metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­copper(II)]-μ-4,4′-bi­pyridyl-κ2N:N′] tetra­fluorido­succinate tetra­hydrate]

aFaculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

(Received 22 March 2012; accepted 5 April 2012; online 18 April 2012)

In the title compound, {[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O}n, the CuII atom adopts an elongated octa­hedral geometry because of the Jahn–Teller effect. Both cation and anion have crystallographic twofold rotation symmetry with the twofold axes passing through the Cu and N atoms and through the midpoint of the central C—C bond. The 4,4′-bipyridyl ligand links the CuII atoms into a linear chain along the b axis. O—H⋯O hydrogen-bonding inter­actions between the cationic chains and the tetra­fluorido­succinate anions and the free water mol­ecules generate a three-dimensional supra­molecular network.

Related literature

For background to metal-organic framework structures, see: Allendorf et al. (2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330-1352.]). For the construction of hybrid frameworks with perfluorinated ligands, see: Yang et al. (2007[Yang, C., Wang, X.-P. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454-15455.]); Hulvey et al. (2009[Hulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759-4765.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O

  • Mr = 551.89

  • Monoclinic, C 2/c

  • a = 17.112 (3) Å

  • b = 11.135 (2) Å

  • c = 12.126 (2) Å

  • β = 104.85 (3)°

  • V = 2233.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 K

  • 0.44 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.900

  • 10662 measured reflections

  • 2546 independent reflections

  • 2115 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.085

  • S = 1.28

  • 2546 reflections

  • 153 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H11⋯O4i 0.82 2.01 2.826 (3) 172
O6—H12⋯O3ii 0.82 2.07 2.879 (3) 168
O5—H10⋯O6 0.82 2.02 2.830 (3) 168
O5—H9⋯O6i 0.82 2.11 2.871 (3) 155
O4—H8⋯O3i 0.82 1.90 2.725 (3) 176
O4—H7⋯O2iii 0.82 2.01 2.824 (3) 170
O1—H4⋯O2i 0.82 1.81 2.630 (2) 172
O1—H3⋯O5 0.82 1.88 2.697 (3) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks have been widely studied over the past few decades owing to their important applications in gas storage, catalysis, sensing, nonlinear optics, magnetism, luminescence and ferroelectricity (Allendorf et al., 2009). Recently, the construction of hybrid framework materials using perfluorinated ligands has attracted much attention based on reports of interesting gas storage properties for such materials containing porous surfaces with exposed fluorine atoms (Yang et al., 2007). Tetrafluorosuccinic acid, as a perfluorinated dicarboxylate ligand, is an excellent candidate for the construction of hybrid frameworks with diverse structures (Hulvey et al., 2009) and with which the title compound, Cu(C10H8N2)(H2O)4.C4F4O4.4H2O, was hydrothermally prepared from Cu(NO3)2.3H2O and 4,4'-bipyridyl as coligand.

Both cation and anion have crystallographic 2-fold rotation symmetry with the 2-fold axes passing through Cu1, N1 and N2 and through the midpoint of the central C—C bond. The metal adopts a tetragonally elongated octahedral geometry because of the Jahn-Teller effect. The O4 atom occupies the elongated vertex with a Cu1—O4 distance of 2.462 (2) Å. The O1, N1 and N2 atoms occupy the equatorial plane with a Cu1—O1 distance of 1.976 (2) Å and Cu1—N1 and Cu1—N2 distances of 2.019 (3) and 2.027 (3) Å respectively (Figure 1). Adjacent CuII centers are bridged by 4,4'-bipy ligands to generate a one-dimensional linear chain structure parallel to the b axis. As shown in Figure 2 and Table 1, O—H···O hydrogen-bonding interactions between the cationic one-dimensional chains and the tetrafluorosuccinate anions and the free water molecules generate a three-dimensional supramolecular network.

Related literature top

For background to metal-organic framework structures, see: Allendorf et al., (2009). For the construction of hybrid frameworks with perfluorinated ligands, see: Yang et al. (2007); Hulvey et al. (2009).

Experimental top

A mixture of tetrafluorosuccinic acid (18.7 mg), 4,4'-bipyridyl (24.7 mg) and Cu(NO3)2.3H2O (15.2 mg) was dissolved in water (8 ml) and stirred for 0.5 h at room temperature. It was then sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for 48 h. Blue crystals suitable for X-ray analysis were obtained after cooling the solution to room temperature. The yield is ca 70% based on Cu2+.

Refinement top

H atoms on O were located in difference maps and the O—H distances adjusted to 0.82 Å while H atoms on C were positioned geometrically with C—H = 0.93 Å. All were allowed to ride on their respective parent atoms with Uiso(H) = 1.2 Ueq(C or O).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing showing the coordination sphere of the Cu2+ center in the title compound with 50% probability displacement ellipsoids. Symmetry codes i: 1-x,y,1.5-z; ii: x,1+y,z; iii: x,1-y,z; iv: 0.5-z,0.5-y,1-z.
[Figure 2] Fig. 2. View down the c axis of the three-dimensional hydrogen bonding supramolecular network of the title compound.
catena-Poly[[[tetraaquacopper(II)]-µ-4,4'bipyridyl- κ2N:N'] tetrafluoridosuccinate tetrahydrate] top
Crystal data top
[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2OF(000) = 1132
Mr = 551.89Dx = 1.641 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8384 reflections
a = 17.112 (3) Åθ = 3.0–27.4°
b = 11.135 (2) ŵ = 1.07 mm1
c = 12.126 (2) ÅT = 298 K
β = 104.85 (3)°Block, blue
V = 2233.3 (7) Å30.44 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2546 independent reflections
Radiation source: fine-focus sealed tube2115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 28 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 2221
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.650, Tmax = 0.900l = 1515
10662 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0175P)2 + 4.9756P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max = 0.001
2546 reflectionsΔρmax = 0.70 e Å3
153 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0077 (3)
Crystal data top
[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2OV = 2233.3 (7) Å3
Mr = 551.89Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.112 (3) ŵ = 1.07 mm1
b = 11.135 (2) ÅT = 298 K
c = 12.126 (2) Å0.44 × 0.22 × 0.10 mm
β = 104.85 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2115 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.900Rint = 0.026
10662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.28Δρmax = 0.70 e Å3
2546 reflectionsΔρmin = 0.78 e Å3
153 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.87438 (3)0.75000.02173 (14)
F10.33513 (10)0.31057 (16)0.46607 (16)0.0488 (5)
F20.29291 (11)0.33959 (16)0.61875 (14)0.0457 (4)
O10.43960 (11)0.87146 (15)0.58758 (13)0.0277 (4)
H30.41540.80890.56640.033*
H40.40870.92850.56800.033*
O20.16201 (13)0.45430 (18)0.49626 (16)0.0426 (5)
O30.20898 (16)0.4317 (2)0.34192 (18)0.0559 (7)
O40.36711 (11)0.88591 (16)0.79355 (15)0.0307 (4)
H70.35790.89680.85610.037*
H80.34480.93990.75030.037*
O50.35115 (14)0.6752 (2)0.5062 (2)0.0533 (6)
H90.32620.66100.55420.064*
H100.31970.70050.44790.064*
O60.23890 (14)0.7923 (2)0.32616 (18)0.0540 (6)
H120.25300.84070.28430.065*
H110.21130.73970.28740.065*
N10.50000.6931 (2)0.75000.0212 (6)
N20.50000.0563 (2)0.75000.0231 (6)
C10.45882 (16)0.6311 (2)0.8111 (2)0.0296 (5)
H10.43010.67310.85410.035*
C20.45722 (17)0.5067 (2)0.8129 (2)0.0315 (6)
H20.42760.46680.85610.038*
C30.50000.4417 (3)0.75000.0244 (7)
C40.50000.3076 (3)0.75000.0246 (7)
C50.48432 (17)0.2427 (2)0.8399 (2)0.0298 (6)
H50.47370.28270.90190.036*
C60.48451 (16)0.1187 (2)0.8369 (2)0.0277 (5)
H60.47350.07660.89750.033*
C70.26765 (16)0.3133 (2)0.5056 (2)0.0339 (6)
C80.20728 (18)0.4103 (2)0.4409 (2)0.0363 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0336 (3)0.01019 (19)0.0216 (2)0.0000.00738 (16)0.000
F10.0408 (10)0.0482 (10)0.0676 (12)0.0108 (8)0.0323 (9)0.0130 (9)
F20.0502 (10)0.0491 (10)0.0327 (8)0.0104 (8)0.0014 (7)0.0004 (7)
O10.0379 (10)0.0199 (8)0.0241 (8)0.0054 (7)0.0058 (7)0.0010 (7)
O20.0532 (13)0.0414 (11)0.0369 (10)0.0262 (10)0.0185 (9)0.0090 (9)
O30.0837 (17)0.0539 (14)0.0366 (11)0.0379 (13)0.0276 (11)0.0198 (10)
O40.0366 (10)0.0288 (9)0.0296 (9)0.0033 (8)0.0135 (7)0.0058 (7)
O50.0492 (13)0.0590 (14)0.0498 (13)0.0107 (11)0.0090 (10)0.0077 (11)
O60.0659 (15)0.0598 (14)0.0361 (11)0.0240 (12)0.0125 (10)0.0009 (10)
N10.0260 (14)0.0129 (12)0.0245 (13)0.0000.0063 (11)0.000
N20.0333 (16)0.0125 (12)0.0273 (14)0.0000.0145 (12)0.000
C10.0395 (14)0.0167 (11)0.0392 (13)0.0029 (10)0.0224 (11)0.0002 (10)
C20.0433 (16)0.0166 (11)0.0427 (14)0.0001 (10)0.0260 (12)0.0033 (10)
C30.0317 (18)0.0126 (14)0.0307 (17)0.0000.0115 (14)0.000
C40.0319 (18)0.0121 (14)0.0325 (17)0.0000.0130 (14)0.000
C50.0484 (16)0.0163 (11)0.0303 (13)0.0009 (10)0.0206 (11)0.0027 (9)
C60.0429 (15)0.0178 (11)0.0282 (12)0.0002 (10)0.0194 (11)0.0016 (9)
C70.0338 (14)0.0386 (15)0.0323 (13)0.0102 (12)0.0140 (11)0.0063 (11)
C80.0484 (17)0.0291 (13)0.0312 (13)0.0147 (12)0.0101 (12)0.0082 (11)
Geometric parameters (Å, º) top
Cu1—O1i1.9760 (17)N1—C11.338 (3)
Cu1—O11.9761 (17)N2—C61.344 (3)
Cu1—N12.018 (3)N2—C6i1.344 (3)
Cu1—N2ii2.025 (3)N2—Cu1iii2.025 (3)
F1—C71.360 (3)C1—C21.386 (3)
F2—C71.360 (3)C1—H10.9300
O1—H30.8180C2—C31.388 (3)
O1—H40.8212C2—H20.9300
O2—C81.248 (3)C3—C2i1.388 (3)
O3—C81.232 (3)C3—C41.494 (4)
O4—H70.8224C4—C51.390 (3)
O4—H80.8241C4—C5i1.390 (3)
O5—H90.8196C5—C61.382 (3)
O5—H100.8200C5—H50.9300
O6—H120.8182C6—H60.9300
O6—H110.8207C7—C7iv1.525 (6)
N1—C1i1.338 (3)C7—C81.560 (4)
O1i—Cu1—O1178.11 (10)C3—C2—H2120.1
O1i—Cu1—N189.06 (5)C2—C3—C2i117.2 (3)
O1—Cu1—N189.06 (5)C2—C3—C4121.38 (15)
O1i—Cu1—N2ii90.94 (5)C2i—C3—C4121.38 (15)
O1—Cu1—N2ii90.94 (5)C5—C4—C5i117.4 (3)
N1—Cu1—N2ii180.000 (1)C5—C4—C3121.31 (15)
Cu1—O1—H3114.9C5i—C4—C3121.30 (15)
Cu1—O1—H4114.1C6—C5—C4119.8 (2)
H3—O1—H4109.3C6—C5—H5120.1
H7—O4—H8108.2C4—C5—H5120.1
H9—O5—H10109.4N2—C6—C5122.6 (2)
H12—O6—H11109.5N2—C6—H6118.7
C1i—N1—C1117.8 (3)C5—C6—H6118.7
C1i—N1—Cu1121.09 (14)F1—C7—F2106.3 (2)
C1—N1—Cu1121.09 (14)F1—C7—C7iv107.5 (3)
C6—N2—C6i117.8 (3)F2—C7—C7iv107.8 (3)
C6—N2—Cu1iii121.12 (14)F1—C7—C8110.5 (2)
C6i—N2—Cu1iii121.12 (14)F2—C7—C8110.9 (2)
N1—C1—C2122.7 (2)C7iv—C7—C8113.5 (3)
N1—C1—H1118.7O3—C8—O2128.4 (3)
C2—C1—H1118.7O3—C8—C7116.5 (2)
C1—C2—C3119.8 (2)O2—C8—C7115.1 (2)
C1—C2—H2120.1
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H11···O4v0.822.012.826 (3)172
O6—H12···O3vi0.822.072.879 (3)168
O5—H10···O60.822.022.830 (3)168
O5—H9···O6v0.822.112.871 (3)155
O4—H8···O3v0.821.902.725 (3)176
O4—H7···O2vii0.822.012.824 (3)170
O1—H4···O2v0.821.812.630 (2)172
O1—H3···O50.821.882.697 (3)174
Symmetry codes: (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)(H2O)4](C4F4O4)·4H2O
Mr551.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.112 (3), 11.135 (2), 12.126 (2)
β (°) 104.85 (3)
V3)2233.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.44 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.650, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
10662, 2546, 2115
Rint0.026
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.085, 1.28
No. of reflections2546
No. of parameters153
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.78

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H11···O4i0.822.012.826 (3)172
O6—H12···O3ii0.822.072.879 (3)168
O5—H10···O60.822.022.830 (3)168
O5—H9···O6i0.822.112.871 (3)155
O4—H8···O3i0.821.902.725 (3)176
O4—H7···O2iii0.822.012.824 (3)170
O1—H4···O2i0.821.812.630 (2)172
O1—H3···O50.821.882.697 (3)174
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21071087) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759–4765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C., Wang, X.-P. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454–15455.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds