Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the past decade Kirkpatrick-Baez (KB) mirrors have been established as powerful focusing systems in hard X-ray microscopy applications. Here a ptychographic characterization of the KB focus in the dedicated nano-imaging setup GINIX (Göttingen Instrument for Nano-Imaging with X-rays) at the P10 coherence beamline of the PETRA III synchrotron at HASLYLAB/DESY, Germany, is reported. More specifically, it is shown how aberrations in the KB beam, caused by imperfections in the height profile of the focusing mirrors, can be eliminated using a pinhole as a spatial filter near the focal plane. A combination of different pinhole sizes and illumination conditions of the KB setup makes the prepared optical setup well suited not only for high-resolution ptychographic coherent X-ray diffractive imaging but also for moderate-resolution/large-field-of-view propagation imaging in the divergent KB beam.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds