Download citation
Download citation
link to html
Two new compounds, namely cubic tricaesium lithium dizinc tetra­kis­(tetra­oxotungstate), Cs3LiZn2(WO4)4, and tetra­gonal trirubidium dilithium gallium tetra­kis­(tetra­oxomolybdate), Rb3Li2Ga(MoO4)4, belong to the structural family of Cs6Zn5(MoO4)8 (space group I\overline{4}3d, Z = 4), with a partially incomplete (Zn5/61/6) position. In Cs3LiZn2(WO4)4, this position is fully statistically occupied by (Zn2/3Li1/3), and in Rb3Li2Ga(MoO4)4, the 2Li + Ga atoms are completely ordered in two distinct sites of the space group I\overline{4}2d (Z = 4). In the same way, the crystallographically equivalent A+ cations (A = Cs, Rb) in Cs6Zn5(MoO4)8, Cs3LiZn2(WO4)4 and isostructural A3LiZn2(MoO4)4 and Cs3LiCo2(MoO4)4 are divided into two sites in Rb3Li2Ga(MoO4)4, as in other isostructural A3Li2R(MoO4)4 compounds (AR = TlAl, RbAl, CsAl, CsGa, CsFe). In the title structures, the WO4 and (Zn,Li)O4 or LiO4, GaO4 and MoO4 tetra­hedra share corners to form open three-dimensional frameworks with the caesium or rubidium ions occupying cubocta­hedral cavities. The tetra­hedral frameworks are related to that of mayenite 12CaO·7Al2O3 and isotypic compounds. Comparison of isostructural Cs3MZn2(MoO4)4 (M = Li, Na, Ag) and Cs6Zn5(MoO4)8 shows a decrease of the cubic lattice parameter and an increase in thermal stability with the filling of the vacancies by Li+ in the Zn position of the Cs6Zn5(MoO4)8 structure, while filling of the cation vacancies by larger Na+ or Ag+ ions plays a destabilizing role. The series A3Li2R(MoO4)4 shows second harmonic generation effects compatible with that of β′-Gd2(MoO4)3 and may be considered as nonlinear optical materials with a modest nonlinearity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961701378X/ly3054sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961701378X/ly3054Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961701378X/ly3054IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961701378X/ly3054sup4.pdf
Atomic coordinates

CCDC references: 1576374; 1576373

Computing details top

For both structures, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Tricaesium lithium dizinc tetrakis(tetraoxotungstate) (I) top
Crystal data top
Cs3LiZn2(WO4)4Melting point: 1003 K
Mr = 1527.81Mo Kα radiation, λ = 0.71073 Å
Cubic, I43dCell parameters from 9302 reflections
Hall symbol: I -4bd 2c 3θ = 4.1–29.9°
a = 12.2643 (1) ŵ = 33.30 mm1
V = 1844.71 (3) Å3T = 296 K
Z = 4Fragment, colourless
F(000) = 26080.16 × 0.10 × 0.08 mm
Dx = 5.501 Mg m3
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
453 independent reflections
Radiation source: fine-focus sealed tube450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 25 pixels mm-1θmax = 29.9°, θmin = 4.1°
φ and ω scansh = 1317
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.076, Tmax = 0.176l = 1517
9302 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.P)2 + 21.4403P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.035Δρmax = 0.92 e Å3
S = 1.39Δρmin = 0.84 e Å3
453 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 parametersExtinction coefficient: 0.00030 (3)
0 restraintsAbsolute structure: Flack (1983), ??? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.033 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs0.87500.00000.25000.0280 (2)
W0.40026 (2)0.40026 (2)0.40026 (2)0.01296 (11)
Zn0.37500.00000.25000.0154 (4)0.67
Li0.37500.00000.25000.0154 (4)0.33
O10.3185 (4)0.3185 (4)0.3185 (4)0.028 (2)
O20.5312 (4)0.4081 (4)0.3375 (4)0.0238 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.0193 (4)0.0324 (3)0.0324 (3)0.0000.0000.000
W0.01296 (11)0.01296 (11)0.01296 (11)0.00285 (8)0.00285 (8)0.00285 (8)
Zn0.0084 (9)0.0188 (6)0.0188 (6)0.0000.0000.000
Li0.0084 (9)0.0188 (6)0.0188 (6)0.0000.0000.000
O10.028 (2)0.028 (2)0.028 (2)0.002 (2)0.002 (2)0.002 (2)
O20.019 (2)0.023 (2)0.029 (3)0.0057 (19)0.0084 (19)0.000 (2)
Geometric parameters (Å, º) top
Cs—O2i3.271 (5)W—Csxvii4.4711 (3)
Cs—O2ii3.271 (5)W—Csxviii4.4711 (3)
Cs—O2iii3.271 (5)W—Csxix4.4711 (3)
Cs—O2iv3.271 (5)Zn—O2viii1.935 (5)
Cs—O1v3.3604 (15)Zn—O2v1.935 (5)
Cs—O1vi3.3604 (15)Zn—O2xx1.935 (5)
Cs—O1vii3.3604 (15)Zn—O2xxi1.935 (5)
Cs—O1viii3.3604 (15)Zn—Csxxii3.7552
Cs—O2ix3.367 (5)Zn—Csxv3.7552
Cs—O2x3.367 (5)Zn—Csxvi3.7552
Cs—O2xi3.367 (5)Zn—Csx3.7552
Cs—O2xii3.367 (5)O1—Csxv3.3604 (15)
W—O11.737 (9)O1—Csviii3.3604 (15)
W—O2xiii1.783 (4)O1—Csxvi3.3604 (15)
W—O21.783 (4)O2—Liviii1.935 (5)
W—O2xiv1.783 (4)O2—Znviii1.935 (5)
W—Csviii4.0359 (2)O2—Csxv3.271 (5)
W—Csxv4.0359 (2)O2—Csxix3.367 (5)
W—Csxvi4.0359 (2)
O2i—Cs—O2ii129.41 (11)O2—W—Csxv52.48 (16)
O2i—Cs—O2iii74.35 (18)O2xiv—W—Csxv125.97 (17)
O2ii—Cs—O2iii129.41 (11)Csviii—W—Csxv90.572 (7)
O2i—Cs—O2iv129.41 (11)O1—W—Csxvi55.141 (5)
O2ii—Cs—O2iv74.35 (18)O2xiii—W—Csxvi52.48 (16)
O2iii—Cs—O2iv129.41 (11)O2—W—Csxvi125.97 (17)
O2i—Cs—O1v169.94 (8)O2xiv—W—Csxvi122.67 (17)
O2ii—Cs—O1v50.69 (16)Csviii—W—Csxvi90.572 (7)
O2iii—Cs—O1v98.09 (14)Csxv—W—Csxvi90.572 (7)
O2iv—Cs—O1v60.54 (9)O1—W—Csxvii132.209 (4)
O2i—Cs—O1vi60.54 (9)O2xiii—W—Csxvii42.09 (17)
O2ii—Cs—O1vi169.94 (8)O2—W—Csxvii117.48 (16)
O2iii—Cs—O1vi50.69 (16)O2xiv—W—Csxvii70.83 (16)
O2iv—Cs—O1vi98.09 (14)Csviii—W—Csxvii107.287 (1)
O1v—Cs—O1vi119.92 (11)Csxv—W—Csxvii161.508 (4)
O2i—Cs—O1vii50.69 (16)Csxvi—W—Csxvii84.632 (1)
O2ii—Cs—O1vii98.09 (14)O1—W—Csxviii132.209 (4)
O2iii—Cs—O1vii60.54 (9)O2xiii—W—Csxviii117.48 (16)
O2iv—Cs—O1vii169.94 (8)O2—W—Csxviii70.83 (16)
O1v—Cs—O1vii119.92 (11)O2xiv—W—Csxviii42.09 (17)
O1vi—Cs—O1vii90.15 (19)Csviii—W—Csxviii84.632 (1)
O2i—Cs—O1viii98.09 (14)Csxv—W—Csxviii107.287 (1)
O2ii—Cs—O1viii60.54 (9)Csxvi—W—Csxviii161.508 (4)
O2iii—Cs—O1viii169.94 (8)Csxvii—W—Csxviii79.803 (6)
O2iv—Cs—O1viii50.69 (16)O1—W—Csxix132.209 (4)
O1v—Cs—O1viii90.15 (19)O2xiii—W—Csxix70.83 (16)
O1vi—Cs—O1viii119.92 (11)O2—W—Csxix42.09 (17)
O1vii—Cs—O1viii119.92 (11)O2xiv—W—Csxix117.48 (16)
O2i—Cs—O2ix57.31 (15)Csviii—W—Csxix161.508 (4)
O2ii—Cs—O2ix119.97 (15)Csxv—W—Csxix84.632 (1)
O2iii—Cs—O2ix110.35 (10)Csxvi—W—Csxix107.287 (1)
O2iv—Cs—O2ix72.11 (8)Csxvii—W—Csxix79.803 (6)
O1v—Cs—O2ix132.57 (9)Csxviii—W—Csxix79.803 (6)
O1vi—Cs—O2ix62.27 (15)O2viii—Zn—O2v107.0 (3)
O1vii—Cs—O2ix107.14 (17)O2viii—Zn—O2xx110.70 (15)
O1viii—Cs—O2ix59.60 (8)O2v—Zn—O2xx110.70 (15)
O2i—Cs—O2x110.35 (10)O2viii—Zn—O2xxi110.70 (15)
O2ii—Cs—O2x72.11 (8)O2v—Zn—O2xxi110.70 (15)
O2iii—Cs—O2x57.31 (15)O2xx—Zn—O2xxi107.0 (3)
O2iv—Cs—O2x119.97 (15)O2viii—Zn—Csxxii158.95 (15)
O1v—Cs—O2x59.60 (8)O2v—Zn—Csxxii63.40 (15)
O1vi—Cs—O2x107.14 (17)O2xx—Zn—Csxxii90.35 (14)
O1vii—Cs—O2x62.27 (15)O2xxi—Zn—Csxxii60.56 (14)
O1viii—Cs—O2x132.57 (9)O2viii—Zn—Csxv60.56 (14)
O2ix—Cs—O2x166.13 (17)O2v—Zn—Csxv90.35 (14)
O2i—Cs—O2xi119.97 (15)O2xx—Zn—Csxv158.95 (15)
O2ii—Cs—O2xi110.35 (10)O2xxi—Zn—Csxv63.40 (15)
O2iii—Cs—O2xi72.11 (8)Csxxii—Zn—Csxv99.6
O2iv—Cs—O2xi57.31 (15)O2viii—Zn—Csxvi63.40 (15)
O1v—Cs—O2xi62.27 (15)O2v—Zn—Csxvi158.95 (15)
O1vi—Cs—O2xi59.60 (8)O2xx—Zn—Csxvi60.56 (14)
O1vii—Cs—O2xi132.57 (9)O2xxi—Zn—Csxvi90.35 (14)
O1viii—Cs—O2xi107.14 (17)Csxxii—Zn—Csxvi131.8
O2ix—Cs—O2xi90.84 (2)Csxv—Zn—Csxvi99.6
O2x—Cs—O2xi90.84 (2)O2viii—Zn—Csx90.35 (14)
O2i—Cs—O2xii72.11 (8)O2v—Zn—Csx60.56 (14)
O2ii—Cs—O2xii57.31 (15)O2xx—Zn—Csx63.40 (15)
O2iii—Cs—O2xii119.97 (15)O2xxi—Zn—Csx158.95 (15)
O2iv—Cs—O2xii110.35 (10)Csxxii—Zn—Csx99.6
O1v—Cs—O2xii107.14 (17)Csxv—Zn—Csx131.8
O1vi—Cs—O2xii132.57 (9)Csxvi—Zn—Csx99.6
O1vii—Cs—O2xii59.60 (8)W—O1—Csxv99.77 (15)
O1viii—Cs—O2xii62.27 (15)W—O1—Csviii99.77 (15)
O2ix—Cs—O2xii90.84 (2)Csxv—O1—Csviii117.18 (8)
O2x—Cs—O2xii90.84 (2)W—O1—Csxvi99.77 (15)
O2xi—Cs—O2xii166.13 (17)Csxv—O1—Csxvi117.18 (8)
O1—W—O2xiii107.59 (16)Csviii—O1—Csxvi117.18 (8)
O1—W—O2107.59 (16)W—O2—Liviii143.7 (3)
O2xiii—W—O2111.29 (14)W—O2—Znviii143.7 (3)
O1—W—O2xiv107.59 (16)Liviii—O2—Znviii0.0
O2xiii—W—O2xiv111.29 (14)W—O2—Csxv101.91 (19)
O2—W—O2xiv111.29 (14)Liviii—O2—Csxv88.43 (16)
O1—W—Csviii55.141 (5)Znviii—O2—Csxv88.43 (16)
O2xiii—W—Csviii125.97 (17)W—O2—Csxix117.1 (2)
O2—W—Csviii122.67 (17)Liviii—O2—Csxix85.68 (15)
O2xiv—W—Csviii52.48 (16)Znviii—O2—Csxix85.68 (15)
O1—W—Csxv55.141 (5)Csxv—O2—Csxix119.54 (14)
O2xiii—W—Csxv122.67 (17)
Symmetry codes: (i) z+3/4, y1/4, x1/4; (ii) z+1, x1/2, y+1/2; (iii) z+3/4, y+1/4, x+3/4; (iv) z+1, x+1/2, y; (v) x+1, y1/2, z+1/2; (vi) y+3/4, x+1/4, z+3/4; (vii) y+3/4, x1/4, z1/4; (viii) x+1, y+1/2, z; (ix) y+1/2, z+1/2, x+1; (x) y+1/2, z1/2, x1/2; (xi) y+5/4, x3/4, z+3/4; (xii) y+5/4, x+3/4, z1/4; (xiii) y, z, x; (xiv) z, x, y; (xv) y+1/2, z, x+1; (xvi) z, x+1, y+1/2; (xvii) x1/2, y+1/2, z+1/2; (xviii) y+1/2, z+1/2, x1/2; (xix) z+1/2, x1/2, y+1/2; (xx) x1/4, z+1/4, y+3/4; (xxi) x1/4, z1/4, y1/4; (xxii) z, x1, y.
Tricaesium dilithium gallium tetrakis(tetraoxomolybdate) (II) top
Crystal data top
Rb3Li2Ga(MoO4)4Dx = 3.888 Mg m3
Mr = 979.77Melting point: 833 K
Tetragonal, I42dMo Kα radiation, λ = 0.71073 Å
Hall symbol: I -4 2bwCell parameters from 9934 reflections
a = 11.8635 (3) Åθ = 2.4–36.4°
c = 11.8932 (4) ŵ = 13.25 mm1
V = 1673.88 (8) Å3T = 296 K
Z = 4Fragment, colourless
F(000) = 17760.08 × 0.07 × 0.07 mm
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
2024 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 25 pixels mm-1θmax = 36.4°, θmin = 2.4°
φ and ω scansh = 1910
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1919
Tmin = 0.417, Tmax = 0.457l = 1915
9934 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0249P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.63 e Å3
2024 reflectionsΔρmin = 0.84 e Å3
60 parametersAbsolute structure: Flack (1983), ??? Friedel pairs
0 restraintsAbsolute structure parameter: 0.004 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.00000.00000.00000.02889 (13)
Rb20.36464 (4)0.25000.12500.02726 (9)
Mo0.10403 (2)0.14339 (2)0.270940 (17)0.01532 (5)
Ga0.00000.00000.50000.01470 (10)
Li0.1246 (6)0.25000.12500.0178 (13)
O10.1000 (2)0.0759 (2)0.41104 (19)0.0234 (4)
O20.02987 (18)0.1486 (2)0.2095 (2)0.0250 (4)
O30.1896 (2)0.0633 (2)0.1856 (2)0.0270 (5)
O40.1636 (2)0.27782 (19)0.2786 (2)0.0262 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0347 (2)0.0347 (2)0.0172 (2)0.0000.0000.000
Rb20.02057 (18)0.0273 (2)0.0340 (2)0.0000.0000.00513 (16)
Mo0.01588 (9)0.01733 (10)0.01275 (8)0.00404 (8)0.00241 (7)0.00295 (7)
Ga0.01758 (15)0.01758 (15)0.0089 (2)0.0000.0000.000
Li0.017 (3)0.020 (3)0.017 (3)0.0000.0000.000 (2)
O10.0237 (9)0.0321 (11)0.0145 (8)0.0028 (9)0.0005 (8)0.0083 (8)
O20.0205 (9)0.0293 (11)0.0251 (10)0.0003 (8)0.0065 (8)0.0019 (9)
O30.0269 (11)0.0292 (12)0.0249 (11)0.0005 (9)0.0020 (9)0.0011 (9)
O40.0335 (12)0.0232 (10)0.0218 (10)0.0112 (9)0.0004 (9)0.0011 (8)
Geometric parameters (Å, º) top
Rb1—O2i3.073 (2)Mo—O41.746 (2)
Rb1—O23.073 (2)Mo—O21.750 (2)
Rb1—O2ii3.073 (2)Mo—O11.849 (2)
Rb1—O2iii3.073 (2)Mo—Rb2xiii3.9327 (5)
Rb1—O33.240 (3)Ga—O1ii1.827 (2)
Rb1—O3iii3.240 (3)Ga—O1xiv1.827 (2)
Rb1—O3i3.240 (3)Ga—O11.827 (2)
Rb1—O3ii3.240 (3)Ga—O1xv1.827 (2)
Rb1—O4iv3.291 (3)Ga—Rb2xvi3.6858 (2)
Rb1—O4v3.291 (3)Ga—Rb2xvii3.6858 (2)
Rb1—O4vi3.291 (3)Ga—Rb2xviii3.6858 (2)
Rb1—O4vii3.291 (3)Ga—Rb2xiii3.6858 (2)
Rb2—O4iv3.023 (3)Li—O4vii1.925 (5)
Rb2—O43.023 (3)Li—O4xviii1.925 (5)
Rb2—O1viii3.103 (2)Li—O2iv1.929 (5)
Rb2—O1ix3.103 (2)Li—O21.929 (5)
Rb2—O33.120 (2)Li—Rb2i3.592 (3)
Rb2—O3iv3.120 (2)Li—Rb2xviii3.592 (3)
Rb2—O2vi3.274 (2)Li—Rb1xix3.632 (3)
Rb2—O2x3.274 (2)O1—Rb2xiii3.103 (2)
Rb2—O1xi3.304 (2)O1—Rb2xvi3.304 (2)
Rb2—O1xii3.304 (2)O2—Rb2xviii3.274 (2)
Rb2—O3viii3.338 (3)O3—Rb2xiii3.338 (3)
Rb2—O3ix3.338 (3)O4—Lix1.925 (5)
Mo—O31.721 (3)O4—Rb1xix3.291 (3)
O2i—Rb1—O2131.10 (6)O2vi—Rb2—O3viii127.65 (6)
O2i—Rb1—O2ii131.10 (6)O2x—Rb2—O3viii57.12 (6)
O2—Rb1—O2ii71.65 (9)O1xi—Rb2—O3viii61.64 (6)
O2i—Rb1—O2iii71.65 (9)O1xii—Rb2—O3viii107.20 (6)
O2—Rb1—O2iii131.10 (6)O4iv—Rb2—O3ix97.25 (6)
O2ii—Rb1—O2iii131.10 (6)O4—Rb2—O3ix171.31 (6)
O2i—Rb1—O3167.85 (6)O1viii—Rb2—O3ix57.29 (6)
O2—Rb1—O352.73 (6)O1ix—Rb2—O3ix53.12 (6)
O2ii—Rb1—O360.03 (6)O3—Rb2—O3ix118.27 (6)
O2iii—Rb1—O397.32 (6)O3iv—Rb2—O3ix117.80 (6)
O2i—Rb1—O3iii60.03 (6)O2vi—Rb2—O3ix57.12 (6)
O2—Rb1—O3iii167.85 (6)O2x—Rb2—O3ix127.65 (6)
O2ii—Rb1—O3iii97.32 (6)O1xi—Rb2—O3ix107.20 (6)
O2iii—Rb1—O3iii52.73 (6)O1xii—Rb2—O3ix61.64 (6)
O3—Rb1—O3iii117.67 (5)O3viii—Rb2—O3ix90.15 (9)
O2i—Rb1—O3i52.73 (6)O3—Mo—O4107.22 (12)
O2—Rb1—O3i97.32 (6)O3—Mo—O2108.00 (12)
O2ii—Rb1—O3i167.85 (6)O4—Mo—O2110.88 (11)
O2iii—Rb1—O3i60.03 (6)O3—Mo—O1107.90 (12)
O3—Rb1—O3i117.67 (5)O4—Mo—O1111.04 (11)
O3iii—Rb1—O3i94.09 (9)O2—Mo—O1111.60 (11)
O2i—Rb1—O3ii97.32 (6)O3—Mo—Rb255.19 (8)
O2—Rb1—O3ii60.03 (6)O4—Mo—Rb252.06 (8)
O2ii—Rb1—O3ii52.73 (6)O2—Mo—Rb2122.76 (8)
O2iii—Rb1—O3ii167.85 (6)O1—Mo—Rb2125.61 (7)
O3—Rb1—O3ii94.09 (9)O3—Mo—Rb156.73 (9)
O3iii—Rb1—O3ii117.67 (5)O4—Mo—Rb1125.25 (8)
O3i—Rb1—O3ii117.67 (5)O2—Mo—Rb151.29 (8)
O2i—Rb1—O4iv110.30 (6)O1—Mo—Rb1123.70 (8)
O2—Rb1—O4iv72.07 (6)Rb2—Mo—Rb191.481 (5)
O2ii—Rb1—O4iv118.39 (6)O3—Mo—Rb2xiii57.43 (9)
O2iii—Rb1—O4iv59.04 (6)O4—Mo—Rb2xiii124.99 (9)
O3—Rb1—O4iv58.35 (6)O2—Mo—Rb2xiii124.13 (8)
O3iii—Rb1—O4iv110.42 (6)O1—Mo—Rb2xiii50.48 (7)
O3i—Rb1—O4iv60.68 (6)Rb2—Mo—Rb2xiii93.783 (7)
O3ii—Rb1—O4iv131.72 (6)Rb1—Mo—Rb2xiii91.893 (6)
O2i—Rb1—O4v59.04 (6)O1ii—Ga—O1xiv109.60 (8)
O2—Rb1—O4v118.39 (6)O1ii—Ga—O1109.21 (15)
O2ii—Rb1—O4v72.07 (6)O1xiv—Ga—O1109.60 (8)
O2iii—Rb1—O4v110.30 (6)O1ii—Ga—O1xv109.60 (8)
O3—Rb1—O4v131.72 (6)O1xiv—Ga—O1xv109.21 (15)
O3iii—Rb1—O4v60.68 (6)O1—Ga—O1xv109.60 (8)
O3i—Rb1—O4v110.42 (6)O1ii—Ga—Rb2xvi155.93 (8)
O3ii—Rb1—O4v58.35 (6)O1xiv—Ga—Rb2xvi57.21 (8)
O4iv—Rb1—O4v168.14 (9)O1—Ga—Rb2xvi63.53 (8)
O2i—Rb1—O4vi118.39 (6)O1xv—Ga—Rb2xvi94.26 (7)
O2—Rb1—O4vi110.30 (6)O1ii—Ga—Rb2xvii63.53 (8)
O2ii—Rb1—O4vi59.04 (6)O1xiv—Ga—Rb2xvii94.26 (7)
O2iii—Rb1—O4vi72.07 (6)O1—Ga—Rb2xvii155.93 (8)
O3—Rb1—O4vi60.68 (6)O1xv—Ga—Rb2xvii57.21 (8)
O3iii—Rb1—O4vi58.35 (6)Rb2xvi—Ga—Rb2xvii132.425 (3)
O3i—Rb1—O4vi131.72 (6)O1ii—Ga—Rb2xviii57.21 (8)
O3ii—Rb1—O4vi110.42 (6)O1xiv—Ga—Rb2xviii63.53 (8)
O4iv—Rb1—O4vi90.612 (9)O1—Ga—Rb2xviii94.26 (7)
O4v—Rb1—O4vi90.612 (9)O1xv—Ga—Rb2xviii155.93 (8)
O2i—Rb1—O4vii72.07 (6)Rb2xvi—Ga—Rb2xviii99.363 (1)
O2—Rb1—O4vii59.04 (6)Rb2xvii—Ga—Rb2xviii99.363 (1)
O2ii—Rb1—O4vii110.30 (6)O1ii—Ga—Rb2xiii94.26 (7)
O2iii—Rb1—O4vii118.39 (6)O1xiv—Ga—Rb2xiii155.93 (8)
O3—Rb1—O4vii110.42 (6)O1—Ga—Rb2xiii57.21 (8)
O3iii—Rb1—O4vii131.72 (6)O1xv—Ga—Rb2xiii63.53 (8)
O3i—Rb1—O4vii58.35 (6)Rb2xvi—Ga—Rb2xiii99.363 (1)
O3ii—Rb1—O4vii60.68 (6)Rb2xvii—Ga—Rb2xiii99.363 (1)
O4iv—Rb1—O4vii90.612 (9)Rb2xviii—Ga—Rb2xiii132.425 (3)
O4v—Rb1—O4vii90.612 (9)O4vii—Li—O4xviii106.1 (4)
O4vi—Rb1—O4vii168.14 (9)O4vii—Li—O2iv111.85 (11)
O4iv—Rb2—O475.77 (9)O4xviii—Li—O2iv109.18 (11)
O4iv—Rb2—O1viii128.06 (6)O4vii—Li—O2109.18 (11)
O4—Rb2—O1viii131.16 (6)O4xviii—Li—O2111.85 (11)
O4iv—Rb2—O1ix131.16 (6)O2iv—Li—O2108.7 (4)
O4—Rb2—O1ix128.06 (6)O4vii—Li—Rb2i57.30 (10)
O1viii—Rb2—O1ix72.30 (8)O4xviii—Li—Rb2i92.42 (17)
O4iv—Rb2—O362.42 (7)O2iv—Li—Rb2i64.78 (9)
O4—Rb2—O354.02 (6)O2—Li—Rb2i155.34 (13)
O1viii—Rb2—O3167.51 (6)O4vii—Li—Rb2xviii92.42 (17)
O1ix—Rb2—O395.65 (6)O4xviii—Li—Rb2xviii57.30 (10)
O4iv—Rb2—O3iv54.02 (6)O2iv—Li—Rb2xviii155.34 (13)
O4—Rb2—O3iv62.42 (7)O2—Li—Rb2xviii64.78 (9)
O1viii—Rb2—O3iv95.65 (6)Rb2i—Li—Rb2xviii131.1 (2)
O1ix—Rb2—O3iv167.51 (6)O4vii—Li—Rb1xix157.44 (16)
O3—Rb2—O3iv96.56 (10)O4xviii—Li—Rb1xix64.28 (10)
O4iv—Rb2—O2vi60.77 (6)O2iv—Li—Rb1xix57.78 (10)
O4—Rb2—O2vi114.36 (6)O2—Li—Rb1xix93.37 (17)
O1viii—Rb2—O2vi114.41 (6)Rb2i—Li—Rb1xix101.431 (6)
O1ix—Rb2—O2vi70.39 (6)Rb2xviii—Li—Rb1xix97.986 (6)
O3—Rb2—O2vi62.67 (6)O4vii—Li—Rb164.28 (10)
O3iv—Rb2—O2vi113.27 (6)O4xviii—Li—Rb1157.44 (16)
O4iv—Rb2—O2x114.36 (6)O2iv—Li—Rb193.37 (17)
O4—Rb2—O2x60.77 (6)O2—Li—Rb157.78 (10)
O1viii—Rb2—O2x70.39 (6)Rb2i—Li—Rb197.986 (6)
O1ix—Rb2—O2x114.41 (6)Rb2xviii—Li—Rb1101.431 (6)
O3—Rb2—O2x113.27 (6)Rb1xix—Li—Rb1132.0 (2)
O3iv—Rb2—O2x62.67 (6)Ga—O1—Mo138.77 (14)
O2vi—Rb2—O2x174.49 (9)Ga—O1—Rb2xiii93.13 (9)
O4iv—Rb2—O1xi119.82 (6)Mo—O1—Rb2xiii102.15 (9)
O4—Rb2—O1xi72.73 (6)Ga—O1—Rb2xvi86.82 (8)
O1viii—Rb2—O1xi111.24 (5)Mo—O1—Rb2xvi114.82 (10)
O1ix—Rb2—O1xi55.43 (7)Rb2xiii—O1—Rb2xvi122.57 (7)
O3—Rb2—O1xi57.51 (6)Mo—O2—Li140.3 (2)
O3iv—Rb2—O1xi134.93 (7)Mo—O2—Rb1102.33 (10)
O2vi—Rb2—O1xi88.30 (5)Li—O2—Rb190.14 (8)
O2x—Rb2—O1xi92.40 (5)Mo—O2—Rb2xviii118.13 (11)
O4iv—Rb2—O1xii72.73 (6)Li—O2—Rb2xviii83.02 (16)
O4—Rb2—O1xii119.82 (6)Rb1—O2—Rb2xviii123.50 (7)
O1viii—Rb2—O1xii55.43 (7)Mo—O3—Rb297.88 (10)
O1ix—Rb2—O1xii111.24 (5)Mo—O3—Rb196.90 (10)
O3—Rb2—O1xii134.93 (7)Rb2—O3—Rb1117.97 (8)
O3iv—Rb2—O1xii57.51 (6)Mo—O3—Rb2xiii96.81 (10)
O2vi—Rb2—O1xii92.40 (5)Rb2—O3—Rb2xiii120.95 (8)
O2x—Rb2—O1xii88.30 (5)Rb1—O3—Rb2xiii116.42 (7)
O1xi—Rb2—O1xii165.41 (8)Mo—O4—Lix142.7 (2)
O4iv—Rb2—O3viii171.31 (6)Mo—O4—Rb2100.83 (10)
O4—Rb2—O3viii97.25 (6)Lix—O4—Rb290.30 (9)
O1viii—Rb2—O3viii53.12 (6)Mo—O4—Rb1xix119.19 (11)
O1ix—Rb2—O3viii57.29 (6)Lix—O4—Rb1xix83.92 (17)
O3—Rb2—O3viii117.80 (6)Rb2—O4—Rb1xix119.37 (7)
O3iv—Rb2—O3viii118.27 (6)
Symmetry codes: (i) y, x, z; (ii) x, y, z; (iii) y, x, z; (iv) x, y+1/2, z+1/4; (v) x, y1/2, z+1/4; (vi) y+1/2, x, z1/4; (vii) y1/2, x, z1/4; (viii) y+1/2, x+1/2, z+1/2; (ix) y+1/2, x, z1/4; (x) y+1/2, x+1/2, z+1/2; (xi) x+1/2, y, z+3/4; (xii) x+1/2, y+1/2, z1/2; (xiii) y+1/2, x1/2, z+1/2; (xiv) y, x, z+1; (xv) y, x, z+1; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x1/2, y1/2, z+1/2; (xviii) y1/2, x+1/2, z+1/2; (xix) x, y+1/2, z+1/4.
Selected interatomic distances (Å) for Cs3LiZn2(WO4)4 and Rb3Li2Ga(MoO4)4 top
Cs3LiZn2(WO4)4Rb3Li2Ga(MoO4)4
W–tetrahedronMo–tetrahedron
W—O11.737 (9)Mo—O31.721 (3)
W—O21.783 (4) (×3)Mo—O41.746 (2)
<W—O>1.772Mo—O21.750 (2)
Mo—O11.849 (2)
<Mo—O>1.767
(Zn2/3Li1/3)–tetrahedronGa–tetrahedron
(Zn2/3Li1/3)–O21.935 (5) (×4)Ga—O11.827 (2) (×4)
Li–tetrahedron
Li—O41.925 (5) (×2)
Li—O21.929 (5) (×2)
<Li—O>1.927
Cs–cuboctahedronRb(1)–cuboctahedron
Cs—O23.271 (5) (×4)Rb1—O23.073 (2) (×4)
Cs—O13.3604 (15) (×4)Rb1—O33.240 (3) (×4)
Cs—O2'3.367 (5) (×4)Rb1—O43.291 (3) (×4)
<Cs—O>3.333<Rb1—O>3.201
Rb2–cuboctahedron
Rb2—O43.023 (3) (×2)
Rb2—O13.103 (2) (×2)
Rb2—O33.120 (2) (×2)
Rb2—O23.274 (2) (×2)
Rb2—O1'3.304 (2) (×2)
Rb2—O3'3.338 (3) (×2)
<Rb2—O>3.194
The lattice parameters (Å) of single crystals and melting points (K) of compounds of the Cs6Zn5(MoO4)8 family (our data) top
CompoundaM.p.CompoundacM.p.
Cs6Zn5(MoO4)812.2568 (2)923Tl3Li2Al(MoO4)411.7632 (2)**11.7837 (4)
Rb3LiZn2(MoO4)411.9018 (14)853Rb3Li2Al(MoO4)411.8948 (4)11.7981 (6)873
Cs3LiZn2(MoO4)412.2100 (1)1003Rb3Li2Ga(MoO4)411.8635 (3)11.8932 (4)833
Cs3LiCo2(MoO4)412.2239 (2)1013*Cs3Li2Al(MoO4)412.2168 (2)12.0951 (3)983
Cs3LiZn2(WO4)412.2643 (1)1003Cs3Li2Ga(MoO4)412.1957 (6)12.1709 (5)923
Cs3NaZn2(MoO4)412.3134 (1)783Cs3Li2Fe(MoO4)412.1967 (3)**12.2391 (5)883
Cs3AgZn2(MoO4)412.321 (2)**803
Notes: (*) compound decomposes in the solid phase into Cs2Co2(MoO4)3 and CsLiMoO4; (**) PXRD data.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds