nishio, T., Nakajima, N., Kondo, M., Omote, Y. & Kaftory, M. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 391-396.]) and HUMJII (carbamoylmethyl 3,4,5-tri­hydroxy­benzoate hydrate; Parkin et al., 2002[Parkin, A., Parsons, S., Robertson, J. H. & Tasker, P. A. (2002). Acta Cryst. E58, o1348-o1350.]).

5. Synthesis and crystallization

Synthesis 2-amino-2-oxoethyl 4-bromo­benzoate: General method. To a 25 mL round-bottom flask containing 0.27 g (1.2 mmol) of the sodium salt of p-bromo­benzoic acid were added 6 mL of DMF. The resulting mixture was heated for 10 min (for partial dissolution of the salt) and 0.1 g (1 mmol) of chloro­acetamide was added. The flask was equipped with a reflux condenser and mechanical stirrer and was heated in a sand bath with stirring at 426 K for 6 h. The DMF was removed in vacuo (15 mm Hg) at 328 K. After cooling, cold water was poured into the reaction mixture to completely eliminate the residual reactants and DMF. The resulting precipitate was filtered off to give 0.22 g (86% yield) of product. RF = 0.65 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 475–477 K. 1H NMR [400 MHz, CD3OD, δ (ppm.), J (Hz)]: 7.95 (2H, d, J = 8.64, H3 and H5), 7.61 (2H, d, J = 8.63, H2 and H6), 4.72 (2H, s, CH2).

(2-Amino-2-oxoeth­yl)-4-nitro­benzoate. The reaction yield is 78%. RF = 0.62 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 439–441 K. 1H NMR [400 MHz, CD3OD+CDCl3+C2D5OD δ (ppm), J (Hz)]: 8.23 (2H, d, J = 9.28, H3 and H5), 8.19 (2H, d, J = 9.31, H2 and H6), 4.73 (2H, s, CH2).

(2-Amino-2-oxoeth­yl)-4-amino­benzoate. The reaction yield is 88%. RF = 0.53 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 435–438 K. 1H NMR [400 MHz, CD3OD, δ (ppm), J (Hz)]: 7.75 (2H, d, J = 8.75, H3 and H5), 6.58 (2H, d, J = 8.75, H2 and H6), 4.62 (2H, s, CH2).

Each compound was dissolved in ethanol and the solvent allowed to evaporate at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained.

The crystal of the 2-amino-2-oxoethyl 4-amino­benzoate monohydrate loses its transparency without chemical change (without becoming amorphous) in the range 344–346 K when the crystals are heated and melts in the range 435–438 K.

The yields of 2-amino-2-oxoethyl 4-bromo­benzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitro­benzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-amino­benzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the mol­ecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. C-bound H atoms were placed geometrically (with C—H distances of 0.97 Å for CH2 and 0.93 Å for Car) and included in the refinement as riding contributions with Uiso(H) = 1.2Ueq(C) [Uiso = 1.5 Ueq(C) for methyl H atoms]. The hydrogen atoms attached to N and O (water) were located in difference-Fourier maps and refined freely.

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C9H8BrNO3 C9H8N2O5 C9H10N2O3·H2O
Mr 258.07 224.17 212.21
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 291 291 291
a, b, c (Å) 18.623 (4), 4.8255 (10), 23.195 (5) 7.1238 (14), 7.3683 (15), 10.063 (2) 8.2431 (16), 4.8088 (10), 26.754 (5)
α, β, γ (°) 90, 112.96 (3), 90 107.82 (3), 94.95 (3), 96.32 (3) 90, 90.10 (3), 90
V3) 1919.3 (8) 495.76 (19) 1060.5 (4)
Z 8 2 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 5.71 1.08 0.90
Crystal size (mm) 0.60 × 0.20 × 0.15 0.40 × 0.34 × 0.21 0.28 × 0.24 × 0.17
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Ruby Oxford Diffraction Xcalibur, Ruby Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.292, 0.425 0.681, 0.797 0.778, 0.859
No. of measured, independent and observed [I > 2σ(I)] reflections 6390, 3832, 3165 2971, 1859, 1560 6444, 2165, 1129
Rint 0.033 0.018 0.055
(sin θ/λ)max−1) 0.629 0.609 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.06 0.050, 0.148, 1.06 0.053, 0.150, 0.99
No. of reflections 3832 1859 2165
No. of parameters 269 153 160
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.85 0.24, −0.29 0.16, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/8 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])'.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/8 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010)'.

2-Amino-2-oxoethyl 4-bromobenzoate (I) top
Crystal data top
C9H8BrNO3Dx = 1.786 Mg m3
Mr = 258.07Melting point: 475(2) K
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 18.623 (4) ÅCell parameters from 2381 reflections
b = 4.8255 (10) Åθ = 3.9–75.4°
c = 23.195 (5) ŵ = 5.71 mm1
β = 112.96 (3)°T = 291 K
V = 1919.3 (8) Å3Prismatic, colorless
Z = 80.60 × 0.20 × 0.15 mm
F(000) = 1024
Data collection top
Oxford Diffraction Xcalibur, Ruby
diffractometer
3832 independent reflections
Radiation source: Enhance (Cu) X-ray Source3165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 3.9°
ω scansh = 2022
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 35
Tmin = 0.292, Tmax = 0.425l = 2828
6390 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.3454P]
where P = (Fo2 + 2Fc2)/3
3832 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.59795 (3)0.16726 (12)0.02621 (3)0.06387 (18)
O1A0.8638 (2)1.0616 (8)0.01058 (15)0.0605 (8)
O2A0.89019 (17)1.1199 (6)0.09136 (15)0.0503 (7)
O3A1.03189 (18)0.9293 (6)0.09906 (17)0.0565 (8)
N1A1.0666 (2)1.3499 (8)0.0755 (2)0.0562 (10)
C1A0.7921 (2)0.7970 (9)0.03619 (17)0.0415 (8)
C2A0.7811 (2)0.7232 (10)0.09046 (18)0.0480 (9)
H2AA0.81240.80270.12850.058*
C3A0.7248 (2)0.5349 (10)0.08845 (19)0.0490 (9)
H3AA0.71730.48800.12460.059*
C4A0.6792 (2)0.4160 (9)0.03104 (19)0.0448 (8)
C5A0.6903 (3)0.4759 (9)0.0231 (2)0.0502 (10)
H5AA0.66070.38890.06060.060*
C6A0.7466 (2)0.6684 (10)0.02010 (18)0.0490 (9)
H6AA0.75440.71280.05630.059*
C7A0.8509 (2)1.0019 (9)0.03547 (19)0.0446 (9)
C8A0.9478 (2)1.3163 (9)0.0930 (2)0.0513 (10)
H8AA0.96371.42200.13160.062*
H8AB0.92571.44440.05830.062*
C9A1.0189 (2)1.1759 (8)0.08903 (19)0.0423 (8)
Br1B0.67568 (2)0.97787 (9)0.22125 (2)0.05283 (17)
O1B0.38919 (19)0.0158 (7)0.13654 (16)0.0566 (8)
O2B0.40704 (17)0.0563 (7)0.23657 (14)0.0499 (7)
O3B0.2552 (2)0.2216 (6)0.17521 (19)0.0599 (8)
N1B0.2115 (2)0.2140 (8)0.1638 (2)0.0590 (10)
C1B0.4827 (2)0.3192 (8)0.19559 (18)0.0403 (8)
C2B0.5228 (2)0.4425 (8)0.25363 (18)0.0438 (8)
H2BA0.51120.39270.28770.053*
C3B0.5798 (2)0.6380 (8)0.26086 (18)0.0431 (8)
H3BA0.60700.71840.29980.052*
C4B0.5961 (2)0.7133 (8)0.20969 (19)0.0413 (8)
C5B0.5564 (2)0.5973 (9)0.15118 (19)0.0463 (9)
H5BA0.56730.65270.11700.056*
C6B0.5005 (2)0.3988 (9)0.14437 (18)0.0451 (8)
H6BA0.47430.31660.10550.054*
C7B0.4222 (2)0.1058 (9)0.18490 (19)0.0433 (8)
C8B0.3457 (2)0.1403 (9)0.2275 (2)0.0499 (9)
H8BA0.34490.18890.26790.060*
H8BB0.35620.30780.20900.060*
C9B0.2666 (2)0.0281 (8)0.1857 (2)0.0430 (8)
H1A1.064 (4)1.527 (14)0.074 (3)0.070 (18)*
H2A1.107 (3)1.286 (12)0.067 (2)0.058 (14)*
H1B0.160 (4)0.159 (12)0.142 (3)0.064 (16)*
H2B0.225 (5)0.385 (19)0.167 (4)0.11 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0482 (3)0.0654 (3)0.0756 (3)0.0109 (2)0.0215 (2)0.0061 (2)
O1A0.0569 (19)0.074 (2)0.0558 (17)0.0015 (16)0.0275 (14)0.0065 (16)
O2A0.0425 (15)0.0511 (16)0.0623 (16)0.0055 (12)0.0258 (13)0.0114 (14)
O3A0.0476 (16)0.0373 (15)0.087 (2)0.0071 (13)0.0286 (16)0.0083 (15)
N1A0.0413 (19)0.039 (2)0.096 (3)0.0026 (15)0.0345 (19)0.0011 (19)
C1A0.0327 (17)0.048 (2)0.0439 (17)0.0086 (15)0.0146 (14)0.0008 (16)
C2A0.042 (2)0.057 (2)0.0425 (18)0.0013 (18)0.0139 (15)0.0077 (17)
C3A0.043 (2)0.059 (3)0.0448 (19)0.0018 (18)0.0166 (16)0.0040 (18)
C4A0.0346 (18)0.041 (2)0.054 (2)0.0005 (15)0.0117 (15)0.0046 (17)
C5A0.045 (2)0.053 (2)0.048 (2)0.0029 (18)0.0125 (17)0.0100 (18)
C6A0.041 (2)0.061 (3)0.0414 (18)0.0027 (18)0.0131 (15)0.0046 (18)
C7A0.0373 (19)0.045 (2)0.053 (2)0.0099 (16)0.0200 (16)0.0010 (17)
C8A0.039 (2)0.043 (2)0.077 (3)0.0009 (16)0.0283 (19)0.010 (2)
C9A0.0335 (17)0.038 (2)0.0526 (19)0.0053 (14)0.0141 (15)0.0037 (16)
Br1B0.0354 (2)0.0468 (3)0.0738 (3)0.00022 (16)0.01852 (19)0.0072 (2)
O1B0.0513 (17)0.0560 (18)0.0640 (18)0.0109 (14)0.0240 (14)0.0166 (15)
O2B0.0429 (15)0.0532 (16)0.0554 (15)0.0074 (13)0.0211 (12)0.0041 (13)
O3B0.0531 (17)0.0311 (15)0.097 (2)0.0056 (13)0.0305 (17)0.0047 (15)
N1B0.048 (2)0.0341 (19)0.080 (3)0.0025 (15)0.0084 (18)0.0062 (18)
C1B0.0310 (16)0.0385 (19)0.0511 (19)0.0056 (14)0.0155 (14)0.0013 (15)
C2B0.0410 (19)0.044 (2)0.0453 (18)0.0022 (16)0.0157 (15)0.0024 (16)
C3B0.0401 (19)0.040 (2)0.0459 (18)0.0042 (15)0.0136 (15)0.0016 (15)
C4B0.0254 (15)0.0373 (18)0.056 (2)0.0002 (13)0.0106 (14)0.0024 (16)
C5B0.0371 (18)0.054 (2)0.0483 (19)0.0046 (17)0.0166 (15)0.0018 (17)
C6B0.0350 (17)0.052 (2)0.0453 (18)0.0046 (16)0.0124 (14)0.0055 (17)
C7B0.0327 (17)0.042 (2)0.054 (2)0.0067 (15)0.0152 (15)0.0038 (17)
C8B0.039 (2)0.044 (2)0.067 (2)0.0004 (16)0.0206 (18)0.0046 (19)
C9B0.043 (2)0.0319 (19)0.061 (2)0.0028 (15)0.0282 (17)0.0023 (16)
Geometric parameters (Å, º) top
Br1A—C4A1.900 (4)Br1B—C4B1.894 (4)
O1A—C7A1.217 (6)O1B—C7B1.201 (5)
O2A—C7A1.342 (5)O2B—C7B1.355 (5)
O2A—C8A1.421 (5)O2B—C8B1.437 (5)
O3A—C9A1.219 (5)O3B—C9B1.231 (5)
N1A—C9A1.345 (6)N1B—C9B1.307 (6)
N1A—H1A0.85 (7)N1B—H1B0.93 (6)
N1A—H2A0.91 (6)N1B—H2B0.86 (9)
C1A—C6A1.394 (5)C1B—C2B1.393 (6)
C1A—C2A1.398 (6)C1B—C6B1.406 (6)
C1A—C7A1.480 (6)C1B—C7B1.474 (6)
C2A—C3A1.374 (6)C2B—C3B1.381 (6)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.394 (6)C3B—C4B1.383 (6)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.380 (6)C4B—C5B1.385 (6)
C5A—C6A1.382 (7)C5B—C6B1.378 (6)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—H6AA0.9300C6B—H6BA0.9300
C8A—C9A1.522 (5)C8B—C9B1.512 (6)
C8A—H8AA0.9700C8B—H8BA0.9700
C8A—H8AB0.9700C8B—H8BB0.9700
C7A—O2A—C8A115.5 (3)C7B—O2B—C8B114.5 (3)
C9A—N1A—H1A127 (4)C9B—N1B—H1B120 (4)
C9A—N1A—H2A121 (4)C9B—N1B—H2B117 (5)
H1A—N1A—H2A111 (6)H1B—N1B—H2B122 (6)
C6A—C1A—C2A118.7 (4)C2B—C1B—C6B119.1 (4)
C6A—C1A—C7A117.9 (4)C2B—C1B—C7B123.2 (4)
C2A—C1A—C7A123.3 (4)C6B—C1B—C7B117.7 (4)
C3A—C2A—C1A121.1 (4)C3B—C2B—C1B120.4 (4)
C3A—C2A—H2AA119.5C3B—C2B—H2BA119.8
C1A—C2A—H2AA119.5C1B—C2B—H2BA119.8
C2A—C3A—C4A118.5 (4)C2B—C3B—C4B119.4 (4)
C2A—C3A—H3AA120.7C2B—C3B—H3BA120.3
C4A—C3A—H3AA120.7C4B—C3B—H3BA120.3
C5A—C4A—C3A122.1 (4)C3B—C4B—C5B121.5 (4)
C5A—C4A—Br1A118.5 (3)C3B—C4B—Br1B118.5 (3)
C3A—C4A—Br1A119.4 (3)C5B—C4B—Br1B120.0 (3)
C4A—C5A—C6A118.4 (4)C6B—C5B—C4B119.0 (4)
C4A—C5A—H5AA120.8C6B—C5B—H5BA120.5
C6A—C5A—H5AA120.8C4B—C5B—H5BA120.5
C5A—C6A—C1A121.2 (4)C5B—C6B—C1B120.7 (4)
C5A—C6A—H6AA119.4C5B—C6B—H6BA119.7
C1A—C6A—H6AA119.4C1B—C6B—H6BA119.7
O1A—C7A—O2A121.8 (4)O1B—C7B—O2B122.2 (4)
O1A—C7A—C1A124.6 (4)O1B—C7B—C1B125.3 (4)
O2A—C7A—C1A113.6 (4)O2B—C7B—C1B112.6 (3)
O2A—C8A—C9A111.5 (3)O2B—C8B—C9B112.1 (3)
O2A—C8A—H8AA109.3O2B—C8B—H8BA109.2
C9A—C8A—H8AA109.3C9B—C8B—H8BA109.2
O2A—C8A—H8AB109.3O2B—C8B—H8BB109.2
C9A—C8A—H8AB109.3C9B—C8B—H8BB109.2
H8AA—C8A—H8AB108.0H8BA—C8B—H8BB107.9
O3A—C9A—N1A123.7 (4)O3B—C9B—N1B123.1 (4)
O3A—C9A—C8A122.4 (4)O3B—C9B—C8B121.8 (4)
N1A—C9A—C8A113.9 (4)N1B—C9B—C8B115.1 (4)
C6A—C1A—C2A—C3A2.3 (6)C6B—C1B—C2B—C3B0.6 (6)
C7A—C1A—C2A—C3A178.9 (4)C7B—C1B—C2B—C3B178.9 (4)
C1A—C2A—C3A—C4A0.7 (7)C1B—C2B—C3B—C4B0.8 (6)
C2A—C3A—C4A—C5A1.8 (7)C2B—C3B—C4B—C5B0.1 (6)
C2A—C3A—C4A—Br1A177.3 (3)C2B—C3B—C4B—Br1B179.1 (3)
C3A—C4A—C5A—C6A2.6 (6)C3B—C4B—C5B—C6B1.3 (6)
Br1A—C4A—C5A—C6A176.5 (3)Br1B—C4B—C5B—C6B177.9 (3)
C4A—C5A—C6A—C1A0.9 (6)C4B—C5B—C6B—C1B1.4 (6)
C2A—C1A—C6A—C5A1.5 (6)C2B—C1B—C6B—C5B0.5 (6)
C7A—C1A—C6A—C5A179.7 (4)C7B—C1B—C6B—C5B179.9 (4)
C8A—O2A—C7A—O1A0.4 (6)C8B—O2B—C7B—O1B3.3 (6)
C8A—O2A—C7A—C1A179.4 (3)C8B—O2B—C7B—C1B177.1 (3)
C6A—C1A—C7A—O1A1.9 (6)C2B—C1B—C7B—O1B175.9 (4)
C2A—C1A—C7A—O1A176.9 (4)C6B—C1B—C7B—O1B3.7 (6)
C6A—C1A—C7A—O2A178.3 (3)C2B—C1B—C7B—O2B3.7 (5)
C2A—C1A—C7A—O2A3.0 (5)C6B—C1B—C7B—O2B176.7 (3)
C7A—O2A—C8A—C9A72.9 (5)C7B—O2B—C8B—C9B69.1 (5)
O2A—C8A—C9A—O3A16.9 (6)O2B—C8B—C9B—O3B17.6 (6)
O2A—C8A—C9A—N1A165.0 (4)O2B—C8B—C9B—N1B164.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O3Ai0.85 (6)2.18 (7)2.969 (5)153
N1B—H1B···O3Aii0.93 (6)2.24 (6)3.163 (5)170
N1B—H2B···O3Biii0.86 (9)1.97 (9)2.825 (5)178
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x, y1, z.
2-Amino-2-oxoethyl 4-nitrobenzoate (II) top
Crystal data top
C9H8N2O5F(000) = 232
Mr = 224.17Dx = 1.502 Mg m3
Triclinic, P1Melting point: 439(2) K
a = 7.1238 (14) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.3683 (15) ÅCell parameters from 1249 reflections
c = 10.063 (2) Åθ = 4.6–75.6°
α = 107.82 (3)°µ = 1.08 mm1
β = 94.95 (3)°T = 291 K
γ = 96.32 (3)°Prismatic, colorless
V = 495.76 (19) Å30.40 × 0.34 × 0.21 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur, Ruby
diffractometer
1859 independent reflections
Radiation source: Enhance (Cu) X-ray Source1560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.2576 pixels mm-1θmax = 70.0°, θmin = 4.7°
ω scansh = 58
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 88
Tmin = 0.681, Tmax = 0.797l = 1212
2971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.080P)2 + 0.1088P]
where P = (Fo2 + 2Fc2)/3
1859 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0727 (3)0.1039 (2)0.29955 (18)0.0820 (6)
O20.19162 (19)0.00610 (18)0.13179 (13)0.0492 (4)
O30.2532 (2)0.49315 (19)0.04910 (17)0.0635 (5)
O40.3147 (3)0.8233 (2)0.75383 (18)0.0866 (6)
O50.3833 (3)0.9205 (2)0.58393 (19)0.0852 (6)
N10.4638 (3)0.2474 (3)0.0945 (2)0.0608 (5)
N20.3258 (2)0.7948 (2)0.62962 (19)0.0526 (4)
C10.1925 (2)0.2274 (2)0.35306 (18)0.0409 (4)
C20.2520 (3)0.3754 (3)0.30129 (19)0.0443 (4)
H2A0.26340.34880.20610.053*
C30.2945 (3)0.5635 (3)0.3920 (2)0.0466 (4)
H3A0.33420.66450.35900.056*
C40.2762 (2)0.5962 (2)0.53229 (19)0.0425 (4)
C50.2171 (3)0.4526 (3)0.58712 (19)0.0465 (4)
H5A0.20650.47990.68250.056*
C60.1739 (3)0.2665 (3)0.4952 (2)0.0466 (4)
H6A0.13210.16660.52870.056*
C70.1433 (3)0.0225 (3)0.2615 (2)0.0465 (4)
C80.1380 (3)0.1993 (3)0.0349 (2)0.0509 (5)
H8A0.09990.19160.05790.061*
H8B0.02850.26040.06400.061*
C90.2934 (3)0.3240 (2)0.02512 (19)0.0455 (4)
H10.561 (3)0.323 (3)0.082 (2)0.057 (6)*
H20.488 (3)0.127 (4)0.138 (3)0.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1300 (16)0.0426 (9)0.0620 (10)0.0163 (9)0.0267 (10)0.0061 (7)
O20.0603 (8)0.0354 (7)0.0467 (7)0.0097 (5)0.0122 (6)0.0032 (5)
O30.0579 (8)0.0369 (7)0.0759 (10)0.0070 (6)0.0010 (7)0.0085 (7)
O40.1315 (16)0.0536 (10)0.0537 (10)0.0086 (10)0.0189 (10)0.0075 (7)
O50.1262 (16)0.0381 (8)0.0797 (12)0.0066 (9)0.0143 (11)0.0079 (8)
N10.0543 (10)0.0380 (9)0.0710 (12)0.0099 (8)0.0013 (8)0.0091 (8)
N20.0515 (9)0.0380 (9)0.0591 (10)0.0061 (7)0.0043 (7)0.0030 (7)
C10.0403 (8)0.0353 (9)0.0443 (9)0.0092 (7)0.0064 (7)0.0073 (7)
C20.0510 (10)0.0394 (9)0.0414 (9)0.0097 (7)0.0086 (7)0.0094 (7)
C30.0522 (10)0.0352 (9)0.0528 (10)0.0077 (7)0.0077 (8)0.0139 (8)
C40.0386 (8)0.0343 (9)0.0481 (10)0.0078 (7)0.0035 (7)0.0032 (7)
C50.0504 (10)0.0439 (10)0.0406 (9)0.0062 (7)0.0086 (7)0.0060 (7)
C60.0530 (10)0.0385 (9)0.0471 (10)0.0045 (7)0.0106 (8)0.0116 (8)
C70.0527 (10)0.0369 (10)0.0464 (10)0.0060 (7)0.0078 (8)0.0080 (8)
C80.0552 (11)0.0402 (10)0.0467 (10)0.0088 (8)0.0023 (8)0.0011 (8)
C90.0526 (10)0.0347 (9)0.0426 (9)0.0053 (7)0.0066 (7)0.0027 (7)
Geometric parameters (Å, º) top
O1—C71.190 (2)C1—C71.492 (3)
O2—C71.339 (2)C2—C31.390 (3)
O2—C81.445 (2)C2—H2A0.9300
O3—C91.228 (2)C3—C41.378 (3)
O4—N21.213 (2)C3—H3A0.9300
O5—N21.203 (2)C4—C51.379 (3)
N1—C91.320 (3)C5—C61.383 (3)
N1—H10.93 (2)C5—H5A0.9300
N1—H20.85 (3)C6—H6A0.9300
N2—C41.474 (2)C8—C91.506 (3)
C1—C21.387 (3)C8—H8A0.9700
C1—C61.391 (3)C8—H8B0.9700
C7—O2—C8115.74 (15)C4—C5—C6117.62 (17)
C9—N1—H1118.2 (14)C4—C5—H5A121.2
C9—N1—H2120.2 (16)C6—C5—H5A121.2
H1—N1—H2121 (2)C5—C6—C1120.57 (17)
O5—N2—O4122.58 (18)C5—C6—H6A119.7
O5—N2—C4118.83 (17)C1—C6—H6A119.7
O4—N2—C4118.52 (17)O1—C7—O2123.05 (17)
C2—C1—C6120.33 (17)O1—C7—C1124.14 (17)
C2—C1—C7122.69 (16)O2—C7—C1112.80 (16)
C6—C1—C7116.98 (16)O2—C8—C9114.12 (15)
C1—C2—C3119.85 (17)O2—C8—H8A108.7
C1—C2—H2A120.1C9—C8—H8A108.7
C3—C2—H2A120.1O2—C8—H8B108.7
C4—C3—C2118.12 (17)C9—C8—H8B108.7
C4—C3—H3A120.9H8A—C8—H8B107.6
C2—C3—H3A120.9O3—C9—N1123.64 (18)
C3—C4—C5123.50 (16)O3—C9—C8117.23 (17)
C3—C4—N2118.35 (17)N1—C9—C8119.14 (16)
C5—C4—N2118.14 (17)
C6—C1—C2—C30.4 (3)C2—C1—C6—C50.9 (3)
C7—C1—C2—C3179.61 (16)C7—C1—C6—C5179.83 (16)
C1—C2—C3—C40.2 (3)C8—O2—C7—O15.0 (3)
C2—C3—C4—C50.4 (3)C8—O2—C7—C1176.52 (14)
C2—C3—C4—N2178.47 (15)C2—C1—C7—O1171.5 (2)
O5—N2—C4—C31.2 (3)C6—C1—C7—O17.7 (3)
O4—N2—C4—C3178.06 (18)C2—C1—C7—O210.0 (3)
O5—N2—C4—C5177.72 (18)C6—C1—C7—O2170.76 (15)
O4—N2—C4—C50.8 (3)C7—O2—C8—C995.53 (19)
C3—C4—C5—C60.1 (3)O2—C8—C9—O3175.79 (17)
N2—C4—C5—C6178.96 (15)O2—C8—C9—N14.7 (3)
C4—C5—C6—C10.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.93 (2)1.97 (2)2.898 (2)174 (2)
Symmetry code: (i) x+1, y1, z.
2-Amino-2-oxoethyl 4-aminobenzoate monohydrate (III) top
Crystal data top
C9H10N2O3·H2OF(000) = 448
Mr = 212.21Dx = 1.329 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.2431 (16) ÅCell parameters from 927 reflections
b = 4.8088 (10) Åθ = 5.6–71.4°
c = 26.754 (5) ŵ = 0.90 mm1
β = 90.10 (3)°T = 291 K
V = 1060.5 (4) Å3Prismatic, colorless
Z = 40.28 × 0.24 × 0.17 mm
Data collection top
Oxford Diffraction Xcalibur, Ruby
diffractometer
2165 independent reflections
Radiation source: Enhance (Cu) X-ray Source1129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10.2576 pixels mm-1θmax = 76.1°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 45
Tmin = 0.778, Tmax = 0.859l = 3233
6444 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
2165 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4903 (2)0.0764 (5)0.65718 (8)0.0717 (6)
O20.3607 (2)0.3784 (4)0.60830 (7)0.0589 (5)
O30.6302 (2)0.8021 (4)0.53839 (9)0.0729 (6)
N10.3578 (3)0.7857 (6)0.54142 (11)0.0633 (7)
N20.2461 (3)0.2041 (6)0.70993 (11)0.0691 (8)
C10.2029 (3)0.0794 (5)0.65846 (10)0.0496 (6)
C20.0592 (3)0.1846 (6)0.63861 (11)0.0626 (8)
H2A0.06310.32130.61410.075*
C30.0884 (3)0.0879 (6)0.65503 (11)0.0641 (8)
H3A0.18330.15870.64110.077*
C40.0982 (3)0.1143 (6)0.69216 (10)0.0540 (7)
C50.0452 (3)0.2176 (6)0.71203 (11)0.0592 (7)
H5A0.04130.35270.73690.071*
C60.1923 (3)0.1237 (6)0.69558 (11)0.0583 (7)
H6A0.28690.19630.70940.070*
C70.3628 (3)0.1724 (6)0.64262 (10)0.0531 (7)
C80.5179 (3)0.4682 (6)0.59167 (11)0.0598 (7)
H8A0.57480.31290.57660.072*
H8B0.58090.53190.62010.072*
C90.5026 (3)0.6994 (6)0.55425 (10)0.0549 (7)
O1W0.9804 (4)0.7452 (7)0.52690 (16)0.1083 (11)
H10.348 (4)0.917 (8)0.5195 (15)0.107 (14)*
H20.264 (4)0.697 (7)0.5524 (12)0.088 (11)*
H30.337 (4)0.147 (6)0.6897 (12)0.078 (10)*
H40.253 (4)0.365 (8)0.7275 (15)0.108 (14)*
H1W0.887 (5)0.743 (8)0.5326 (16)0.100 (16)*
H2W0.939 (13)0.731 (19)0.495 (3)0.35 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0530 (12)0.0881 (16)0.0740 (14)0.0039 (11)0.0000 (10)0.0249 (12)
O20.0543 (11)0.0566 (11)0.0659 (12)0.0019 (9)0.0084 (9)0.0131 (9)
O30.0613 (13)0.0704 (14)0.0872 (15)0.0025 (11)0.0146 (11)0.0193 (12)
N10.0587 (16)0.0643 (17)0.0669 (17)0.0031 (13)0.0020 (13)0.0124 (13)
N20.0517 (15)0.0773 (19)0.0784 (19)0.0002 (14)0.0039 (13)0.0163 (15)
C10.0502 (15)0.0501 (15)0.0487 (14)0.0018 (12)0.0004 (11)0.0015 (12)
C20.0592 (17)0.0656 (19)0.0632 (18)0.0069 (14)0.0038 (14)0.0195 (15)
C30.0530 (17)0.069 (2)0.0699 (19)0.0072 (14)0.0018 (14)0.0149 (15)
C40.0531 (16)0.0515 (15)0.0572 (16)0.0022 (13)0.0046 (13)0.0000 (13)
C50.0612 (18)0.0587 (17)0.0577 (17)0.0028 (14)0.0018 (14)0.0136 (13)
C60.0532 (16)0.0612 (17)0.0603 (17)0.0052 (14)0.0049 (13)0.0077 (14)
C70.0569 (16)0.0541 (16)0.0483 (14)0.0035 (13)0.0044 (12)0.0002 (12)
C80.0555 (17)0.0547 (17)0.0694 (19)0.0013 (13)0.0076 (14)0.0014 (14)
C90.0591 (17)0.0485 (15)0.0571 (16)0.0005 (13)0.0087 (13)0.0012 (13)
O1W0.0720 (19)0.112 (2)0.141 (3)0.0013 (17)0.0223 (19)0.017 (2)
Geometric parameters (Å, º) top
O1—C71.212 (3)C2—C31.376 (4)
O2—C71.351 (3)C2—H2A0.9300
O2—C81.437 (3)C3—C41.393 (4)
O3—O30.000 (7)C3—H3A0.9300
O3—C91.238 (3)C4—C51.388 (4)
N1—C91.309 (4)C5—C61.368 (4)
N1—H10.87 (4)C5—H5A0.9300
N1—H20.93 (4)C6—H6A0.9300
N2—C41.378 (4)C8—C91.501 (4)
N2—H30.96 (3)C8—H8A0.9700
N2—H40.91 (4)C8—H8B0.9700
C1—C21.393 (4)C9—O31.238 (3)
C1—C61.396 (4)O1W—H1W0.78 (4)
C1—C71.455 (4)O1W—H2W0.91 (9)
C7—O2—C8114.9 (2)C6—C5—H5A119.5
C9—N1—H1120 (2)C4—C5—H5A119.5
C9—N1—H2122 (2)C5—C6—C1121.1 (3)
H1—N1—H2118 (3)C5—C6—H6A119.4
C4—N2—H3113.9 (19)C1—C6—H6A119.4
C4—N2—H4120 (2)O1—C7—O2120.5 (3)
H3—N2—H4119 (3)O1—C7—C1125.1 (3)
C2—C1—C6118.1 (2)O2—C7—C1114.4 (2)
C2—C1—C7123.2 (2)O2—C8—C9110.8 (2)
C6—C1—C7118.7 (2)O2—C8—H8A109.5
C3—C2—C1120.5 (3)C9—C8—H8A109.5
C3—C2—H2A119.7O2—C8—H8B109.5
C1—C2—H2A119.7C9—C8—H8B109.5
C2—C3—C4121.1 (3)H8A—C8—H8B108.1
C2—C3—H3A119.5O3—C9—N1124.0 (3)
C4—C3—H3A119.5O3—C9—N1124.0 (3)
N2—C4—C5120.6 (3)O3—C9—C8117.0 (3)
N2—C4—C3121.1 (3)O3—C9—C8117.0 (3)
C5—C4—C3118.2 (3)N1—C9—C8119.0 (3)
C6—C5—C4120.9 (3)H1W—O1W—H2W79 (7)
C6—C1—C2—C30.6 (5)C8—O2—C7—O10.1 (4)
C7—C1—C2—C3179.9 (3)C8—O2—C7—C1178.9 (2)
C1—C2—C3—C40.8 (5)C2—C1—C7—O1176.2 (3)
C2—C3—C4—N2177.6 (3)C6—C1—C7—O14.3 (4)
C2—C3—C4—C50.4 (5)C2—C1—C7—O22.5 (4)
N2—C4—C5—C6178.1 (3)C6—C1—C7—O2177.0 (2)
C3—C4—C5—C60.0 (4)C7—O2—C8—C9179.2 (2)
C4—C5—C6—C10.2 (5)O2—C8—C9—O3177.4 (2)
C2—C1—C6—C50.1 (4)O2—C8—C9—N10.6 (4)
C7—C1—C6—C5179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.87 (4)2.06 (4)2.915 (3)168
N2—H3···O1ii0.96 (3)1.98 (3)2.919 (4)163
O1W—H1W···O30.78 (4)2.14 (4)2.916 (4)169 (4)
O1W—H2W···O1Wiii0.91 (9)2.46 (9)2.782 (7)101
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

We are especially grateful to Dr Kambarali Turgunov for help in discussing the results.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNishio, T., Nakajima, N., Kondo, M., Omote, Y. & Kaftory, M. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 391–396.  CSD CrossRef Web of Science Google Scholar
First citationParkin, A., Parsons, S., Robertson, J. H. & Tasker, P. A. (2002). Acta Cryst. E58, o1348–o1350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975–1983.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaha, S. & Desiraju, G. R. (2018). Chem. Commun. 54, 6348–6351.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantra, S. K., Banerjee, A., Rajamanickam, S., Khatun, N. & Patel, B. K. (2016). Chem. Commun. 52, 4501–4504.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWójcik, G., Mossakowska, I., Holband, J. & Bartkowiak, W. (2002). Acta Cryst. B58, 998–1004.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds