Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
NaZn(H2PO3)3·H2O contains zigzag chains of edge-sharing alternating NaO6 [dav(Na-O) = 2.452 (2) Å] and ZnO6 [dav(Zn-O) = 2.104 (2) Å] octahedra, crosslinked by H2PO3 pseudo-pyramids [dav(P-OZn) = 1.501 (2) Å and dav(P-OH) = 1.572 (2) Å]. It is isostructural with NaM(H2PO3)3·H2O (M = Mn, Co).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002209/mg6002sup1.cif
Contains datablocks I, nzph

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002209/mg6002Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](P-O) = 0.001 Å
  • R factor = 0.025
  • wR factor = 0.057
  • Data-to-parameter ratio = 26.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor P(1) - H(1) ? PLAT_420 Alert C D-H Without Acceptor P(2) - H(2) ? PLAT_420 Alert C D-H Without Acceptor P(3) - H(3) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Only a few mixed-metal phosphites containing sodium and a transition metal have been reported, including the isostructural NaCo(H2PO3)3·H2O (Kratochvil et al., 1982) and NaMn(H2PO3)3·H2O (Chmelikova et al., 1986). Here, we report the synthesis and structure of the third member of this family, NaZn(H2PO3)3·H2O, as part of our ongoing investigations of Na—M—H3PO3 (M = divalent transition metal) systems.

The zinc cation is octahedrally coordinated with dav(Zn—O) = 2.104 (2) Å. Five of the O atoms bridge to phosphite P atoms (θav = 133.7°) and the remaining atom (O6) is part of a water molecule. A similar average Zn—O distance of 2.115 Å is found in in Zn(H2PO3)2·3H2O (Ortiz-Avila et al., 1989).

The three unique PIII atoms are coordinated by three O atoms in pseudo-pyramidal geometry, with a terminal H atom [d(P—H) = 1.32 Å] occupying the fourth tetrahedral vertex. P1 and P3 possess one P—OH vertex and make two P—O—Zn bridges; P2 has one terminal PO9 bond, one P—OH bond, and makes one P—O—Zn link. The average P—-OZn and P—OH bond lengths are 1.501 (2) and 1.572 (2) Å, respectively. These P—O and P—OH distances are similar to their equivalent values in NaMn(H2PO3)3·H2O and NaCo(H2PO3)3·H2O (1.500 and 1.574 Å, and 1.496 and 1.567 Å, respectively).

The Na1 coordination can be described as distorted octahedral with one Na—O vertex significantly longer than the other five. The bond-valence sum (Brown, 1996) for sodium of 1.15 (ideal value = 1.00) indicates that its valence is satisfied by this coordination. The average Na—O separation of 2.452 (2) Å is similar to that found in NaMn(H2PO3)3·H2O (2.442 Å) and NaCo(H2PO3)3·H2O (2.443 Å).

The polyhedral connectivity in NaZn(H2PO3)3·H2O consists of zigzag chains of alternating ZnO6 and NaO6 octahedra, sharing edges by way of O1···O5 and O4···O6 pairs. The chains propagate along [100]. The octahedral chains are crosslinked by the phosphite moieties: the P2-centred group links adjacent chains in the c direction, and the P3 group fuses the chains in the b direction. Various P—OH···O and OwH···O (w is water) hydrogen bonds also stabilize the structure, as described previously (Chmelikova et al., 1986).

Experimental top

Solutions I and II were made up as follows. I: NaOH (2.5 mmol) + H3PO3 (2.5 mmol) in 10 ml water; II: ZnO (2.5 mmol) + H3PO3 (1.5 mmol) in 10 ml water. They were mixed in a 1:1.5 ratio, stirred for 6 h, and the resulting clear solution was left to stand at room temperature. After two weeks, colourless lozenge-shaped crystals of the title compound were recovered by filtration and washing with 80% ethanol solution.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Fragment of NaZn(H2PO3)3·H2O showing the atomic connectivity (50% thermal ellipsoids). Symmetry labels as in Table 1.
[Figure 2] Fig. 2. Polyhedral representation of the unit-cell packing in NaZn(H2PO3)3·H2O [colour key: ZnO6 octahedra red, NaO6 octahedra blue, phosphite tetrahedra (3 × P–O and 1 × P—H vertices) yellow].
(I) top
Crystal data top
NaZn(H2PO3)3·H2ODx = 2.342 Mg m3
Mr = 349.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5338 reflections
a = 9.0609 (4) Åθ = 2.7–32.5°
b = 14.7671 (6) ŵ = 3.04 mm1
c = 14.8106 (6) ÅT = 298 K
V = 1981.71 (14) Å3Cut chunk, colourless
Z = 80.23 × 0.20 × 0.13 mm
F(000) = 1392
Data collection top
Bruker SMART 1000 CCD
diffractometer
3585 independent reflections
Radiation source: fine-focus sealed tube2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 32.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 713
Tmin = 0.541, Tmax = 0.693k = 1822
16277 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
3585 reflectionsΔρmax = 0.42 e Å3
137 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00347 (18)
Crystal data top
NaZn(H2PO3)3·H2OV = 1981.71 (14) Å3
Mr = 349.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.0609 (4) ŵ = 3.04 mm1
b = 14.7671 (6) ÅT = 298 K
c = 14.8106 (6) Å0.23 × 0.20 × 0.13 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3585 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2756 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.693Rint = 0.044
16277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 0.94Δρmax = 0.42 e Å3
3585 reflectionsΔρmin = 0.38 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.06203 (9)0.15826 (5)0.43140 (6)0.02699 (18)
Zn10.44787 (2)0.159229 (13)0.454618 (13)0.01433 (6)
P10.23667 (5)0.22366 (3)0.61899 (3)0.01382 (9)
H10.22800.14170.65430.017*
P20.46060 (5)0.03033 (3)0.26273 (3)0.01518 (9)
H20.31520.03480.26010.018*
P30.27067 (5)0.03047 (3)0.49123 (3)0.01535 (9)
H30.25040.03830.57910.018*
O10.38120 (13)0.22998 (8)0.57018 (9)0.0189 (3)
O20.51353 (15)0.10242 (9)0.32712 (9)0.0230 (3)
O30.59411 (14)0.08450 (8)0.53245 (9)0.0203 (3)
O40.27611 (13)0.06871 (8)0.47007 (9)0.0201 (3)
O50.59986 (13)0.26144 (8)0.43594 (8)0.0183 (3)
O60.28586 (14)0.23966 (8)0.38093 (9)0.0224 (3)
H6A0.28880.23430.32360.027*
H6B0.30610.29030.39130.027*
O70.23906 (14)0.29349 (10)0.69963 (9)0.0254 (3)
H70.16250.33540.69430.030*
O80.50331 (17)0.06669 (9)0.29648 (10)0.0321 (3)
H80.48240.07280.35410.039*
O90.51572 (15)0.03950 (9)0.16814 (9)0.0227 (3)
O100.13259 (16)0.07348 (9)0.44355 (11)0.0336 (4)
H100.09850.03780.39940.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0220 (4)0.0275 (4)0.0315 (4)0.0084 (3)0.0075 (3)0.0132 (3)
Zn10.01300 (9)0.01432 (10)0.01566 (10)0.00044 (8)0.00002 (7)0.00097 (7)
P10.01267 (19)0.01518 (19)0.0136 (2)0.00119 (16)0.00018 (15)0.00091 (16)
P20.0156 (2)0.0168 (2)0.0132 (2)0.00082 (17)0.00099 (15)0.00083 (16)
P30.01327 (19)0.0142 (2)0.0186 (2)0.00023 (17)0.00110 (15)0.00196 (16)
O10.0145 (6)0.0221 (6)0.0201 (6)0.0023 (5)0.0033 (5)0.0054 (5)
O20.0243 (7)0.0248 (7)0.0200 (7)0.0057 (6)0.0024 (5)0.0068 (5)
O30.0225 (6)0.0175 (6)0.0208 (7)0.0077 (5)0.0002 (5)0.0017 (5)
O40.0146 (6)0.0118 (5)0.0341 (8)0.0001 (5)0.0019 (5)0.0001 (5)
O50.0158 (6)0.0183 (6)0.0208 (6)0.0037 (5)0.0050 (5)0.0049 (5)
O60.0307 (7)0.0190 (6)0.0175 (7)0.0034 (6)0.0042 (5)0.0019 (5)
O70.0239 (7)0.0353 (8)0.0170 (7)0.0116 (6)0.0054 (5)0.0091 (6)
O80.0532 (10)0.0197 (7)0.0234 (7)0.0066 (7)0.0065 (6)0.0051 (6)
O90.0309 (7)0.0219 (6)0.0153 (6)0.0013 (6)0.0053 (5)0.0009 (5)
O100.0295 (8)0.0177 (6)0.0536 (10)0.0083 (6)0.0220 (7)0.0109 (6)
Geometric parameters (Å, º) top
Na1—O5i2.3203 (14)P1—H11.32
Na1—O1i2.3257 (14)P2—O91.4935 (13)
Na1—O9ii2.3292 (15)P2—O21.5075 (13)
Na1—O42.4165 (14)P2—O81.5659 (14)
Na1—O62.4733 (16)P2—H21.32
Na1—O10iii2.8473 (18)P3—O41.4985 (13)
Zn1—O52.0618 (12)P3—O3iv1.5035 (13)
Zn1—O42.0643 (12)P3—O101.5708 (14)
Zn1—O32.0743 (12)P3—H31.32
Zn1—O12.0942 (12)O6—H6A0.8530
Zn1—O22.1503 (13)O6—H6B0.7846
Zn1—O62.1810 (13)O7—H70.9327
P1—O11.4987 (13)O8—H80.8793
P1—O5i1.4990 (13)O10—H100.8943
P1—O71.5780 (14)
O5i—Na1—O1i75.52 (5)O9—P2—O2115.02 (8)
O5i—Na1—O9ii161.33 (6)O9—P2—O8107.44 (8)
O1i—Na1—O9ii113.64 (5)O2—P2—O8111.44 (8)
O5i—Na1—O487.73 (5)O9—P2—H2107.5
O1i—Na1—O4162.99 (6)O2—P2—H2107.5
O9ii—Na1—O483.26 (5)O8—P2—H2107.5
O5i—Na1—O683.48 (5)O4—P3—O3iv116.30 (8)
O1i—Na1—O6103.28 (5)O4—P3—O10109.11 (7)
O9ii—Na1—O6108.81 (6)O3iv—P3—O10109.24 (8)
O4—Na1—O671.30 (5)O4—P3—H3107.3
O5i—Na1—O10iii76.43 (5)O3iv—P3—H3107.3
O1i—Na1—O10iii83.24 (5)O10—P3—H3107.3
O9ii—Na1—O10iii88.23 (5)P1—O1—Zn1127.97 (7)
O4—Na1—O10iii95.87 (5)P2—O2—Zn1137.98 (8)
O6—Na1—O10iii156.66 (5)P3iv—O3—Zn1132.32 (8)
O5—Zn1—O4172.96 (5)P3—O4—Zn1132.91 (8)
O5—Zn1—O392.14 (5)P1v—O5—Zn1137.11 (8)
O4—Zn1—O394.33 (5)P1—O1—Na1v131.65 (7)
O5—Zn1—O186.40 (5)Zn1—O1—Na1v98.20 (5)
O4—Zn1—O190.86 (5)P3—O4—Na1123.92 (7)
O3—Zn1—O189.74 (5)Zn1—O4—Na1102.97 (5)
O5—Zn1—O289.02 (5)P1v—O5—Na1v120.44 (7)
O4—Zn1—O293.06 (5)Zn1—O5—Na1v99.31 (5)
O3—Zn1—O295.95 (5)Zn1—O6—Na197.82 (5)
O1—Zn1—O2172.82 (5)Zn1—O6—H6A115.2
O5—Zn1—O689.07 (5)Na1—O6—H6A106.3
O4—Zn1—O684.30 (5)Zn1—O6—H6B105.2
O3—Zn1—O6176.21 (5)Na1—O6—H6B126.5
O1—Zn1—O686.74 (5)H6A—O6—H6B106.1
O2—Zn1—O687.66 (5)P1—O7—H7111.1
O1—P1—O5i116.85 (8)P2—O8—H8110.5
O1—P1—O7108.21 (7)P2—O9—Na1vi136.24 (8)
O5i—P1—O7109.04 (7)P3—O10—Na1iii112.25 (8)
O1—P1—H1107.5P3—O10—H10111.5
O5i—P1—H1107.5Na1iii—O10—H10121.4
O7—P1—H1107.5
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O7vii0.851.932.7622 (19)163
O6—H6B···O10viii0.782.233.0034 (19)171
O7—H7···O2i0.931.662.5875 (18)170
O8—H8···O3iv0.881.832.696 (2)170
O10—H10···O9ii0.891.692.5771 (19)169
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iv) x+1, y, z+1; (vii) x, y+1/2, z1/2; (viii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaNaZn(H2PO3)3·H2O
Mr349.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.0609 (4), 14.7671 (6), 14.8106 (6)
V3)1981.71 (14)
Z8
Radiation typeMo Kα
µ (mm1)3.04
Crystal size (mm)0.23 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.541, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
16277, 3585, 2756
Rint0.044
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 0.94
No. of reflections3585
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Na1—O5i2.3203 (14)Zn1—O62.1810 (13)
Na1—O1i2.3257 (14)P1—O11.4987 (13)
Na1—O9ii2.3292 (15)P1—O5i1.4990 (13)
Na1—O42.4165 (14)P1—O71.5780 (14)
Na1—O62.4733 (16)P2—O91.4935 (13)
Na1—O10iii2.8473 (18)P2—O21.5075 (13)
Zn1—O52.0618 (12)P2—O81.5659 (14)
Zn1—O42.0643 (12)P3—O41.4985 (13)
Zn1—O32.0743 (12)P3—O3iv1.5035 (13)
Zn1—O12.0942 (12)P3—O101.5708 (14)
Zn1—O22.1503 (13)
P1—O1—Zn1127.97 (7)P3—O4—Zn1132.91 (8)
P2—O2—Zn1137.98 (8)P1v—O5—Zn1137.11 (8)
P3iv—O3—Zn1132.32 (8)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O7vi0.851.932.7622 (19)163.1
O6—H6B···O10vii0.782.233.0034 (19)170.8
O7—H7···O2i0.931.662.5875 (18)170.4
O8—H8···O3iv0.881.832.696 (2)170.1
O10—H10···O9ii0.891.692.5771 (19)169.0
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iv) x+1, y, z+1; (vi) x, y+1/2, z1/2; (vii) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds