Download citation
Download citation
link to html
The comprehensive description of the crystal structure of a novel 1:1 cocrystal of 3,4,5-trifluoro­phenyl­boronic acid with urea, C6H4BF3O2·CH4N2O, is presented. Both components are good candidates for crystal engineering as they can create a variety of supra­molecular synthons. The preference for the formation of different hetrosynthons is verified based on theoretical calculations. The synanti conformation of boronic acid has been found to be the most favourable in the formation of inter­molecular inter­actions with urea. Moreover, the distortions present in the boron coordination sphere have been described qu­anti­tatively based on experimental data according to bond-valence vector model calculations. The results revealed that the deformation of the sphere is typical for a synanti conformation of boronic acids. The supra­molecular structure of the cocrystal is composed of large synthons in the form of layers made up of O—H...O and N—H...O hydrogen bonds. The layers are joined via N—H...F hydrogen bonds which are unusual for urea cocrystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617013675/ly3050sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617013675/ly3050Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S2053229617013675/ly3050Isup3.mol
Supplementary material

CCDC reference: 1576170

Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2014); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2014); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2004), CrystalExplorer (Wolff et al., 2012), GaussView (Dennington et al., 2009), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3,4,5-Triflurophenylboronic acid–carbonic diamide (1/1) top
Crystal data top
C6H4BF3O2·CH4N2OF(000) = 480
Mr = 235.96Dx = 1.621 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.5305 (6) ÅCell parameters from 3180 reflections
b = 8.2823 (4) Åθ = 6.9–66.6°
c = 11.5020 (6) ŵ = 1.42 mm1
β = 118.304 (7)°T = 298 K
V = 967.11 (10) Å3Block, colourless
Z = 40.20 × 0.08 × 0.08 mm
Data collection top
Rigaku Xcalibur Atlas Gemini ultra
diffractometer
1720 independent reflections
Radiation source: sealed X-ray tube, Enhance Ultra (Cu) X-ray Source1404 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.3347 pixels mm-1θmax = 67.2°, θmin = 4.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2014)
k = 99
Tmin = 0.896, Tmax = 1.000l = 1313
8913 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2553P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1720 reflectionsΔρmax = 0.16 e Å3
163 parametersΔρmin = 0.18 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05714 (11)0.39207 (17)0.22443 (11)0.0654 (4)
F20.03799 (11)0.24804 (17)0.44331 (12)0.0645 (4)
F30.17696 (13)0.29250 (16)0.67705 (11)0.0663 (4)
O10.36346 (12)0.70035 (16)0.35408 (11)0.0433 (3)
H10.4267 (17)0.755 (3)0.361 (2)0.065*
O20.49688 (11)0.67205 (16)0.58143 (11)0.0402 (3)
H20.507 (2)0.641 (3)0.6532 (14)0.060*
C10.26752 (15)0.53300 (19)0.46804 (16)0.0334 (4)
C20.15370 (16)0.5095 (2)0.34767 (17)0.0389 (4)
H2A0.14620.55820.27160.047*
C30.05331 (16)0.4154 (2)0.34085 (18)0.0421 (4)
C40.06096 (17)0.3416 (2)0.45099 (18)0.0422 (4)
C50.17188 (18)0.3651 (2)0.56966 (17)0.0410 (4)
C60.27463 (16)0.4587 (2)0.58017 (16)0.0382 (4)
H60.34880.47260.66180.046*
B10.38275 (18)0.6392 (2)0.47131 (18)0.0341 (4)
O30.54328 (11)0.89213 (16)0.33380 (11)0.0421 (3)
N10.67293 (16)0.9144 (2)0.55285 (14)0.0480 (4)
H1A0.6231 (19)0.845 (2)0.565 (2)0.058*
H1B0.7403 (15)0.956 (3)0.6186 (16)0.058*
N20.72171 (16)1.0540 (2)0.41034 (16)0.0498 (4)
H2B0.694 (2)1.084 (3)0.3292 (12)0.060*
H2C0.7894 (16)1.095 (3)0.4762 (17)0.060*
C70.64197 (16)0.9517 (2)0.42884 (16)0.0348 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0400 (6)0.0860 (9)0.0469 (7)0.0132 (6)0.0017 (5)0.0025 (6)
F20.0539 (7)0.0780 (8)0.0681 (8)0.0311 (6)0.0342 (6)0.0143 (6)
F30.0800 (8)0.0823 (9)0.0417 (6)0.0305 (7)0.0330 (6)0.0004 (6)
O10.0441 (7)0.0513 (8)0.0314 (6)0.0103 (6)0.0152 (5)0.0007 (5)
O20.0365 (6)0.0535 (7)0.0293 (6)0.0081 (5)0.0146 (5)0.0014 (5)
C10.0336 (8)0.0349 (8)0.0326 (8)0.0029 (7)0.0164 (7)0.0019 (7)
C20.0379 (9)0.0424 (10)0.0340 (9)0.0027 (8)0.0152 (7)0.0025 (7)
C30.0301 (8)0.0503 (10)0.0377 (9)0.0007 (7)0.0094 (7)0.0055 (8)
C40.0372 (9)0.0457 (10)0.0479 (10)0.0091 (8)0.0235 (8)0.0106 (8)
C50.0480 (10)0.0463 (10)0.0342 (9)0.0073 (8)0.0241 (8)0.0039 (7)
C60.0382 (9)0.0449 (10)0.0298 (8)0.0050 (7)0.0146 (7)0.0058 (7)
B10.0366 (10)0.0356 (10)0.0317 (9)0.0016 (8)0.0176 (8)0.0025 (7)
O30.0393 (6)0.0568 (8)0.0272 (6)0.0066 (6)0.0131 (5)0.0001 (5)
N10.0483 (9)0.0609 (11)0.0275 (8)0.0163 (8)0.0120 (7)0.0006 (7)
N20.0443 (9)0.0646 (11)0.0377 (8)0.0133 (8)0.0172 (7)0.0042 (8)
C70.0346 (8)0.0400 (9)0.0298 (8)0.0024 (7)0.0152 (7)0.0004 (7)
Geometric parameters (Å, º) top
O2—B11.353 (2)C3—C41.371 (3)
O1—B11.356 (2)C4—C51.372 (3)
C1—B11.579 (3)C5—C61.372 (2)
C1—C21.398 (2)C6—H60.9300
C1—C61.396 (2)O3—C71.246 (2)
F1—C31.355 (2)N1—H1A0.868 (10)
F2—C41.347 (2)N1—H1B0.860 (10)
F3—C51.350 (2)N1—C71.332 (2)
O1—H10.827 (10)N2—H2B0.867 (10)
O2—H20.820 (10)N2—H2C0.860 (10)
C2—H2A0.9300N2—C71.339 (2)
C2—C31.367 (3)
O2—B1—O1118.93 (15)C3—C4—C5118.52 (16)
O1—B1—C1116.42 (15)F3—C5—C4117.58 (15)
O2—B1—C1124.65 (15)F3—C5—C6120.66 (15)
B1—O1—H1112.5 (16)C4—C5—C6121.77 (16)
B1—O2—H2119.3 (17)C1—C6—H6120.1
C6—C1—C2118.02 (15)C5—C6—C1119.84 (15)
C2—C1—B1119.05 (15)C5—C6—H6120.1
C6—C1—B1122.92 (14)H1A—N1—H1B121 (2)
C1—C2—H2A119.7C7—N1—H1A117.6 (15)
C3—C2—C1120.55 (16)C7—N1—H1B121.3 (16)
C3—C2—H2A119.7H2B—N2—H2C123 (2)
F1—C3—C2120.78 (17)C7—N2—H2B115.0 (16)
F1—C3—C4117.93 (16)C7—N2—H2C121.1 (16)
C2—C3—C4121.29 (16)O3—C7—N1121.14 (15)
F2—C4—C3120.95 (16)O3—C7—N2121.40 (15)
F2—C4—C5120.53 (17)N1—C7—N2117.45 (16)
F1—C3—C4—F20.5 (3)C2—C3—C4—F2179.49 (17)
F1—C3—C4—C5179.57 (16)C2—C3—C4—C50.5 (3)
F2—C4—C5—F30.6 (3)C3—C4—C5—F3179.46 (17)
F2—C4—C5—C6179.45 (17)C3—C4—C5—C60.5 (3)
F3—C5—C6—C1179.91 (16)C4—C5—C6—C10.1 (3)
C1—C2—C3—F1179.94 (16)C6—C1—C2—C30.4 (2)
C1—C2—C3—C40.0 (3)C6—C1—B1—O1178.30 (16)
C2—C1—C6—C50.4 (2)C6—C1—B1—O21.7 (3)
C2—C1—B1—O10.7 (2)B1—C1—C2—C3178.57 (15)
C2—C1—B1—O2179.33 (16)B1—C1—C6—C5178.57 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.83 (1)1.90 (1)2.7084 (17)166 (2)
O2—H2···O3i0.82 (1)1.93 (1)2.7427 (16)169 (2)
N1—H1A···O20.87 (1)2.12 (1)2.982 (2)176 (2)
N2—H2B···O1ii0.87 (1)2.12 (1)2.975 (2)169 (2)
N1—H1B···F1iii0.86 (2)2.41 (2)3.214 (2)155 (2)
N2—H2C···F1iii0.86 (2)2.55 (2)3.319 (2)150 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds