organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-[1-(1H-pyrrol-2-yl)ethyl­­idene]aniline

aCollege of Chemistry and Chemical Engineering, Xi'an ShiYou University, Xi'an, Shaanxi 710065, People's Republic of China, and bCollege of Petroleum Engineering, Xi'an ShiYou University, Xi'an, Shaanxi 710065, People's Republic of China
*Correspondence e-mail: subiyun@xsyu.edu.cn

(Received 24 September 2012; accepted 6 November 2012; online 10 November 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C13H14N2, in which the dihedral angles formed by the pyrrole and benzene rings are 83.63 (8) and 87.84 (8)°. In the crystal, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers, which are further connected by C—H⋯π inter­actions.

Related literature

For general background to the imino­pyrrole unit, see: Britovsek et al. (2003[Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454-3465.]); Dawson et al. (2000[Dawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459-466.]); Kazushi & Hayato (2005[Kazushi, M. & Hayato, T. (2005). J. Organomet. Chem. 690, 4414-4423.]). For pyrrole monoimine, see: He et al. (2009[He, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713-721.]); Su et al. (2009a[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429-4440.],b[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051-1057.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2

  • Mr = 198.26

  • Triclinic, [P \overline 1]

  • a = 10.120 (2) Å

  • b = 10.400 (3) Å

  • c = 11.726 (3) Å

  • α = 79.138 (4)°

  • β = 67.021 (4)°

  • γ = 88.154 (4)°

  • V = 1114.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.38 × 0.29 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.988

  • 5729 measured reflections

  • 3981 independent reflections

  • 2530 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 1.03

  • 3981 reflections

  • 276 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.27 3.070 (3) 154
N3—H3⋯N4ii 0.86 2.30 3.108 (2) 156
C1—H1ACg1iii 0.93 2.70 3.488 (4) 143
C14—H14⋯Cg2iv 0.93 2.75 3.531 (3) 142
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z+2; (iii) -x+1, -y, -z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nitrogen-based ligands containing an iminopyrrole unit have recently drawn much attention because of their flexible complexation to transition metals (Kazushi & Hayato, 2005). Being the typical kind of iminopyrrole units, bis(imino)pyridine incorporated late transition metal catalysts have been investigated due to their antioxidant properties and outstanding activities for olefin polymerization. As a five-membered analogue of the pyridine ring (He et al., 2009), pyrrole has been frequently introduced into the skeleton of bis(imino)pyridine ligands to design new ligands and corresponding metal complexes (Britovsek et al., 2003; Dawson et al., 2000). As a part of our ongoing studies on mono(imino)pyrrole ligands (Su et al., 2009a,b), we report herein the crystal structure of the title compound, which crystallizes with two unique molecules, A & B, in the asymmetric unit (Fig. 1).

In the title compound, the dihedral angles formed by the pyrrole and benzene rings are 83.63 (8)° in A and 87.84 (8)° in B, respectively. The imino N–C bond lengths in the two molecules are slightly different [1.275 (3) Å for A, 1.278 (2) Å for B, respectively] and indicate CN character. Although the two molecules in the asymmetric unit are similar, some minor differences in corresponding bond angles are evident, most notably C–N(imino)–C of 119.54 (18)° and 119.24 (17)°, for A and B, respectively. In the crystal structure, molecules are linked via pairs of N–H···N hydrogen bonds (Fig. 2 & Table 1), forming inversion dimers. These dimers are connected by C–H···π interactions (Fig. 2 & Table 1, Cg1 and Cg2 are the centroids of benzene rings in the molecule A and B, respectively).

Related literature top

For general background to the iminopyrrole unit, see: Britovsek et al. (2003); Dawson et al. (2000); Kazushi & Hayato (2005). For pyrrole monoimine, see: He et al. (2009); Su et al. (2009a,b).

Experimental top

The reagents 2-acetyl pyrrole (0.1528 g, 1.40 mmol), o-toluidine (0.3000 g, 2.80 mmol) were placed in a 50-ml flask, after a few drops of acetic acid was added in, the mixture was subjected to radiation in a 800 W microwave oven for 3 min and 2 min on a medium-heat setting. The reaction was monitored by TLC, and the crude product was purified by silica gel column chromatography (eluant: petroleum ether/ethyl acetate, 5:1 v/v), the colourless crystals of the title compound were at last obtained by recrystallization from ethanol (yield 0.1136 g, 40.91%). m.p. 396.5-398.9 K. Plate like colourless single crystals used in X-ray diffraction studies were grown in the mixture solvents of water and ethanol.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C–H = 0.93-0.96 Å, N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker,2008); cell refinement: SAINT (Bruker,2008); data reduction: SAINT (Bruker,2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two independent molecules in the asymmetric unit of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of N–H···N and C–H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 2, - z; (ii) - x, - y + 1, - z + 2; (iii) - x + 1, - y, - z; (iv) - x, - y + 1, - z.]
2-Methyl-N-[1-(1H-pyrrol-2-yl)ethylidene]aniline top
Crystal data top
C13H14N2Z = 4
Mr = 198.26F(000) = 424
Triclinic, P1Dx = 1.181 Mg m3
Hall symbol: -P 1Melting point = 396.5–398.9 K
a = 10.120 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.400 (3) ÅCell parameters from 1216 reflections
c = 11.726 (3) Åθ = 2.3–25.2°
α = 79.138 (4)°µ = 0.07 mm1
β = 67.021 (4)°T = 296 K
γ = 88.154 (4)°Block, colourless
V = 1114.7 (5) Å30.38 × 0.29 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
3981 independent reflections
Radiation source: fine-focus sealed tube2530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 912
Tmin = 0.973, Tmax = 0.988k = 1212
5729 measured reflectionsl = 1014
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0703P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3981 reflectionsΔρmax = 0.19 e Å3
276 parametersΔρmin = 0.16 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C13H14N2γ = 88.154 (4)°
Mr = 198.26V = 1114.7 (5) Å3
Triclinic, P1Z = 4
a = 10.120 (2) ÅMo Kα radiation
b = 10.400 (3) ŵ = 0.07 mm1
c = 11.726 (3) ÅT = 296 K
α = 79.138 (4)°0.38 × 0.29 × 0.17 mm
β = 67.021 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2530 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.988Rint = 0.022
5729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3981 reflectionsΔρmin = 0.16 e Å3
276 parameters
Special details top

Experimental. The purity and the composition of the compound were checked and characterized by Infrared spectrum, 1H NMR spectrum, mass spectrum, as well as elemental analysis. IR (KBr): νCN 1645 cm-1. 1H NMR (400MHz, CDCl3): δ 7.36 (d, 1H, benzene ring aromatic H), 7.15 (t, 2H, benzene ring aromatic H), 7.88 (t, 1H, benzene ring aromatic H), 6.90 (d, 1H,pyrrole ring aromatic H), 6.71 (t, 1H, pyrrole ring aromatic H), 6.34 (d, 1H,pyrrole ring aromatic H), 2.48 (s, 3H, phenyl-CH3), 2.25 (s, 3H,-NC(CH3)-). MS (EI): m/z 197 (M+). Anal. Calcd. for C13H14N2: C, 78.75; H, 7.12; N, 14.13. Found: C, 78.22; H, 6.95; N,14.68.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37284 (18)0.91215 (17)0.19040 (14)0.0510 (5)
H10.44260.95790.12890.061*
N20.34013 (18)0.93166 (17)0.03844 (14)0.0507 (5)
N30.14266 (18)0.49423 (17)0.80750 (14)0.0541 (5)
H30.06620.51110.86780.065*
N40.16015 (18)0.41253 (17)1.04284 (14)0.0498 (5)
C10.3590 (3)0.8857 (2)0.31132 (18)0.0626 (6)
H1A0.42260.91370.34220.075*
C20.2371 (3)0.8118 (3)0.3801 (2)0.0689 (7)
H20.20160.77980.46660.083*
C30.1742 (3)0.7922 (2)0.2987 (2)0.0633 (6)
H3A0.08880.74450.32080.076*
C40.2595 (2)0.8553 (2)0.18026 (17)0.0473 (5)
C50.2429 (2)0.8691 (2)0.06202 (19)0.0491 (5)
C60.1083 (2)0.8091 (3)0.0660 (2)0.0724 (7)
H6A0.03920.87520.06910.109*
H6B0.06960.74120.13960.109*
H6C0.12990.77240.00820.109*
C70.3199 (2)0.95209 (18)0.15330 (18)0.0502 (5)
C80.3676 (2)0.8647 (2)0.2347 (2)0.0562 (6)
C90.3553 (3)0.8960 (3)0.3496 (2)0.0681 (7)
H90.38700.83790.40520.082*
C100.2981 (3)1.0095 (3)0.3841 (2)0.0753 (8)
H100.28981.02760.46170.090*
C110.2530 (3)1.0965 (3)0.3044 (2)0.0712 (7)
H110.21541.17490.32840.085*
C120.2627 (2)1.06875 (19)0.18953 (19)0.0589 (6)
H120.23111.12800.13520.071*
C130.4357 (3)0.7415 (3)0.2007 (2)0.0795 (8)
H13A0.45500.68950.26450.119*
H13B0.37160.69270.12090.119*
H13C0.52400.76330.19490.119*
C140.1659 (3)0.5221 (3)0.68454 (19)0.0672 (7)
H140.10230.56220.65080.081*
C150.2975 (3)0.4818 (3)0.6179 (2)0.0707 (7)
H150.34100.48980.53070.085*
C160.3551 (2)0.4261 (2)0.70452 (19)0.0630 (6)
H160.44420.38900.68560.076*
C170.2584 (2)0.4353 (2)0.82227 (17)0.0462 (5)
C180.2667 (2)0.3960 (2)0.94336 (19)0.0475 (5)
C190.4037 (2)0.3381 (3)0.9440 (2)0.0737 (8)
H19A0.46990.40680.93580.111*
H19B0.44500.29300.87470.111*
H19C0.38430.27751.02190.111*
C200.1708 (2)0.37695 (19)1.16170 (18)0.0489 (5)
C210.1223 (2)0.2549 (2)1.23561 (19)0.0544 (6)
C220.1255 (3)0.2295 (3)1.3541 (2)0.0698 (7)
H220.09410.14721.40470.084*
C230.1739 (3)0.3221 (3)1.3993 (2)0.0791 (8)
H230.17500.30261.47960.095*
C240.2206 (3)0.4433 (3)1.3258 (2)0.0766 (8)
H240.25280.50681.35640.092*
C250.2199 (2)0.4712 (2)1.2078 (2)0.0611 (6)
H250.25240.55351.15770.073*
C260.0651 (3)0.1542 (3)1.1890 (2)0.0790 (8)
H26A0.02390.18151.18310.119*
H26B0.04910.07191.24670.119*
H26C0.13330.14441.10730.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0470 (10)0.0660 (12)0.0362 (9)0.0026 (9)0.0132 (8)0.0066 (8)
N20.0493 (11)0.0624 (12)0.0430 (9)0.0007 (9)0.0207 (8)0.0098 (8)
N30.0512 (11)0.0680 (12)0.0406 (9)0.0081 (9)0.0185 (8)0.0047 (8)
N40.0497 (11)0.0586 (11)0.0420 (9)0.0077 (8)0.0210 (8)0.0060 (8)
C10.0668 (16)0.0836 (18)0.0405 (12)0.0020 (13)0.0240 (11)0.0119 (11)
C20.0707 (17)0.0882 (19)0.0382 (12)0.0102 (14)0.0159 (12)0.0010 (12)
C30.0568 (14)0.0754 (17)0.0507 (13)0.0094 (12)0.0173 (11)0.0019 (11)
C40.0446 (12)0.0539 (13)0.0447 (11)0.0020 (10)0.0188 (10)0.0092 (10)
C50.0465 (12)0.0529 (13)0.0485 (12)0.0058 (10)0.0204 (10)0.0081 (10)
C60.0546 (15)0.099 (2)0.0655 (15)0.0131 (13)0.0301 (12)0.0033 (14)
C70.0441 (12)0.0617 (14)0.0469 (11)0.0025 (10)0.0198 (10)0.0101 (10)
C80.0521 (13)0.0617 (15)0.0578 (13)0.0028 (11)0.0231 (11)0.0140 (11)
C90.0709 (16)0.089 (2)0.0518 (13)0.0025 (14)0.0272 (12)0.0235 (13)
C100.0771 (18)0.106 (2)0.0484 (13)0.0019 (16)0.0318 (13)0.0121 (14)
C110.0731 (17)0.0820 (18)0.0615 (14)0.0102 (14)0.0348 (13)0.0030 (13)
C120.0620 (15)0.0655 (16)0.0542 (13)0.0093 (12)0.0272 (11)0.0147 (11)
C130.093 (2)0.0716 (18)0.0840 (17)0.0206 (15)0.0420 (15)0.0266 (14)
C140.0681 (16)0.0907 (19)0.0418 (12)0.0079 (14)0.0256 (11)0.0023 (12)
C150.0711 (17)0.096 (2)0.0401 (12)0.0057 (14)0.0187 (12)0.0096 (12)
C160.0558 (14)0.0799 (17)0.0514 (13)0.0084 (12)0.0185 (11)0.0143 (12)
C170.0457 (12)0.0503 (13)0.0423 (11)0.0044 (10)0.0181 (9)0.0068 (9)
C180.0471 (12)0.0495 (13)0.0497 (12)0.0050 (10)0.0232 (10)0.0097 (10)
C190.0567 (15)0.106 (2)0.0635 (14)0.0267 (14)0.0295 (12)0.0191 (14)
C200.0426 (12)0.0603 (14)0.0442 (11)0.0097 (10)0.0195 (9)0.0069 (10)
C210.0506 (13)0.0588 (15)0.0515 (13)0.0090 (11)0.0210 (10)0.0041 (11)
C220.0703 (17)0.0769 (18)0.0546 (14)0.0055 (14)0.0248 (12)0.0057 (13)
C230.0847 (19)0.106 (2)0.0515 (14)0.0099 (17)0.0372 (14)0.0048 (15)
C240.090 (2)0.089 (2)0.0695 (16)0.0069 (16)0.0487 (15)0.0221 (15)
C250.0683 (16)0.0643 (16)0.0566 (13)0.0023 (12)0.0324 (12)0.0078 (11)
C260.092 (2)0.0623 (17)0.0823 (17)0.0068 (14)0.0358 (15)0.0085 (13)
Geometric parameters (Å, º) top
N1—C11.344 (2)C11—H110.9300
N1—C41.362 (3)C12—H120.9300
N1—H10.8600C13—H13A0.9600
N2—C51.275 (3)C13—H13B0.9600
N2—C71.416 (2)C13—H13C0.9600
N3—C141.342 (2)C14—C151.355 (3)
N3—C171.360 (2)C14—H140.9300
N3—H30.8600C15—C161.388 (3)
N4—C181.278 (2)C15—H150.9300
N4—C201.418 (2)C16—C171.364 (3)
C1—C21.347 (3)C16—H160.9300
C1—H1A0.9300C17—C181.436 (3)
C2—C31.383 (3)C18—C191.496 (3)
C2—H20.9300C19—H19A0.9600
C3—C41.364 (3)C19—H19B0.9600
C3—H3A0.9300C19—H19C0.9600
C4—C51.441 (3)C20—C211.377 (3)
C5—C61.497 (3)C20—C251.3927 (10)
C6—H6A0.9600C21—C221.378 (3)
C6—H6B0.9600C21—C261.494 (3)
C6—H6C0.9600C22—C231.369 (4)
C7—C81.382 (3)C22—H220.9300
C7—C121.3925 (10)C23—C241.366 (4)
C8—C91.378 (3)C23—H230.9300
C8—C131.497 (3)C24—C251.362 (3)
C9—C101.360 (3)C24—H240.9300
C9—H90.9300C25—H250.9300
C10—C111.364 (3)C26—H26A0.9600
C10—H100.9300C26—H26B0.9600
C11—C121.366 (3)C26—H26C0.9600
C1—N1—C4109.55 (18)H13A—C13—H13B109.5
C1—N1—H1125.2C8—C13—H13C109.5
C4—N1—H1125.2H13A—C13—H13C109.5
C5—N2—C7119.54 (18)H13B—C13—H13C109.5
C14—N3—C17109.63 (17)N3—C14—C15108.52 (19)
C14—N3—H3125.2N3—C14—H14125.7
C17—N3—H3125.2C15—C14—H14125.7
C18—N4—C20119.24 (17)C14—C15—C16106.91 (19)
N1—C1—C2108.3 (2)C14—C15—H15126.5
N1—C1—H1A125.9C16—C15—H15126.5
C2—C1—H1A125.9C17—C16—C15108.2 (2)
C1—C2—C3107.55 (19)C17—C16—H16125.9
C1—C2—H2126.2C15—C16—H16125.9
C3—C2—H2126.2N3—C17—C16106.70 (17)
C4—C3—C2108.0 (2)N3—C17—C18122.69 (17)
C4—C3—H3A126.0C16—C17—C18130.61 (19)
C2—C3—H3A126.0N4—C18—C17119.61 (18)
N1—C4—C3106.62 (18)N4—C18—C19123.84 (18)
N1—C4—C5122.36 (18)C17—C18—C19116.54 (18)
C3—C4—C5131.0 (2)C18—C19—H19A109.5
N2—C5—C4119.52 (19)C18—C19—H19B109.5
N2—C5—C6123.74 (18)H19A—C19—H19B109.5
C4—C5—C6116.74 (19)C18—C19—H19C109.5
C5—C6—H6A109.5H19A—C19—H19C109.5
C5—C6—H6B109.5H19B—C19—H19C109.5
H6A—C6—H6B109.5C21—C20—C25120.03 (19)
C5—C6—H6C109.5C21—C20—N4120.84 (17)
H6A—C6—H6C109.5C25—C20—N4118.90 (19)
H6B—C6—H6C109.5C20—C21—C22118.1 (2)
C8—C7—C12119.60 (18)C20—C21—C26120.66 (19)
C8—C7—N2121.35 (16)C22—C21—C26121.2 (2)
C12—C7—N2118.78 (17)C23—C22—C21121.8 (2)
C9—C8—C7118.4 (2)C23—C22—H22119.1
C9—C8—C13120.9 (2)C21—C22—H22119.1
C7—C8—C13120.72 (19)C24—C23—C22119.7 (2)
C10—C9—C8121.8 (2)C24—C23—H23120.1
C10—C9—H9119.1C22—C23—H23120.1
C8—C9—H9119.1C25—C24—C23120.0 (2)
C9—C10—C11119.8 (2)C25—C24—H24120.0
C9—C10—H10120.1C23—C24—H24120.0
C11—C10—H10120.1C24—C25—C20120.4 (2)
C10—C11—C12120.1 (2)C24—C25—H25119.8
C10—C11—H11119.9C20—C25—H25119.8
C12—C11—H11119.9C21—C26—H26A109.5
C11—C12—C7120.3 (2)C21—C26—H26B109.5
C11—C12—H12119.8H26A—C26—H26B109.5
C7—C12—H12119.8C21—C26—H26C109.5
C8—C13—H13A109.5H26A—C26—H26C109.5
C8—C13—H13B109.5H26B—C26—H26C109.5
C4—N1—C1—C20.0 (3)C17—N3—C14—C150.2 (3)
N1—C1—C2—C30.0 (3)N3—C14—C15—C160.7 (3)
C1—C2—C3—C40.1 (3)C14—C15—C16—C170.9 (3)
C1—N1—C4—C30.1 (2)C14—N3—C17—C160.4 (3)
C1—N1—C4—C5178.53 (18)C14—N3—C17—C18178.8 (2)
C2—C3—C4—N10.1 (3)C15—C16—C17—N30.8 (3)
C2—C3—C4—C5178.4 (2)C15—C16—C17—C18178.3 (2)
C7—N2—C5—C4176.19 (16)C20—N4—C18—C17178.17 (18)
C7—N2—C5—C62.9 (3)C20—N4—C18—C191.2 (3)
N1—C4—C5—N23.2 (3)N3—C17—C18—N42.2 (3)
C3—C4—C5—N2178.6 (2)C16—C17—C18—N4178.8 (2)
N1—C4—C5—C6176.01 (19)N3—C17—C18—C19177.2 (2)
C3—C4—C5—C62.3 (3)C16—C17—C18—C191.8 (4)
C5—N2—C7—C891.5 (2)C18—N4—C20—C2193.6 (2)
C5—N2—C7—C1294.5 (3)C18—N4—C20—C2591.8 (2)
C12—C7—C8—C90.7 (3)C25—C20—C21—C220.7 (3)
N2—C7—C8—C9174.6 (2)N4—C20—C21—C22175.18 (18)
C12—C7—C8—C13177.2 (2)C25—C20—C21—C26178.1 (2)
N2—C7—C8—C133.2 (3)N4—C20—C21—C263.6 (3)
C7—C8—C9—C100.0 (4)C20—C21—C22—C230.7 (3)
C13—C8—C9—C10177.8 (3)C26—C21—C22—C23178.1 (2)
C8—C9—C10—C110.9 (4)C21—C22—C23—C240.1 (4)
C9—C10—C11—C121.2 (4)C22—C23—C24—C250.5 (4)
C10—C11—C12—C70.5 (4)C23—C24—C25—C200.5 (4)
C8—C7—C12—C110.4 (3)C21—C20—C25—C240.1 (3)
N2—C7—C12—C11174.5 (2)N4—C20—C25—C24174.74 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.273.070 (3)154
N3—H3···N4ii0.862.303.108 (2)156
C1—H1A···Cg1iii0.932.703.488 (4)143
C14—H14···Cg2iv0.932.753.531 (3)142
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+2; (iii) x+1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H14N2
Mr198.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.120 (2), 10.400 (3), 11.726 (3)
α, β, γ (°)79.138 (4), 67.021 (4), 88.154 (4)
V3)1114.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.38 × 0.29 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.973, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5729, 3981, 2530
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.03
No. of reflections3981
No. of parameters276
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker,2008), SAINT (Bruker,2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.273.070 (3)154.3
N3—H3···N4ii0.862.303.108 (2)156.2
C1—H1A···Cg1iii0.932.703.488 (4)143.0
C14—H14···Cg2iv0.932.753.531 (3)142.0
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+2; (iii) x+1, y, z; (iv) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province (Nos. 2009JQ2006 and 2010JQ2003) and the Scientific Research Plan Project of Shaanxi Education Department (Nos. 12 J K0620 and 2010 J K784).

References

First citationBritovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454–3465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459–466.  Web of Science CSD CrossRef Google Scholar
First citationHe, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713–721.  Web of Science CrossRef CAS Google Scholar
First citationKazushi, M. & Hayato, T. (2005). J. Organomet. Chem. 690, 4414–4423.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429–4440.  Web of Science CrossRef CAS Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051–1057.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds