Download citation
Download citation
link to html
The mixed-valent SeIV/VI compound tricadmium(II) bis-[selenite(IV)] selenate(VI), Cd3(SeO3)2SeO4, contains three crystallographically inequivalent CdII cations, one SeVIO4 tetrahedron and two independent SeIVO3 pyramids corresponding to the formula Cd3(SeO3)2(SeO4). The structure is composed of a three-dimensional network with channels extending parallel to the b axis. Distances and angles within the three [CdOx] polyhedra (x = 6, 8), as well as within the anionic framework, deviate only slightly from those of the isotypic mercury analogue, Hg3Se3O10.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680202161X/mg6019sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680202161X/mg6019Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Se-O) = 0.004 Å
  • R factor = 0.018
  • wR factor = 0.044
  • Data-to-parameter ratio = 17.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_019 Alert A _diffrn_standards_number is missing Number of standards used in measurement.
Author response: An area detector system (CCD camera) was used for data collection. No standard reflections were measured.
DIFF_020  Alert A _diffrn_standards_interval_count and
          _diffrn_standards_interval_time are missing. Number of measurements
          between standards or time (min) between standards.
Author response: An area detector system (CCD camera) was used for data collection. No standard reflections were measured.
DIFF_022  Alert A _diffrn_standards_decay_% is missing
          Percentage decrease in standards intensity.
Author response: An area detector system (CCD camera) was used for data collection. No standard reflections were measured.
General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.905 Tmax scaled 0.468 Tmin scaled 0.105 REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.47 From the CIF: _reflns_number_total 2497 Count of symmetry unique reflns 1522 Completeness (_total/calc) 164.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 975 Fraction of Friedel pairs measured 0.641 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
3 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Numerous phases within the system Cd–Se–O–(H) are listed in standard handbooks about cadmium and its compounds (Gmelins Handbuch der Anorganischen Chemie, 1959), and most of these compounds have been crystallographically well characterized in the meantime. For the anhydrous selenites(IV) α-CdSeO3, β-CdSeO3 (Valkonen, 1994a) and CdSe2O5 (Valkonen, 1994b), for the hydrous selenites(IV) CdSeO3(H2O) (Bäumer et al., 1998), Cd3(HSeO3)2(SeO3)2 (Valkonen, 1994b) and (CdSeO3)4(H2O)3 (Valkonen, 1994a), as well as for the selenates(VI) CdSeO4(H2O) (Stålhandske, 1981), CdSeO4, Cd(HSeO4)2(H2O) (Morozov et al., 1999) and CdSeO4(H2O)2 (Weil, 2002), full structure analyses based on single-crystal data have been reported. Powder data are given for the tetraselenite(IV) Cd3Se4O11 (Markovskii & Sapozhnikov, 1961).

Cd3Se3O10 is reported for the first time and reveals isotypism with its mercury analogue, Hg3Se3O10, whose preparation and crystal structure was recently described in detail (Weil & Kolitsch, 2002). The crystal structure is composed of three independent CdII cations, two SeIVO3 groups and a SeVIO4 group as the main building units. Cd3Se3O10 is the first Cd compound to contain both selenium(IV) and selenium(VI) oxo groups within the structure.

The building units are linked via common oxygen atoms to form a three-dimensional network. Edge-sharing [CdO8] polyhedra build layers 2[CdO8/2] parallel to the bc plane which are bridged by the SeIVO3 groups. Two adjacent layers are connected via SeVIO4 tetrahedra and [Cd3O6] polyhedra along the a axis to form channels extending parallel to the b axis, as depicted in Fig. 1. The selenite(IV) groups are situated above and below the cavities of the 2[CdO8/2] layers with the non-bonding orbitals, directed towards each other into the cavities of the structure.

If bonding interactions are being considered for distances d(Cd—O) < 3.0 Å, Cd1 and Cd2 are eight-coordinate with four short, two medium and two longer distances, resulting in a [4 + 2+2]-coordination with similar mean distances of ¯d(Cd1—O) = 2.475 Å and ¯d(Cd2—O) = 2.484 Å. Cd3 shows a [4 + 2]-coordination, with a slightly shorter mean of ¯d(Cd3—O) = 2.400 Å.

Both selenite(IV) (Se1 and Se2) and selenate(VI) (Se3) groups display the well known geometry of a trigonal pyramid [Se1: ¯d(Se1—O) = 1.702 Å, mean angle: 97.5°; Se2: ¯d(Se2—O) = 1.704 Å, mean angle 97.9°] and a tetrahedron [¯d(Se3—O) = 1.638 Å, mean angle 109.5°], respectively.

The bond-valence sums, as calculated with the parameters given by Brese and O'Keeffe (1991), are in agreement with the expected values: Cd1 (CN = 8, 1.972), Cd2 (8, 2.082), Cd3 (6, 2.016), Se1 (3, 4.032), Se2 (3, 4.010), Se3 (4, 6.013), O1 (3, 2.133), O2 (3, 2.167), O3 (4, 2.099), O4 (4, 2.079), O5 (4, 2.163), O6 (4, 2.155), O7 (2, 1.892), O8 (2, 1.835), O9 (3, 1.787), O10 (3, 1.813). The O atoms which belong to selenite(IV) groups are O1–O6, and the O atoms of the selenate(VI) group are O7–O10.

Experimental top

Experiments intended to prepare single crystals of compounds with the general formula (CdSeO4)x(HgO)y(H2O)z, with x = 1, y = 1, 1.5 or 2 and z = 0 or 1 (Denk & Leschhorn, 1966), yielded colourless crystals with mostly rod-like habit of the title compound and colourless plates of composition (CdSeO4)(HgO)(H2O) [space group P2/n, a = 7.9895 (18) Å, b = 6.3307 (6) Å, c = 10.5738 (11) Å and β = 102.795 (2)°; Weil, 2002] by reacting HgO and CdSeO4(H2O)2 in the molar ratio 1:2 in demineralized water under hydrothermal conditions (teflon-lined steel autoclave, 523 K, 6 d).

Refinement top

Systematic absences k = 2n+1 for the (0k0) reflections and similar lattice parameters revealed isotypism with the mercury analogue, Hg3Se3O10. The crystal structure was therefore refined with the atomic coordinates of the mercury compound as starting parameters. Refinement of the occupation factors did not indicate any incorporation of HgII into the structure.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Projection of the crystal structure along [010].
Tricadmium(II) bis(selenite(IV)) selenate(VI) top
Crystal data top
Cd3(SeO3)2SeO4F(000) = 652
Mr = 734.08Dx = 5.352 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4083 reflections
a = 8.3031 (8) Åθ = 2.7–30.5°
b = 5.3377 (5) ŵ = 18.97 mm1
c = 10.8485 (11) ÅT = 293 K
β = 108.659 (2)°Rod, colourless
V = 455.53 (8) Å30.20 × 0.04 × 0.04 mm
Z = 2
Data collection top
Siemens SMART
diffractometer
2497 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.116, Tmax = 0.518k = 77
4516 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.001
wR(F2) = 0.044Δρmax = 0.97 e Å3
S = 1.00Δρmin = 0.79 e Å3
2497 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
146 parametersExtinction coefficient: 0.0065 (3)
1 restraintAbsolute structure: Flack (1983), 0000 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.080 (9)
Crystal data top
Cd3(SeO3)2SeO4V = 455.53 (8) Å3
Mr = 734.08Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3031 (8) ŵ = 18.97 mm1
b = 5.3377 (5) ÅT = 293 K
c = 10.8485 (11) Å0.20 × 0.04 × 0.04 mm
β = 108.659 (2)°
Data collection top
Siemens SMART
diffractometer
2497 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2402 reflections with I > 2σ(I)
Tmin = 0.116, Tmax = 0.518Rint = 0.023
4516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0181 restraint
wR(F2) = 0.044Δρmax = 0.97 e Å3
S = 1.00Δρmin = 0.79 e Å3
2497 reflectionsAbsolute structure: Flack (1983), 0000 Friedel pairs
146 parametersAbsolute structure parameter: 0.080 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00382 (4)0.25150 (8)0.12793 (2)0.01258 (7)
Cd20.01861 (4)0.25949 (8)0.61730 (2)0.01527 (8)
Cd30.36338 (4)0.73845 (9)0.20432 (3)0.02092 (9)
Se10.25424 (5)0.22642 (10)0.95611 (4)0.01246 (10)
Se20.26984 (5)0.28363 (10)0.42598 (4)0.01253 (10)
Se30.65260 (5)0.24831 (11)0.28455 (3)0.01370 (9)
O10.0935 (4)0.1330 (6)0.8235 (3)0.0204 (7)
O20.1159 (4)0.3891 (6)0.4852 (3)0.0192 (7)
O30.1592 (4)0.0678 (6)0.3134 (3)0.0167 (7)
O40.1569 (4)0.4555 (6)0.0177 (3)0.0161 (7)
O50.2256 (5)0.0108 (6)0.0509 (3)0.0232 (8)
O60.2527 (5)0.5314 (7)0.3248 (3)0.0245 (8)
O70.5285 (4)0.0451 (7)0.3226 (3)0.0246 (8)
O80.5350 (5)0.4382 (7)0.1709 (3)0.0247 (8)
O90.7526 (5)0.4118 (7)0.4124 (3)0.0243 (8)
O100.7827 (5)0.0992 (6)0.2245 (3)0.0235 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01555 (14)0.01217 (17)0.00942 (12)0.00015 (19)0.00315 (9)0.00052 (15)
Cd20.02123 (16)0.01518 (17)0.01064 (12)0.0002 (2)0.00685 (10)0.00057 (16)
Cd30.01811 (16)0.02101 (19)0.02167 (14)0.0012 (2)0.00359 (11)0.01152 (18)
Se10.01315 (18)0.0126 (2)0.01091 (16)0.0003 (2)0.00281 (13)0.00033 (18)
Se20.01206 (18)0.0140 (2)0.01093 (16)0.00041 (18)0.00278 (13)0.00109 (18)
Se30.01202 (18)0.0174 (2)0.01099 (15)0.0002 (3)0.00273 (13)0.0022 (2)
O10.0250 (19)0.0213 (17)0.0106 (14)0.0049 (14)0.0001 (13)0.0005 (12)
O20.0201 (18)0.0193 (16)0.0229 (16)0.0075 (13)0.0134 (14)0.0079 (13)
O30.0212 (18)0.0155 (16)0.0103 (14)0.0041 (13)0.0009 (13)0.0011 (12)
O40.0196 (19)0.0172 (17)0.0129 (15)0.0050 (13)0.0071 (14)0.0001 (12)
O50.028 (2)0.0199 (18)0.0148 (16)0.0018 (15)0.0022 (15)0.0088 (14)
O60.026 (2)0.0203 (18)0.033 (2)0.0038 (14)0.0174 (17)0.0133 (15)
O70.0193 (19)0.032 (2)0.0236 (17)0.0094 (15)0.0088 (15)0.0047 (15)
O80.022 (2)0.030 (2)0.0207 (17)0.0053 (15)0.0041 (14)0.0102 (14)
O90.029 (2)0.0227 (18)0.0164 (16)0.0000 (15)0.0003 (15)0.0103 (13)
O100.0218 (19)0.0232 (19)0.0316 (19)0.0018 (14)0.0169 (16)0.0069 (15)
Geometric parameters (Å, º) top
Cd1—O32.258 (3)Se1—O5ix1.696 (3)
Cd1—O1i2.287 (3)Se1—O4ix1.715 (3)
Cd1—O4ii2.307 (3)Se1—Cd1v3.2199 (7)
Cd1—O42.327 (3)Se1—Cd1ix3.2617 (6)
Cd1—O10iii2.468 (4)Se1—Cd1i3.4346 (7)
Cd1—O5iv2.545 (4)Se1—Cd3x3.6462 (7)
Cd1—O52.703 (4)Se1—Cd3ix3.7390 (7)
Cd1—O62.902 (4)Se1—Cd3vii4.0803 (6)
Cd2—O22.191 (3)Se2—O61.695 (3)
Cd2—O12.235 (3)Se2—O21.700 (3)
Cd2—O3i2.280 (3)Se2—O31.716 (3)
Cd2—O2v2.286 (3)Se2—Cd2i3.2244 (7)
Cd2—O6v2.537 (4)Se2—Cd2v3.4310 (8)
Cd2—O9iii2.551 (3)Se2—Cd3xi4.0061 (7)
Cd2—O10vi2.814 (4)Se2—Cd3vii4.1956 (6)
Cd2—O9vii2.980 (4)Se3—O91.624 (3)
Cd3—O62.132 (3)Se3—O101.636 (3)
Cd3—O5viii2.157 (3)Se3—O71.637 (3)
Cd3—O82.250 (4)Se3—O81.653 (3)
Cd3—O7viii2.254 (4)Se3—Cd3xi3.5488 (6)
Cd3—O42.664 (3)Se3—Cd1xii3.7586 (5)
Cd3—O3viii2.940 (3)Se3—Cd2xii3.7658 (5)
Cd3—Se33.4687 (6)Se3—Cd2vii3.8867 (7)
Cd3—Se3viii3.5488 (6)Se3—Cd2vi3.9679 (8)
Se1—O11.694 (3)
O3—Cd1—O1i109.14 (11)O6v—Cd2—O9iii87.29 (13)
O3—Cd1—O4ii110.77 (11)O2—Cd2—O10vi78.15 (12)
O1i—Cd1—O4ii128.24 (12)O1—Cd2—O10vi66.32 (10)
O3—Cd1—O4112.45 (11)O3i—Cd2—O10vi70.35 (11)
O1i—Cd1—O489.10 (12)O2v—Cd2—O10vi157.33 (11)
O4ii—Cd1—O4104.43 (8)O6v—Cd2—O10vi126.67 (10)
O3—Cd1—O10iii77.66 (12)O9iii—Cd2—O10vi120.34 (11)
O1i—Cd1—O10iii82.20 (12)O2—Cd2—O9vii64.89 (10)
O4ii—Cd1—O10iii75.64 (11)O1—Cd2—O9vii80.44 (11)
O4—Cd1—O10iii168.54 (12)O3i—Cd2—O9vii163.84 (10)
O3—Cd1—O5iv167.67 (13)O2v—Cd2—O9vii64.36 (11)
O1i—Cd1—O5iv61.47 (10)O6v—Cd2—O9vii112.38 (12)
O4ii—Cd1—O5iv73.36 (11)O9iii—Cd2—O9vii118.37 (8)
O4—Cd1—O5iv76.64 (13)O10vi—Cd2—O9vii94.12 (10)
O10iii—Cd1—O5iv92.58 (13)O6—Cd3—O5viii124.66 (15)
O3—Cd1—O576.67 (11)O6—Cd3—O898.57 (13)
O1i—Cd1—O5147.81 (12)O5viii—Cd3—O8121.65 (13)
O4ii—Cd1—O573.84 (12)O6—Cd3—O7viii109.30 (14)
O4—Cd1—O560.47 (10)O5viii—Cd3—O7viii93.69 (14)
O10iii—Cd1—O5129.31 (11)O8—Cd3—O7viii107.93 (13)
O5iv—Cd1—O5115.60 (8)O6—Cd3—O482.71 (13)
O3—Cd1—O658.54 (10)O5viii—Cd3—O473.26 (11)
O1i—Cd1—O665.70 (11)O8—Cd3—O476.14 (12)
O4ii—Cd1—O6166.04 (11)O7viii—Cd3—O4166.09 (11)
O4—Cd1—O674.39 (10)O6—Cd3—O3viii69.28 (12)
O10iii—Cd1—O6108.36 (10)O5viii—Cd3—O3viii73.00 (12)
O5iv—Cd1—O6119.09 (11)O8—Cd3—O3viii165.28 (10)
O5—Cd1—O694.03 (10)O7viii—Cd3—O3viii70.17 (11)
O2—Cd2—O1127.85 (13)O4—Cd3—O3viii109.32 (9)
O2—Cd2—O3i114.19 (12)O1—Se1—O5ix94.02 (16)
O1—Cd2—O3i88.92 (11)O1—Se1—O4ix101.51 (16)
O2—Cd2—O2v97.44 (9)O5ix—Se1—O4ix96.94 (16)
O1—Cd2—O2v101.23 (12)O6—Se2—O293.95 (16)
O3i—Cd2—O2v130.27 (12)O6—Se2—O398.51 (17)
O2—Cd2—O6v154.73 (12)O2—Se2—O3101.27 (17)
O1—Cd2—O6v73.39 (12)O9—Se3—O10112.29 (18)
O3i—Cd2—O6v75.58 (13)O9—Se3—O7109.40 (18)
O2v—Cd2—O6v61.69 (11)O10—Se3—O7109.09 (19)
O2—Cd2—O9iii73.90 (12)O9—Se3—O8109.05 (19)
O1—Cd2—O9iii157.54 (13)O10—Se3—O8107.99 (18)
O3i—Cd2—O9iii74.96 (11)O7—Se3—O8108.96 (17)
O2v—Cd2—O9iii78.64 (12)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z; (iii) x1, y, z; (iv) x, y+1/2, z; (v) x, y1/2, z+1; (vi) x+1, y+1/2, z+1; (vii) x+1, y1/2, z+1; (viii) x, y+1, z; (ix) x, y, z+1; (x) x, y1, z+1; (xi) x, y1, z; (xii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaCd3(SeO3)2SeO4
Mr734.08
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.3031 (8), 5.3377 (5), 10.8485 (11)
β (°) 108.659 (2)
V3)455.53 (8)
Z2
Radiation typeMo Kα
µ (mm1)18.97
Crystal size (mm)0.20 × 0.04 × 0.04
Data collection
DiffractometerSiemens SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.116, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
4516, 2497, 2402
Rint0.023
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.044, 1.00
No. of reflections2497
No. of parameters146
No. of restraints1
Δρmax, Δρmin (e Å3)0.97, 0.79
Absolute structureFlack (1983), 0000 Friedel pairs
Absolute structure parameter0.080 (9)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXL97 (Sheldrick, 1997), ATOMS for Windows (Dowty, 2000), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—O32.258 (3)Cd3—O62.132 (3)
Cd1—O1i2.287 (3)Cd3—O5viii2.157 (3)
Cd1—O4ii2.307 (3)Cd3—O82.250 (4)
Cd1—O42.327 (3)Cd3—O7viii2.254 (4)
Cd1—O10iii2.468 (4)Cd3—O42.664 (3)
Cd1—O5iv2.545 (4)Cd3—O3viii2.940 (3)
Cd1—O52.703 (4)Se1—O11.694 (3)
Cd1—O62.902 (4)Se1—O5ix1.696 (3)
Cd2—O22.191 (3)Se1—O4ix1.715 (3)
Cd2—O12.235 (3)Se2—O61.695 (3)
Cd2—O3i2.280 (3)Se2—O21.700 (3)
Cd2—O2v2.286 (3)Se2—O31.716 (3)
Cd2—O6v2.537 (4)Se3—O91.624 (3)
Cd2—O9iii2.551 (3)Se3—O101.636 (3)
Cd2—O10vi2.814 (4)Se3—O71.637 (3)
Cd2—O9vii2.980 (4)Se3—O81.653 (3)
O1—Se1—O5ix94.02 (16)O9—Se3—O10112.29 (18)
O1—Se1—O4ix101.51 (16)O9—Se3—O7109.40 (18)
O5ix—Se1—O4ix96.94 (16)O10—Se3—O7109.09 (19)
O6—Se2—O293.95 (16)O9—Se3—O8109.05 (19)
O6—Se2—O398.51 (17)O10—Se3—O8107.99 (18)
O2—Se2—O3101.27 (17)O7—Se3—O8108.96 (17)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z; (iii) x1, y, z; (iv) x, y+1/2, z; (v) x, y1/2, z+1; (vi) x+1, y+1/2, z+1; (vii) x+1, y1/2, z+1; (viii) x, y+1, z; (ix) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds