Download citation
Download citation
link to html
A new triple molybdate, Rb2Ag1+3xIn1–x(MoO4)3 (0 ≤ x ≤ 0.02), was found in the course of a study of the system Rb2MoO4–Ag2MoO4–In2(MoO4)3 and was synthesized as both powders and single crystals by solid-state reactions and spontaneous crystallization from melts. The structure of Rb2Ag1+3xIn1–x(MoO4)3 (x ≈ 0.004) is of a new type crystallizing in the centrosymmetric space group R\overline{3}c [a = 10.3982 (9), c = 38.858 (4) Å, Z = 12 and R = 0.0225] and contains (In,Ag)O6 octa­hedra and distorted Ag1O6 trigonal prisms linked by common faces to form [Ag(In,Ag)O9] dimers connected to each other via MoO4 tetra­hedra into an open three-dimensional (3D) framework. Between two adjacent [Ag(In,Ag)O9] dimers along the c axis, an extra Ag2O6 trigonal prism with about 1% occupancy was found. The Ag1O6 and Ag2O6 prisms are located at levels of z ≈ 1/12, 1/4, 5/12, 7/12, 3/4 and 11/12, and can facilitate two-dimensional ionic conductivity. The 12-coordinate Rb atoms are in the framework cavities. The structure of Rb2AgIn(MoO4)3 is a member of the series of rhombohedral 3D framework molybdate structure types with a ≈ 9–10 Å and long c axes, which contain rods of face-shared filled and empty coordination polyhedra around threefold axes. Electrical conductivity of ceramics is measured by impedance spectroscopy. Rb2AgIn(MoO4)3 undergoes a `blurred' first-order phase transition at 535 K with increasing electrical conductivity up to 1.1 × 10−2 S cm−1 at 720 K. Thus, the compound may be of inter­est for developing new materials with high ionic conductivity at elevated temperatures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618014717/ly3077sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618014717/ly3077Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618014717/ly3077sup3.pdf
XRD data

CCDC reference: 1873827

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2008).

(I) top
Crystal data top
Ag1.01InMo3O12Rb2Dx = 4.787 Mg m3
Mr = 874.15Melting point: 831 K
Trigonal, R3c:HMo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3 2"cCell parameters from 12966 reflections
a = 10.3982 (15) Åθ = 3.9–30.6°
c = 38.858 (8) ŵ = 14.51 mm1
V = 3638.6 (13) Å3T = 293 K
Z = 12Fragment, colourless
F(000) = 47080.07 × 0.05 × 0.04 mm
Data collection top
Bruker–Nonius X8 APEX CCD
diffractometer
976 reflections with I > 2σ(I)
\ f scans, frame data integrationRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 30.6°, θmin = 3.9°
Tmin = 0.430, Tmax = 0.594h = 1414
12966 measured reflectionsk = 1414
1212 independent reflectionsl = 5155
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.002
S = 1.01Δρmax = 1.10 e Å3
1212 reflectionsΔρmin = 1.45 e Å3
63 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.000094 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.0000000.0000000.0000000.01629 (18)
Rb20.29504 (7)0.29504 (7)0.2500000.02853 (15)
Mo0.33406 (3)0.33038 (3)0.36161 (2)0.00961 (9)
Ag10.0000000.0000000.08654 (2)0.01801 (13)
Ag20.0000000.0000000.2500000.030 (18)*0.012 (2)
In0.0000000.0000000.32843 (2)0.00931 (11)0.9971 (6)
Ag30.0000000.0000000.32843 (2)0.00931 (11)0.0029 (6)
O10.3172 (3)0.4917 (3)0.37040 (7)0.0162 (5)
O20.3992 (3)0.3458 (3)0.32006 (7)0.0186 (5)
O30.1532 (3)0.1658 (3)0.36428 (6)0.0155 (5)
O40.4626 (3)0.3313 (3)0.39077 (7)0.0174 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0131 (2)0.0131 (2)0.0226 (5)0.00657 (12)0.0000.000
Rb20.0406 (3)0.0406 (3)0.0158 (3)0.0290 (3)0.00108 (10)0.00108 (10)
Mo0.00968 (15)0.00929 (15)0.00920 (16)0.00425 (11)0.00177 (9)0.00045 (9)
Ag10.02011 (18)0.02011 (18)0.0138 (3)0.01005 (9)0.0000.000
In0.00919 (14)0.00919 (14)0.0096 (2)0.00459 (7)0.0000.000
Ag30.00919 (14)0.00919 (14)0.0096 (2)0.00459 (7)0.0000.000
O10.0221 (13)0.0134 (12)0.0151 (13)0.0105 (11)0.0004 (10)0.0005 (9)
O20.0210 (13)0.0235 (13)0.0119 (13)0.0115 (11)0.0007 (10)0.0013 (10)
O30.0138 (12)0.0155 (12)0.0125 (12)0.0037 (10)0.0002 (9)0.0019 (9)
O40.0161 (12)0.0228 (13)0.0144 (13)0.0106 (11)0.0040 (9)0.0005 (10)
Geometric parameters (Å, º) top
Rb1—O2i2.895 (3)Mo—O21.727 (3)
Rb1—O2ii2.895 (3)Mo—O41.748 (2)
Rb1—O2iii2.895 (3)Mo—O11.804 (2)
Rb1—O2iv2.895 (3)Mo—O31.805 (2)
Rb1—O2v2.895 (3)Ag1—O4vi2.396 (2)
Rb1—O2vi2.895 (3)Ag1—O4ii2.396 (2)
Rb1—O4v3.072 (3)Ag1—O4iv2.396 (2)
Rb1—O4vi3.072 (3)Ag1—O3vii2.533 (2)
Rb1—O4i3.073 (3)Ag1—O3xiv2.533 (2)
Rb1—O4ii3.073 (3)Ag1—O3xv2.533 (2)
Rb1—O4iii3.073 (3)Ag2—O1viii2.503 (3)
Rb1—O4iv3.073 (3)Ag2—O1xvi2.503 (3)
Rb2—O2vii2.880 (3)Ag2—O1xvii2.503 (3)
Rb2—O22.880 (3)Ag2—O1x2.503 (3)
Rb2—O1viii3.095 (3)Ag2—O1xi2.503 (3)
Rb2—O1ix3.095 (3)Ag2—Invii3.0473 (7)
Rb2—O4x3.183 (3)Ag2—In3.0475 (8)
Rb2—O4xi3.183 (3)In—O1ix2.143 (2)
Rb2—O1xi3.336 (2)In—O1xvii2.143 (2)
Rb2—O1x3.336 (2)In—O1x2.143 (2)
Rb2—O4xii3.525 (3)In—O32.169 (2)
Rb2—O4xiii3.525 (3)In—O3xviii2.169 (2)
Rb2—O3ix3.565 (2)In—O3xix2.169 (2)
O2i—Rb1—O2ii180.00 (14)O1x—Rb2—O4xii108.52 (6)
O2i—Rb1—O2iii116.90 (3)O2vii—Rb2—O4xiii54.78 (7)
O2ii—Rb1—O2iii63.10 (3)O2—Rb2—O4xiii94.21 (7)
O2i—Rb1—O2iv63.10 (3)O1viii—Rb2—O4xiii126.13 (6)
O2ii—Rb1—O2iv116.90 (3)O1ix—Rb2—O4xiii128.05 (6)
O2iii—Rb1—O2iv180.00 (10)O4x—Rb2—O4xiii113.45 (3)
O2i—Rb1—O2v116.90 (3)O4xi—Rb2—O4xiii65.86 (8)
O2ii—Rb1—O2v63.10 (3)O1xi—Rb2—O4xiii108.52 (6)
O2iii—Rb1—O2v116.90 (3)O1x—Rb2—O4xiii159.60 (6)
O2iv—Rb1—O2v63.10 (3)O4xii—Rb2—O4xiii51.76 (8)
O2i—Rb1—O2vi63.10 (3)O2vii—Rb2—O3ix111.56 (7)
O2ii—Rb1—O2vi116.90 (3)O2—Rb2—O3ix63.79 (7)
O2iii—Rb1—O2vi63.10 (3)O1viii—Rb2—O3ix142.64 (6)
O2iv—Rb1—O2vi116.90 (3)O1ix—Rb2—O3ix51.89 (6)
O2v—Rb1—O2vi180.00 (14)O4x—Rb2—O3ix125.96 (6)
O2i—Rb1—O4v119.69 (7)O4xi—Rb2—O3ix53.92 (6)
O2ii—Rb1—O4v60.31 (7)O1xi—Rb2—O3ix91.00 (6)
O2iii—Rb1—O4v116.05 (7)O1x—Rb2—O3ix99.64 (6)
O2iv—Rb1—O4v63.95 (7)O4xii—Rb2—O3ix89.15 (6)
O2v—Rb1—O4v56.90 (7)O4xiii—Rb2—O3ix77.07 (6)
O2vi—Rb1—O4v123.10 (7)O2—Mo—O4110.01 (12)
O2i—Rb1—O4vi60.31 (7)O2—Mo—O1107.85 (12)
O2ii—Rb1—O4vi119.69 (7)O4—Mo—O1107.54 (11)
O2iii—Rb1—O4vi63.95 (7)O2—Mo—O3108.43 (12)
O2iv—Rb1—O4vi116.05 (7)O4—Mo—O3113.53 (11)
O2v—Rb1—O4vi123.10 (7)O1—Mo—O3109.33 (11)
O2vi—Rb1—O4vi56.90 (7)O4vi—Ag1—O4ii99.53 (8)
O4v—Rb1—O4vi180.00 (16)O4vi—Ag1—O4iv99.53 (8)
O2i—Rb1—O4i56.89 (7)O4ii—Ag1—O4iv99.53 (8)
O2ii—Rb1—O4i123.11 (7)O4vi—Ag1—O3vii133.09 (8)
O2iii—Rb1—O4i119.69 (7)O4ii—Ag1—O3vii77.25 (8)
O2iv—Rb1—O4i60.31 (7)O4iv—Ag1—O3vii127.32 (8)
O2v—Rb1—O4i116.05 (7)O4vi—Ag1—O3xiv77.26 (8)
O2vi—Rb1—O4i63.95 (7)O4ii—Ag1—O3xiv127.32 (8)
O4v—Rb1—O4i73.07 (7)O4iv—Ag1—O3xiv133.09 (8)
O4vi—Rb1—O4i106.93 (7)O3vii—Ag1—O3xiv69.28 (9)
O2i—Rb1—O4ii123.11 (7)O4vi—Ag1—O3xv127.32 (8)
O2ii—Rb1—O4ii56.89 (7)O4ii—Ag1—O3xv133.09 (8)
O2iii—Rb1—O4ii60.31 (7)O4iv—Ag1—O3xv77.25 (8)
O2iv—Rb1—O4ii119.69 (7)O3vii—Ag1—O3xv69.28 (9)
O2v—Rb1—O4ii63.95 (7)O3xiv—Ag1—O3xv69.28 (9)
O2vi—Rb1—O4ii116.05 (7)O1ix—Ag2—O1viii133.22 (11)
O4v—Rb1—O4ii106.93 (7)O1ix—Ag2—O1xvi145.53 (11)
O4vi—Rb1—O4ii73.07 (7)O1viii—Ag2—O1xvi74.10 (9)
O4i—Rb1—O4ii180.00 (12)O1ix—Ag2—O1xvii74.10 (9)
O2i—Rb1—O4iii116.05 (7)O1viii—Ag2—O1xvii145.53 (11)
O2ii—Rb1—O4iii63.95 (7)O1xvi—Ag2—O1xvii92.21 (11)
O2iii—Rb1—O4iii56.89 (7)O1ix—Ag2—O1x74.10 (9)
O2iv—Rb1—O4iii123.11 (7)O1viii—Ag2—O1x92.21 (11)
O2v—Rb1—O4iii119.69 (7)O1xvi—Ag2—O1x133.22 (11)
O2vi—Rb1—O4iii60.31 (7)O1xvii—Ag2—O1x74.10 (9)
O4v—Rb1—O4iii73.07 (7)O1ix—Ag2—O1xi92.21 (11)
O4vi—Rb1—O4iii106.93 (7)O1viii—Ag2—O1xi74.10 (9)
O4i—Rb1—O4iii73.07 (7)O1xvi—Ag2—O1xi74.10 (9)
O4ii—Rb1—O4iii106.93 (7)O1xvii—Ag2—O1xi133.22 (11)
O2i—Rb1—O4iv63.95 (7)O1x—Ag2—O1xi145.53 (11)
O2ii—Rb1—O4iv116.05 (7)O1ix—In—O1xvii89.43 (10)
O2iii—Rb1—O4iv123.11 (7)O1ix—In—O1x89.43 (10)
O2iv—Rb1—O4iv56.89 (7)O1xvii—In—O1x89.43 (10)
O2v—Rb1—O4iv60.31 (7)O1ix—In—O389.15 (10)
O2vi—Rb1—O4iv119.69 (7)O1xvii—In—O3171.90 (9)
O4v—Rb1—O4iv106.93 (7)O1x—In—O398.53 (10)
O4vi—Rb1—O4iv73.07 (7)O1ix—In—O3xviii171.89 (9)
O4i—Rb1—O4iv106.93 (7)O1xvii—In—O3xviii98.53 (10)
O4ii—Rb1—O4iv73.07 (7)O1x—In—O3xviii89.15 (9)
O4iii—Rb1—O4iv180.00 (11)O3—In—O3xviii83.17 (10)
O2vii—Rb2—O2147.51 (11)O1ix—In—O3xix98.53 (10)
O2vii—Rb2—O1viii73.47 (7)O1xvii—In—O3xix89.15 (10)
O2—Rb2—O1viii131.26 (7)O1x—In—O3xix171.89 (9)
O2vii—Rb2—O1ix131.26 (7)O3—In—O3xix83.17 (10)
O2—Rb2—O1ix73.47 (7)O3xviii—In—O3xix83.17 (10)
O1viii—Rb2—O1ix95.84 (9)Mo—O1—Inix132.54 (14)
O2vii—Rb2—O4x117.11 (7)Mo—O1—Ag2ix144.02 (13)
O2—Rb2—O4x62.67 (7)Inix—O1—Ag2ix81.58 (8)
O1viii—Rb2—O4x75.49 (6)Mo—O1—Rb2ix104.00 (10)
O1ix—Rb2—O4x104.99 (6)Inix—O1—Rb2ix109.94 (9)
O2vii—Rb2—O4xi62.67 (7)Ag2ix—O1—Rb2ix65.47 (6)
O2—Rb2—O4xi117.11 (7)Mo—O1—Rb2xii95.18 (9)
O1viii—Rb2—O4xi104.99 (6)Inix—O1—Rb2xii102.02 (8)
O1ix—Rb2—O4xi75.49 (6)Ag2ix—O1—Rb2xii61.45 (5)
O4x—Rb2—O4xi179.31 (9)Rb2ix—O1—Rb2xii111.39 (8)
O2vii—Rb2—O1xi66.84 (7)Mo—O2—Rb2140.60 (13)
O2—Rb2—O1xi141.58 (7)Mo—O2—Rb1xx99.80 (11)
O1viii—Rb2—O1xi55.79 (8)Rb2—O2—Rb1xx116.23 (9)
O1ix—Rb2—O1xi68.13 (8)Mo—O3—In136.03 (13)
O4x—Rb2—O1xi128.52 (6)Mo—O3—Ag1vii133.73 (12)
O4xi—Rb2—O1xi52.10 (6)In—O3—Ag1vii88.95 (8)
O2vii—Rb2—O1x141.58 (7)Mo—O3—Rb2ix88.09 (8)
O2—Rb2—O1x66.83 (7)In—O3—Rb2ix120.70 (9)
O1viii—Rb2—O1x68.13 (8)Ag1vii—O3—Rb2ix72.08 (6)
O1ix—Rb2—O1x55.79 (8)Mo—O4—Ag1xx167.77 (14)
O4x—Rb2—O1x52.10 (6)Mo—O4—Rb1xx93.02 (10)
O4xi—Rb2—O1x128.52 (6)Ag1xx—O4—Rb1xx74.75 (7)
O1xi—Rb2—O1x91.56 (9)Mo—O4—Rb2xii101.83 (10)
O2vii—Rb2—O4xii94.21 (7)Ag1xx—O4—Rb2xii81.31 (7)
O2—Rb2—O4xii54.78 (7)Rb1xx—O4—Rb2xii103.19 (7)
O1viii—Rb2—O4xii128.05 (6)Mo—O4—Rb2x107.77 (10)
O1ix—Rb2—O4xii126.13 (6)Ag1xx—O4—Rb2x74.20 (6)
O4x—Rb2—O4xii65.86 (8)Rb1xx—O4—Rb2x95.75 (7)
O4xi—Rb2—O4xii113.45 (3)Rb2xii—O4—Rb2x143.76 (8)
O1xi—Rb2—O4xii159.60 (6)
Symmetry codes: (i) xy1/3, x2/3, z+1/3; (ii) x+y+1/3, x+2/3, z1/3; (iii) y1/3, x+y+1/3, z+1/3; (iv) y+1/3, xy1/3, z1/3; (v) x+2/3, y+1/3, z+1/3; (vi) x2/3, y1/3, z1/3; (vii) y, x, z+1/2; (viii) y+2/3, x+1/3, z1/6; (ix) x+1/3, y+2/3, z+2/3; (x) xy+1/3, x1/3, z+2/3; (xi) x1/3, xy+1/3, z1/6; (xii) y+1/3, x+y+2/3, z+2/3; (xiii) x+y+2/3, y+1/3, z1/6; (xiv) x, x+y, z+1/2; (xv) xy, y, z+1/2; (xvi) x+y1/3, y2/3, z1/6; (xvii) y2/3, x+y1/3, z+2/3; (xviii) x+y, x, z; (xix) y, xy, z; (xx) x+2/3, y+1/3, z+1/3.
Selected interatomic distances (Å) for Rb2Ag1+3xIn1-x(MoO4)3 top
Mo tetrahedronRb1 polyhedron
Mo—O21.727 (3)Rb1—O2iv2.894 (3) (× 6)
Mo—O41.748 (2)Rb1—O4iv3.073 (3) (× 6)
Mo—O11.805 (2)<Rb1—O>2.9835
Mo—O31.805 (2)
<Mo1—O>1.771Rb2 polyhedron
Rb2—O22.880 (3) (× 2)
(In,Ag) octahedronRb2—O1i3.095 (3) (× 2)
In—O1i2.143 (2) (× 3)Rb2—O4v3.183 (3) (× 2)
In—O32.169 (2) (× 6)Rb2—O1v3.335 (3) (× 2)
<(In,Ag)—O>2.156Rb2—O4vi3.525 (3) (× 2)
Rb2—O3i3.565 (2) (× 2)
Ag1 trigonal prism<Rb2—O>3.236
Ag1—O4ii2.396 (2) (× 3)
Ag1—O3iii2.533 (2) (× 3)Shortest cation–cation distances
<Ag1—O>2.465(In,Ag)—Ag23.0474 (7)
Ag2—Rb23.0677 (9)
Ag2 trigonal prism(In,Ag)—Ag1iii3.3043 (9)
Ag2—O1i2.503 (3) (× 6)
Symmetry codes: (i) -x+1/3, -y+2/3, -z+2/3; (ii) x-2/3, y-1/3, z-1/3; (iii) y, x, -z+1/2; (iv) -x+2/3, -y+1/3, -z+1/3; (v) x-y+1/3, x-1/3, -z+2/3; (vi) y+1/3, -x+y+2/3, -z+2/3.
Rhombohedral structure types of complex molybdates and related compounds with a ~ 9–10 Å and long c periods top
StructureSpace groupZa (Å)c (Å)Polyhedral rod
Ba9Sc2(SiO4)6aR339.87221.938···BaO12–ScO6–BaO9squareO6···
Na0.625Zn0.625Sc1.375(MoO4)3bR3c69.52623.392···NaO6–(Sc,Zn)O6–[squareO6](p)···
Cs7Na5Yb2(MoO4)9cR32310.51136.358···[NaO6](p)–CsO9–CsO9–NaO6(p)–YbO6
K5(Mg0.5Zr1.5)(MoO4)6dR3c610.57637.511···(Zr,Mg)O6–KO9–squareO6(p)–(Zr,Mg)O6–squareO6(p)–KO9–(Zr,Mg)O6···
K5Pb0.5Hf1.5(MoO4)6eR3610.73937.933···HfO6–squareO6(p)–KO9–HfO6–KO12–PbO6···
Rb2Ag1+3xIn1?x(MoO4)3fR3c1210.39838.858···RbO12–AgO6(p)–(In,Ag)O6–[square,AgO6](p)···
Cs2NaBi(MoO4)3gR3c1210.64440.952···CsO12–squareO6(p)–BiO6–NaO6(p)–BiO6–NaO6(p)–CsO12···
Ca3(VO4)2hR3c2110.80938.028···PO4–(Ca0.5square0.5)O12–squareO6–CaO6–squareO10–PO4···
Nd2Zr3(MoO4)9iR3c69.80458.467···ZrO6–squareO6(p)–ZrO6–squareO6(p)–NdO9–[squareO6](p)···
References: (a) Wang et al. (1994); (b) Lazoryak & Efremov (1987) (NASICON type); (c) Basovich et al. (2011); (d) Klevtsova et al. (1994); (e) Bazarov et al. (2005); (f) this work; (g) Savina et al. (2015); (h) Gopal & Calvo (1973) (isostructural with β-Ca3(VO4)2 and whitlokite); (i) Klevtsova et al. (2000).

Independent parts of the polyhedral rods are shown. Centrosymmetric polyhedra are underlined, polyhedra on twofold axes are in square brackets, trigonal prisms are marked with the letter p.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds