Download citation
Download citation
link to html
Streptococcus pneumoniae is a multidrug-resistant pathogen that is a target of considerable interest for antibacterial drug development. One strategy for drug discovery is to inhibit an essential metabolic enzyme. The seventh step of the de novo purine-biosynthesis pathway converts carboxyaminoimidazoleribonucleotide (CAIR) and L-aspartic acid (Asp) to 4-(N-­succino)-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR) in the presence of adenosine 5′-triphosphate (ATP) using the enzyme PurC. PurC has been shown to be conditionally essential for bacterial replication. Two crystal structures of this essential enzyme from Streptococcus pneumoniae (spPurC) in the presence of adenosine 5′-diphosphate (ADP), Mg2+, aminoimidazoleribonucleotide (AIR) and/or Asp have been obtained. This is the first structural study of spPurC, as well as the first of PurC from any species with Asp in the active site. Based on these findings, two model structures are proposed for the active site with all of the essential ligands (ATP, Mg2+, Asp and CAIR) present, and a relay mechanism for the formation of the product SAICAR is suggested.

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds