Download citation
Download citation
link to html
Erbium dinickel disilicide, ErNi2Si2, crystallizes in the tetra­gonal ThCr2Si2 structure type, which is an ordered superstucture of the BaAl4 type. The coordination numbers are 22 for Er (2a site), 12 for Ni (4d site), and 9 for Si (4e site).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806044825/mg2006sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806044825/mg2006Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](i-Si)= 0.004 Å
  • R factor = 0.014
  • wR factor = 0.036
  • Data-to-parameter ratio = 10.9

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Erbium dinickel disilicon top
Crystal data top
ErNi2Si2Dx = 7.629 Mg m3
Mr = 340.86Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 584 reflections
Hall symbol: -I 4 2θ = 4.2–30.1°
a = 3.9431 (9) ŵ = 41.06 mm1
c = 9.543 (2) ÅT = 295 K
V = 148.37 (6) Å3Needle, metallic light grey
Z = 20.17 × 0.05 × 0.02 mm
F(000) = 304
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
87 independent reflections
Radiation source: fine-focus sealed tube87 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 30.1°, θmin = 4.3°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2005)
h = 45
Tmin = 0.094, Tmax = 0.432k = 53
603 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0158P)2 + 2.224P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.26Δρmax = 0.63 e Å3
87 reflectionsΔρmin = 1.35 e Å3
8 parametersExtinction correction: SHELXL97 (Sheldrick, 1997)
0 restraintsExtinction coefficient: 0.0042 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er0.00000.00000.00000.00408 (19)
Ni0.00000.50000.25000.0063 (3)
Si0.00000.00000.3745 (3)0.0056 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er0.0034 (2)0.0034 (2)0.0055 (3)0.0000.0000.000
Ni0.0059 (4)0.0059 (4)0.0070 (5)0.0000.0000.000
Si0.0050 (7)0.0050 (7)0.0068 (10)0.0000.0000.000
Geometric parameters (Å, º) top
Er—Sii3.0344 (11)Ni—Nixi2.7882 (6)
Er—Siii3.0344 (11)Ni—Niv2.7882 (6)
Er—Siiii3.0344 (11)Ni—Nixii2.7882 (6)
Er—Siiv3.0344 (11)Ni—Nii2.7882 (6)
Er—Siv3.0344 (11)Ni—Erxiii3.0950 (5)
Er—Sivi3.0344 (11)Ni—Erx3.0950 (5)
Er—Sivii3.0344 (11)Ni—Erxiv3.0950 (5)
Er—Siviii3.0344 (11)Si—Niv2.3020 (13)
Er—Ni3.0950 (5)Si—Nixv2.3020 (13)
Er—Niix3.0950 (5)Si—Nii2.3020 (13)
Er—Niii3.0950 (5)Si—Sixvi2.395 (5)
Er—Nii3.0950 (5)Si—Erxiii3.0344 (11)
Ni—Siv2.3020 (13)Si—Erxvii3.0344 (11)
Ni—Six2.3020 (13)Si—Erxiv3.0344 (11)
Ni—Sii2.3020 (13)Si—Erxviii3.0344 (11)
Ni—Si2.3020 (13)
Sii—Er—Siii180.00 (9)Si—Ni—Nixii127.27 (2)
Sii—Er—Siiii133.52 (9)Nixi—Ni—Nixii90.0
Siii—Er—Siiii46.48 (9)Niv—Ni—Nixii90.0
Sii—Er—Siiv46.48 (9)Siv—Ni—Nii127.27 (2)
Siii—Er—Siiv133.52 (9)Six—Ni—Nii127.27 (2)
Siiii—Er—Siiv180.0Sii—Ni—Nii52.73 (2)
Sii—Er—Siv81.04 (3)Si—Ni—Nii52.73 (2)
Siii—Er—Siv98.96 (3)Nixi—Ni—Nii90.0
Siiii—Er—Siv81.04 (3)Niv—Ni—Nii90.0
Siiv—Er—Siv98.96 (3)Nixii—Ni—Nii180.0
Sii—Er—Sivi81.04 (3)Siv—Ni—Er66.55 (4)
Siii—Er—Sivi98.96 (3)Six—Ni—Er160.65 (5)
Siiii—Er—Sivi81.04 (3)Sii—Ni—Er66.55 (4)
Siiv—Er—Sivi98.96 (3)Si—Ni—Er81.51 (6)
Siv—Er—Sivi133.52 (9)Nixi—Ni—Er116.772 (6)
Sii—Er—Sivii98.96 (3)Niv—Ni—Er63.228 (6)
Siii—Er—Sivii81.04 (3)Nixii—Ni—Er116.772 (6)
Siiii—Er—Sivii98.96 (3)Nii—Ni—Er63.228 (6)
Siiv—Er—Sivii81.04 (3)Siv—Ni—Erxiii160.65 (5)
Siv—Er—Sivii46.48 (9)Six—Ni—Erxiii66.55 (4)
Sivi—Er—Sivii180.0Sii—Ni—Erxiii81.51 (6)
Sii—Er—Siviii98.96 (3)Si—Ni—Erxiii66.55 (4)
Siii—Er—Siviii81.04 (3)Nixi—Ni—Erxiii63.228 (6)
Siiii—Er—Siviii98.96 (3)Niv—Ni—Erxiii116.772 (6)
Siiv—Er—Siviii81.04 (3)Nixii—Ni—Erxiii116.772 (6)
Siv—Er—Siviii180.0Nii—Ni—Erxiii63.228 (6)
Sivi—Er—Siviii46.48 (9)Er—Ni—Erxiii126.456 (12)
Sivii—Er—Siviii133.52 (9)Siv—Ni—Erx66.55 (4)
Sii—Er—Ni44.11 (3)Six—Ni—Erx81.51 (6)
Siii—Er—Ni135.89 (3)Sii—Ni—Erx66.55 (4)
Siiii—Er—Ni96.30 (4)Si—Ni—Erx160.65 (5)
Siiv—Er—Ni83.70 (4)Nixi—Ni—Erx63.228 (6)
Siv—Er—Ni44.11 (3)Niv—Ni—Erx116.772 (6)
Sivi—Er—Ni96.30 (4)Nixii—Ni—Erx63.228 (6)
Sivii—Er—Ni83.70 (4)Nii—Ni—Erx116.772 (6)
Siviii—Er—Ni135.89 (3)Er—Ni—Erx79.140 (19)
Sii—Er—Niix135.89 (3)Erxiii—Ni—Erx126.456 (12)
Siii—Er—Niix44.11 (3)Siv—Ni—Erxiv81.51 (6)
Siiii—Er—Niix83.70 (4)Six—Ni—Erxiv66.55 (4)
Siiv—Er—Niix96.30 (4)Sii—Ni—Erxiv160.65 (5)
Siv—Er—Niix135.89 (3)Si—Ni—Erxiv66.55 (4)
Sivi—Er—Niix83.70 (4)Nixi—Ni—Erxiv116.772 (6)
Sivii—Er—Niix96.30 (4)Niv—Ni—Erxiv63.228 (6)
Siviii—Er—Niix44.11 (3)Nixii—Ni—Erxiv63.228 (6)
Ni—Er—Niix180.0Nii—Ni—Erxiv116.772 (6)
Sii—Er—Niii135.89 (3)Er—Ni—Erxiv126.456 (12)
Siii—Er—Niii44.11 (3)Erxiii—Ni—Erxiv79.140 (19)
Siiii—Er—Niii83.70 (4)Erx—Ni—Erxiv126.456 (12)
Siiv—Er—Niii96.30 (4)Niv—Si—Nixv74.54 (5)
Siv—Er—Niii83.70 (4)Niv—Si—Nii117.84 (11)
Sivi—Er—Niii135.89 (3)Nixv—Si—Nii74.54 (5)
Sivii—Er—Niii44.11 (3)Niv—Si—Ni74.54 (5)
Siviii—Er—Niii96.30 (4)Nixv—Si—Ni117.84 (11)
Ni—Er—Niii126.456 (12)Nii—Si—Ni74.54 (5)
Niix—Er—Niii53.544 (12)Niv—Si—Sixvi121.08 (5)
Sii—Er—Nii44.11 (3)Nixv—Si—Sixvi121.08 (5)
Siii—Er—Nii135.89 (3)Nii—Si—Sixvi121.08 (5)
Siiii—Er—Nii96.30 (4)Ni—Si—Sixvi121.08 (5)
Siiv—Er—Nii83.70 (4)Niv—Si—Erxiii139.478 (16)
Siv—Er—Nii96.30 (4)Nixv—Si—Erxiii139.478 (16)
Sivi—Er—Nii44.11 (3)Nii—Si—Erxiii69.344 (13)
Sivii—Er—Nii135.89 (3)Ni—Si—Erxiii69.344 (13)
Siviii—Er—Nii83.70 (4)Sixvi—Si—Erxiii66.76 (4)
Ni—Er—Nii53.544 (12)Niv—Si—Erxvii69.344 (13)
Niix—Er—Nii126.456 (12)Nixv—Si—Erxvii69.344 (13)
Niii—Er—Nii180.0Nii—Si—Erxvii139.478 (16)
Siv—Ni—Six105.46 (5)Ni—Si—Erxvii139.478 (16)
Siv—Ni—Sii117.84 (11)Sixvi—Si—Erxvii66.76 (4)
Six—Ni—Sii105.46 (5)Erxiii—Si—Erxvii133.52 (9)
Siv—Ni—Si105.46 (5)Niv—Si—Erxiv69.344 (13)
Six—Ni—Si117.84 (11)Nixv—Si—Erxiv139.478 (16)
Sii—Ni—Si105.46 (5)Nii—Si—Erxiv139.478 (16)
Siv—Ni—Nixi127.27 (2)Ni—Si—Erxiv69.344 (13)
Six—Ni—Nixi52.73 (2)Sixvi—Si—Erxiv66.76 (4)
Sii—Ni—Nixi52.73 (2)Erxiii—Si—Erxiv81.04 (3)
Si—Ni—Nixi127.27 (2)Erxvii—Si—Erxiv81.04 (3)
Siv—Ni—Niv52.73 (2)Niv—Si—Erxviii139.478 (16)
Six—Ni—Niv127.27 (2)Nixv—Si—Erxviii69.344 (13)
Sii—Ni—Niv127.27 (2)Nii—Si—Erxviii69.344 (13)
Si—Ni—Niv52.73 (2)Ni—Si—Erxviii139.478 (16)
Nixi—Ni—Niv180.0Sixvi—Si—Erxviii66.76 (4)
Siv—Ni—Nixii52.73 (2)Erxiii—Si—Erxviii81.04 (3)
Six—Ni—Nixii52.73 (2)Erxvii—Si—Erxviii81.04 (3)
Sii—Ni—Nixii127.27 (2)Erxiv—Si—Erxviii133.52 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z1/2; (viii) x+1/2, y1/2, z1/2; (ix) x, y, z; (x) x, y+1, z; (xi) x+1/2, y+3/2, z+1/2; (xii) x1/2, y+3/2, z+1/2; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x1/2, y+1/2, z+1/2; (xv) x, y1, z; (xvi) x, y, z+1; (xvii) x1/2, y1/2, z+1/2; (xviii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds