metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1269-m1270

Cyclo­hexyldi­methyl­ammonium tetra­hy­droxy­penta­borate

aDepartment of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com

(Received 30 August 2008; accepted 9 September 2008; online 17 September 2008)

The title compound, [C8H18N]+·[B5O6(OH)4], has been synthesized under mild solvothermal conditions in the presence of N,N-dimethyl­cyclo­hexyl­amine acting as a template. The structure consists of penta­borate [B5O6(OH)4] anions connected through O—H⋯O hydrogen bonds into a three-dimensional framework, with large channels along [100], [010] and [001] directions. The [C8H18N]+ cations reside in the channels, inter­acting with the framework through N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Batsanov et al. (1982[Batsanov, A. S., Nava, E. H., Struchkov, T. & Akimov, V. M. (1982). Cryst. Struct. Commun. 11, 1629-1631.]); Burns et al. (1995[Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131-1151.]); Chen et al. (1995[Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322-324.]); Grice et al. (1999[Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731-761.]); Liu & Li (2006[Liu, Z. H. & Li, L. Q. (2006). Cryst. Growth Des. 6, 1247-1249.]); Liu et al. (2006[Liu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem. 45, 1430-1432.]); Schubert et al. (2000[Schubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250-2251.]); Touboul et al. (2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]); Wang et al. (2004[Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2004). J. Solid State Chem. 177, 4648-4654.], 2008a[Wang, G. M., Li, J. H., Huang, H. L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039-5041.],b[Wang, G. M., Li, J. H., Li, Z. X., Huang, H. L., Xue, S. Y. & Liu, H. L. (2008b). Inorg. Chem. 47, 1270-1272.])

[Scheme 1]

Experimental

Crystal data
  • C8H18N+·B5H4O10

  • Mr = 346.32

  • Triclinic, [P \overline 1]

  • a = 8.6971 (4) Å

  • b = 9.8990 (2) Å

  • c = 10.2300 (3) Å

  • α = 74.591 (3)°

  • β = 74.442 (2)°

  • γ = 82.190 (5)°

  • V = 815.98 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 (2) K

  • 0.45 × 0.45 × 0.45 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.949

  • 6623 measured reflections

  • 3318 independent reflections

  • 2536 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.08

  • 3318 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

B1—O1 1.350 (2)
B1—O5 1.3552 (19)
B1—O2 1.377 (2)
B2—O3 1.341 (2)
B2—O4 1.357 (2)
B2—O2 1.375 (2)
B3—O4 1.452 (2)
B3—O5 1.4651 (19)
B3—O6 1.469 (2)
B3—O7 1.473 (2)
B4—O10 1.346 (2)
B4—O7 1.3491 (19)
B4—O9 1.387 (2)
B5—O8 1.343 (2)
B5—O6 1.3439 (19)
B5—O9 1.388 (2)
O1—B1—O5 122.22 (15)
O1—B1—O2 117.10 (14)
O5—B1—O2 120.66 (14)
O3—B2—O4 121.91 (16)
O3—B2—O2 117.92 (15)
O4—B2—O2 120.14 (15)
O4—B3—O5 111.21 (12)
O4—B3—O6 108.43 (12)
O5—B3—O6 109.57 (13)
O4—B3—O7 108.58 (13)
O5—B3—O7 108.76 (12)
O6—B3—O7 110.28 (12)
O10—B4—O7 118.13 (15)
O10—B4—O9 121.04 (14)
O7—B4—O9 120.83 (14)
O8—B5—O6 123.78 (14)
O8—B5—O9 115.84 (14)
O6—B5—O9 120.38 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.82 1.96 2.7759 (16) 174
O3—H3A⋯O4ii 0.82 1.99 2.8143 (16) 178
O8—H8A⋯O6iii 0.82 1.96 2.7816 (15) 179
O10—H10A⋯O9iv 0.82 2.03 2.8477 (15) 178
N1—H1D⋯O7 0.91 1.94 2.8368 (18) 169
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2002[Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Borate materials have been receiving particular attention due to their fascinating structural diversities and potential applications in mineralogy and industry (Burns et al., 1995; Chen et al., 1995; Grice et al., 1999; Touboul et al., 2003). From a structural point of view, the ability of B to adopt both BO3 and BO4 coordination modes, coupled with the tendency of such units to polymerize into a wide range of polyanions, has led to a rapidly growing family of borates. Thus far, numerous inorganic borate materials with alkali metals, alkaline earth metals, rare earths and transition metals have been extensively studied. In contrast, the analogous chemistry of organically templated borates is still relatively undeveloped. To the best of our knowledge, only a few examples with polyanions, such as [B4O5(OH)4] (Batsanov et al., 1982), [B5O6(OH)4] (Wang et al., 2004), [B7O9(OH)5] (Liu & Li, 2006; Liu et al., 2006), [B9O12(OH)6] (Schubert et al., 2000) and [B14O20(OH)6] (Liu et al., 2006), have been reported. The aim of our work is to explore the construction of novel microporous aluminoborates templated by organic agents with different shape and size (Wang et al., 2008a,b). Unexpectedly, the title compound, (I), was isolated, a new organically templated pentaborate.

As shown in Fig. 1, the asymmetric unit of (I) contains one [B5O6(OH)4]- anion and one [C8H18N]+ cation. The anionic [B5O6(OH)4]- polyanion is composed of two common B3O3 rings, each containing two BO3 triangles and one BO4 tetrahedron. The B—O bond distances lie in the range 1.341 (2)–1.388 (2) Å for the BO3 triangles (B1, B2, B4 and B5) and 1.452 (2)–1.473 (2) Å for the B(3)O4 tetrahedron, in good agreement with those reported previously for other borate compounds. The O—B—O bond angles lie in the range 115.8 (2)–123.7 (2) ° for the triangles and 108.4 (2)–111.2 (2) ° for the tetrahedron. The anionic [B5O6(OH)4]- groups are connected to each other through intermolecular O—H···O hydrogen bonds, forming a three-dimensional framework with large channels along [100], [010] and [001] directions. The [C8H18N]+ cations reside in these channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Batsanov et al. (1982); Burns et al. (1995); Chen et al. (1995); Grice et al. (1999); Liu & Li (2006); Liu et al. (2006); Schubert et al. (2000); Touboul et al. (2003); Wang et al. (2004, 2008a,b)

Experimental top

A mixture of H3BO3 (0.186 g), Al2O3 (0.104 g), N,N-dimethylcyclohexylamine (0.75 ml), pyridine (4.4 ml) and H2O (0.50 ml) was sealed in a Teflon-lined steel autoclave, heated at 453 K for 8 days, and then cooled to room temperature. The homogeneous product consisting of large colorless block-shaped crystals was separated from the solution by filtration, washed with distilled water, and then dried in air.

Refinement top

All H atoms were positioned geometrically and treated as riding atoms: O—H = 0.82 Å, N—H = 0.91 Å and C—H = 0.96–0.98 Å with Uiso(H) = 1.2–1.5Ueq(parent atoms).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2002); data reduction: SAINT-Plus (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Projection of (I) along b, showing [B5O6(OH)4]- anions linked into a three-dimensional framework, with [C8H18N]+ cations occupying channels. Hydrogen bonds are shown as dashed lines.
Cyclohexyldimethylammonium tetrahydroxypentaborate top
Crystal data top
C8H18N+·B5H4O10Z = 2
Mr = 346.32F(000) = 364
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6971 (4) ÅCell parameters from 6623 reflections
b = 9.8990 (2) Åθ = 2.1–26.5°
c = 10.2300 (3) ŵ = 0.12 mm1
α = 74.591 (3)°T = 295 K
β = 74.442 (2)°Block, colorless
γ = 82.190 (5)°0.45 × 0.45 × 0.45 mm
V = 815.98 (5) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
3318 independent reflections
Radiation source: fine-focus sealed tube2536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.949, Tmax = 0.949k = 1212
6623 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.0744P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3318 reflectionsΔρmax = 0.23 e Å3
218 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (6)
Crystal data top
C8H18N+·B5H4O10γ = 82.190 (5)°
Mr = 346.32V = 815.98 (5) Å3
Triclinic, P1Z = 2
a = 8.6971 (4) ÅMo Kα radiation
b = 9.8990 (2) ŵ = 0.12 mm1
c = 10.2300 (3) ÅT = 295 K
α = 74.591 (3)°0.45 × 0.45 × 0.45 mm
β = 74.442 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3318 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2536 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.949Rint = 0.026
6623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
3318 reflectionsΔρmin = 0.29 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.3071 (2)1.10774 (18)0.59941 (19)0.0342 (4)
B20.1056 (2)1.1184 (2)0.8073 (2)0.0372 (4)
B30.3133 (2)0.92080 (17)0.81503 (17)0.0296 (4)
B40.3702 (2)0.66200 (18)0.88838 (18)0.0309 (4)
B50.5114 (2)0.81317 (18)0.95617 (18)0.0311 (4)
O10.35979 (15)1.16205 (12)0.46086 (12)0.0477 (3)
H1A0.43761.11330.42910.072*
O20.17524 (14)1.17636 (12)0.66942 (12)0.0480 (3)
O30.02096 (16)1.18988 (13)0.87215 (13)0.0555 (4)
H3A0.06411.13910.94700.083*
O40.16229 (13)0.99089 (11)0.87271 (11)0.0362 (3)
O50.37677 (12)0.98883 (11)0.66764 (10)0.0328 (3)
O60.42790 (13)0.92583 (10)0.89591 (11)0.0334 (3)
O70.28642 (13)0.77398 (10)0.82604 (11)0.0331 (3)
O80.61961 (15)0.82028 (12)1.02584 (13)0.0454 (3)
H8A0.60450.89531.04860.068*
O90.48965 (13)0.67959 (11)0.94784 (12)0.0375 (3)
O100.33377 (15)0.53291 (11)0.89197 (13)0.0453 (3)
H10A0.38590.47360.93860.068*
C20.2698 (4)0.5351 (3)0.4335 (3)0.0907 (9)
H2A0.33270.44610.43600.109*
H2B0.18540.53490.38800.109*
C10.3752 (4)0.6525 (3)0.3495 (3)0.0884 (8)
H1B0.46590.64750.38920.106*
H1C0.41560.64250.25420.106*
C40.1958 (3)0.5485 (2)0.5814 (2)0.0685 (6)
H4A0.12480.47380.63010.082*
H4B0.27930.53920.63040.082*
C30.2836 (3)0.7915 (3)0.3491 (2)0.0677 (6)
H3B0.20100.80080.29900.081*
H3C0.35520.86590.30050.081*
C50.2074 (3)0.8069 (2)0.4963 (2)0.0552 (5)
H5A0.29080.80970.54210.066*
H5B0.14280.89520.49220.066*
C60.1036 (2)0.6880 (2)0.58154 (18)0.0464 (4)
H6A0.01410.69200.53910.056*
C70.0497 (3)0.5880 (3)0.8280 (3)0.0899 (9)
H7A0.08810.60780.91850.135*
H7B0.02190.50500.83410.135*
H7D0.13860.57320.79560.135*
C80.0711 (3)0.8397 (3)0.7322 (3)0.0774 (7)
H8B0.10920.84850.82700.116*
H8E0.16030.83540.69530.116*
H8C0.01240.91940.67670.116*
N10.03619 (19)0.70824 (19)0.72858 (16)0.0540 (4)
H1D0.12080.71740.76140.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0377 (10)0.0291 (9)0.0329 (9)0.0001 (8)0.0099 (8)0.0021 (7)
B20.0364 (10)0.0328 (10)0.0367 (10)0.0043 (8)0.0081 (8)0.0027 (8)
B30.0345 (9)0.0252 (8)0.0286 (9)0.0013 (7)0.0110 (7)0.0038 (7)
B40.0346 (9)0.0268 (9)0.0308 (9)0.0004 (7)0.0100 (7)0.0050 (7)
B50.0318 (9)0.0298 (9)0.0316 (9)0.0026 (7)0.0096 (7)0.0075 (7)
O10.0515 (8)0.0430 (7)0.0336 (6)0.0102 (6)0.0047 (5)0.0038 (5)
O20.0495 (8)0.0379 (7)0.0381 (7)0.0151 (5)0.0026 (5)0.0048 (5)
O30.0515 (8)0.0468 (8)0.0467 (7)0.0198 (6)0.0006 (6)0.0008 (6)
O40.0361 (6)0.0325 (6)0.0319 (6)0.0059 (5)0.0056 (5)0.0010 (5)
O50.0364 (6)0.0296 (6)0.0284 (6)0.0036 (4)0.0073 (4)0.0037 (4)
O60.0422 (6)0.0247 (5)0.0361 (6)0.0024 (5)0.0179 (5)0.0062 (4)
O70.0372 (6)0.0274 (6)0.0370 (6)0.0002 (5)0.0177 (5)0.0037 (4)
O80.0540 (8)0.0337 (6)0.0605 (8)0.0078 (5)0.0354 (6)0.0155 (5)
O90.0439 (7)0.0248 (6)0.0496 (7)0.0050 (5)0.0261 (5)0.0076 (5)
O100.0546 (8)0.0262 (6)0.0614 (8)0.0016 (5)0.0320 (6)0.0036 (5)
C20.130 (2)0.0621 (16)0.0858 (19)0.0030 (16)0.0256 (18)0.0321 (14)
C10.0910 (19)0.101 (2)0.0638 (15)0.0082 (16)0.0015 (14)0.0295 (15)
C40.0907 (17)0.0440 (12)0.0684 (15)0.0043 (11)0.0254 (13)0.0035 (10)
C30.0751 (15)0.0731 (15)0.0487 (12)0.0154 (12)0.0111 (11)0.0032 (11)
C50.0682 (13)0.0471 (11)0.0508 (11)0.0127 (10)0.0154 (10)0.0073 (9)
C60.0485 (11)0.0532 (11)0.0407 (10)0.0104 (9)0.0183 (8)0.0055 (8)
C70.0835 (18)0.125 (2)0.0532 (14)0.0480 (17)0.0113 (13)0.0068 (14)
C80.0516 (13)0.110 (2)0.0765 (16)0.0118 (13)0.0205 (12)0.0362 (15)
N10.0436 (9)0.0767 (12)0.0442 (9)0.0127 (8)0.0178 (7)0.0071 (8)
Geometric parameters (Å, º) top
B1—O11.350 (2)C1—C31.492 (4)
B1—O51.3552 (19)C1—H1B0.9700
B1—O21.377 (2)C1—H1C0.9700
B2—O31.341 (2)C4—C61.500 (3)
B2—O41.357 (2)C4—H4A0.9700
B2—O21.375 (2)C4—H4B0.9700
B3—O41.452 (2)C3—C51.513 (3)
B3—O51.4651 (19)C3—H3B0.9700
B3—O61.469 (2)C3—H3C0.9700
B3—O71.473 (2)C5—C61.510 (3)
B4—O101.346 (2)C5—H5A0.9700
B4—O71.3491 (19)C5—H5B0.9700
B4—O91.387 (2)C6—N11.517 (2)
B5—O81.343 (2)C6—H6A0.9800
B5—O61.3439 (19)C7—N11.484 (3)
B5—O91.388 (2)C7—H7A0.9600
O1—H1A0.8200C7—H7B0.9600
O3—H3A0.8200C7—H7D0.9600
O8—H8A0.8200C8—N11.497 (3)
O10—H10A0.8200C8—H8B0.9600
C2—C11.506 (4)C8—H8E0.9600
C2—C41.510 (3)C8—H8C0.9600
C2—H2A0.9700N1—H1D0.9100
C2—H2B0.9700
O1—B1—O5122.22 (15)C6—C4—H4A109.5
O1—B1—O2117.10 (14)C2—C4—H4A109.5
O5—B1—O2120.66 (14)C6—C4—H4B109.5
O3—B2—O4121.91 (16)C2—C4—H4B109.5
O3—B2—O2117.92 (15)H4A—C4—H4B108.1
O4—B2—O2120.14 (15)C1—C3—C5111.33 (19)
O4—B3—O5111.21 (12)C1—C3—H3B109.4
O4—B3—O6108.43 (12)C5—C3—H3B109.4
O5—B3—O6109.57 (13)C1—C3—H3C109.4
O4—B3—O7108.58 (13)C5—C3—H3C109.4
O5—B3—O7108.76 (12)H3B—C3—H3C108.0
O6—B3—O7110.28 (12)C6—C5—C3112.21 (17)
O10—B4—O7118.13 (15)C6—C5—H5A109.2
O10—B4—O9121.04 (14)C3—C5—H5A109.2
O7—B4—O9120.83 (14)C6—C5—H5B109.2
O8—B5—O6123.78 (14)C3—C5—H5B109.2
O8—B5—O9115.84 (14)H5A—C5—H5B107.9
O6—B5—O9120.38 (14)C4—C6—C5110.93 (18)
B1—O1—H1A109.5C4—C6—N1111.82 (15)
B2—O2—B1119.89 (13)C5—C6—N1109.11 (15)
B2—O3—H3A109.5C4—C6—H6A108.3
B2—O4—B3123.53 (13)C5—C6—H6A108.3
B1—O5—B3123.25 (13)N1—C6—H6A108.3
B5—O6—B3124.60 (12)N1—C7—H7A109.5
B4—O7—B3123.84 (12)N1—C7—H7B109.5
B5—O8—H8A109.5H7A—C7—H7B109.5
B4—O9—B5119.28 (12)N1—C7—H7D109.5
B4—O10—H10A109.5H7A—C7—H7D109.5
C1—C2—C4112.3 (2)H7B—C7—H7D109.5
C1—C2—H2A109.1N1—C8—H8B109.5
C4—C2—H2A109.1N1—C8—H8E109.5
C1—C2—H2B109.1H8B—C8—H8E109.5
C4—C2—H2B109.1N1—C8—H8C109.5
H2A—C2—H2B107.9H8B—C8—H8C109.5
C3—C1—C2110.5 (2)H8E—C8—H8C109.5
C3—C1—H1B109.6C7—N1—C8108.9 (2)
C2—C1—H1B109.6C7—N1—C6114.16 (19)
C3—C1—H1C109.6C8—N1—C6112.63 (16)
C2—C1—H1C109.6C7—N1—H1D106.9
H1B—C1—H1C108.1C8—N1—H1D106.9
C6—C4—C2110.61 (18)C6—N1—H1D106.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.821.962.7759 (16)174
O3—H3A···O4ii0.821.992.8143 (16)178
O8—H8A···O6iii0.821.962.7816 (15)179
O10—H10A···O9iv0.822.032.8477 (15)178
N1—H1D···O70.911.942.8368 (18)169
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H18N+·B5H4O10
Mr346.32
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.6971 (4), 9.8990 (2), 10.2300 (3)
α, β, γ (°)74.591 (3), 74.442 (2), 82.190 (5)
V3)815.98 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.45 × 0.45 × 0.45
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
6623, 3318, 2536
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.08
No. of reflections3318
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
B1—O11.350 (2)B3—O61.469 (2)
B1—O51.3552 (19)B3—O71.473 (2)
B1—O21.377 (2)B4—O101.346 (2)
B2—O31.341 (2)B4—O71.3491 (19)
B2—O41.357 (2)B4—O91.387 (2)
B2—O21.375 (2)B5—O81.343 (2)
B3—O41.452 (2)B5—O61.3439 (19)
B3—O51.4651 (19)B5—O91.388 (2)
O1—B1—O5122.22 (15)O4—B3—O7108.58 (13)
O1—B1—O2117.10 (14)O5—B3—O7108.76 (12)
O5—B1—O2120.66 (14)O6—B3—O7110.28 (12)
O3—B2—O4121.91 (16)O10—B4—O7118.13 (15)
O3—B2—O2117.92 (15)O10—B4—O9121.04 (14)
O4—B2—O2120.14 (15)O7—B4—O9120.83 (14)
O4—B3—O5111.21 (12)O8—B5—O6123.78 (14)
O4—B3—O6108.43 (12)O8—B5—O9115.84 (14)
O5—B3—O6109.57 (13)O6—B5—O9120.38 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.821.962.7759 (16)173.5
O3—H3A···O4ii0.821.992.8143 (16)177.6
O8—H8A···O6iii0.821.962.7816 (15)178.9
O10—H10A···O9iv0.822.032.8477 (15)177.6
N1—H1D···O70.911.942.8368 (18)169.2
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the Qingdao University Research Fund (No. 063–06300522).

References

First citationBatsanov, A. S., Nava, E. H., Struchkov, T. & Akimov, V. M. (1982). Cryst. Struct. Commun. 11, 1629–1631.  CAS Google Scholar
First citationBruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131–1151.  CAS Google Scholar
First citationChen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324.  CrossRef CAS Web of Science Google Scholar
First citationGrice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–761.  CAS Google Scholar
First citationLiu, Z. H. & Li, L. Q. (2006). Cryst. Growth Des. 6, 1247–1249.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem. 45, 1430-1432.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250–2251.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar
First citationWang, G. M., Li, J. H., Huang, H. L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039–5041.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G. M., Li, J. H., Li, Z. X., Huang, H. L., Xue, S. Y. & Liu, H. L. (2008b). Inorg. Chem. 47, 1270–1272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G. M., Sun, Y. Q. & Yang, G. Y. (2004). J. Solid State Chem. 177, 4648–4654.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1269-m1270
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds