Download citation
Download citation
link to html
Software and hardware methods have been developed to correct images for spatial and intensity distortions produced by optical and electro-optical components in X-ray area detectors. Spatial distortions are divided into two types: gross distortions produced by the inherent properties of the detector components and local distortions formed by irregularities in the components. Intensity distortions are separated into three types: those caused by background nonuniformity; those resulting from pixel-dependent nonuniform intensity response; and those resulting from time-dependent variations in background and incident beam intensity. From background, flat-field, reference and mask images, `forward' and `reverse' interpolation tables are generated to correct for spatial distortions and a lookup table is generated to correct for nonuniform sensitivity. The routines have been used successfully on four different area detectors to correct entire images or to correct intensities of individual Bragg peaks. The spatial-distortion correction is good to within 0.1 pixels and the nonuniformity correction to ≲ 2%.
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds