organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-2-(4-Ethyl-2,3-dioxopiperazine-1-carboxamido)-2-(4-hy­dr­oxy­phen­yl)acetic acid

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 31 May 2010; accepted 28 June 2010; online 3 July 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C15H17N3O6. The 2,3-dioxopiperazine ring adopts a half-chair conformation with torsion angles of −7.6 (4) and 35.1 (4)° in one mol­ecule, and 5.3 (4) and 45.4 (4)° in the other mol­ecule. In the crystal structure, the carb­oxy groups are involved in classical inversion-related O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further linked by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. Each independent mol­ecule also exhibits an intra­molecular N—H⋯O hydrogen bond. The H atoms of the carb­oxy groups are disordered over two positions, with refined site-occupancy factors of 0.5.

Related literature

For general background to cefoperazone, a third generation cephalosporin anti­biotic, and HO-EPCP [(2R)-2-(4-ethyl-2,3-dioxopiperazine-1-carboxamido)-2-(4-hydroxyphenyl)acetic acid], which has been investigated extensively as a key inter­mediate for the synthesis of cefoperazone, see: Spyker et al. (1985[Spyker, D. A., Richmond, J. D., Scheld, W. M. & Bolton, W. K. (1985). Am. J. Nephrol. 5, 355-360.]); Chen et al. (2009[Chen, Q., Wang, Y., Li, Y. & Wang, J. (2009). J. Chem. Eng. Data, 54, 1123-1125.]); Murakami et al. (1981[Murakami, K., Takasuka, M., Motokawa, K. & Yoshida, T. (1981). J. Med. Chem. 24, 88-93.]); Albrecht et al. (1991[Albrecht, H. A., Beskid, G., Christenson, J. G., Georgopapadakou, N. H., Keith, D. D., Konzelmann, F. M., Pruess, D. L., Rossman, P. L. & Wei, C.-C. (1991). J. Med. Chem. 34, 2857-2864.]). For the synthesis of the (2S)-enantiomer of (HO-EPCP), see: De Lorenzi et al. (2001[De Lorenzi, E., Massolini, G., Molinari, P., Galbusera, C., Longhi, R., Marinzi, C., Consonni, R. & Chiari, M. (2001). Electrophoresis, 22, 1373-1384.]). For a related structure, see: Lenstra et al. (1998[Lenstra, A. T. H., Bracke, B., van Dijk, B., Maes, S., Van Alsenoy, C., Desseyn, H. O. & Perlepes, S. P. (1998). Acta Cryst. B54, 859-865.]). For disordered carb­oxy dimers, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Feeder & Jones (1996[Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913-919.]). For helical chains, see: Adachi et al. (2001[Adachi, K., Irikawa, H., Shiratori, K., Sugiyama, Y. & Kawata, S. (2001). CrystEngComm. 3, 128-130.]); Xu et al.(2003[Xu, L., Qin, C., Wang, X., Wei, Y. & Wang, E. (2003). Inorg. Chem. 42, 7342-7344.]); Enamullah et al. (2006[Enamullah, M., Sharmin, A., Hasegawa, M., Hoshi, T., Chamayou, A.-C. & Janiak, C. (2006). Eur. J. Inorg. Chem. pp. 2146-2154.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For the synthesis, see: Saikawa et al. (1978[Saikawa, I., Takano, S., Yoshida, C., Takashima, O., Momonoi, K., Kuroda, S., Komatsu, M., Yasuda, T. & Kodama, Y. (1978). US Patent No. 4 110 327.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O6

  • Mr = 335.32

  • Orthorhombic, P 21 21 21

  • a = 11.5899 (19) Å

  • b = 13.038 (2) Å

  • c = 20.794 (3) Å

  • V = 3142.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.51 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 16467 measured reflections

  • 3237 independent reflections

  • 2722 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.06

  • 3237 reflections

  • 449 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11O⋯O5 0.86 (3) 1.80 (4) 2.617 (3) 159 (9)
O10—H10O⋯O4 0.86 (3) 1.82 (3) 2.678 (3) 171 (9)
O5—H5O⋯O11 0.86 (3) 1.76 (3) 2.617 (3) 171 (8)
O4—H4O⋯O10 0.86 (3) 1.88 (5) 2.678 (3) 154 (9)
N6—H6D⋯O8 0.86 1.98 2.637 (3) 132
N3—H3⋯O2 0.86 1.97 2.636 (3) 133
O6—H6⋯O1i 0.82 1.87 2.682 (3) 174
C12—H12⋯O2i 0.93 2.52 3.438 (4) 169
O12—H12A⋯O7ii 0.82 1.88 2.692 (3) 172
C27—H27⋯O8ii 0.93 2.50 3.378 (4) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among enantiomers of 2-(4-ethyl-3-dioxo-1-piperazinyl)carboxamido]-2-(4-hydroxyphenyl)acetic acid, its (2R)-enantiomer (HO-EPCP) has been extensively investigated as a key intermediate for the synthesis of cefoperazone (Murakami et al., 1981; Albrecht et al., 1991), which is a third generation cephalosporin antibiotic (Spyker et al., 1985; Chen et al., 2009), whereas its (2S)-enantiomer was presented only one time as a chiral compound of pharmaceutical interest evaluated for enantiorecognition (De Lorenzi et al., 2001). Now we report the crystal structure of the title compound which crystallizes with two unique molecules, denoted as A & B, in the asymmetric unit (Fig. 1).

The two molecules (A and B) are linked into a dimer through classical inversion-related O—H···O hydrogen bonds (Table 1) between the carboxy groups of A and B, where the H atoms of the carboxy groups are disordered over two positions, with refined site-occupancy factors of 0.5 and 0.5. The disordered model for the carboxy group may be ascribed to the requirement of intermolecular forces (Leiserowitz, 1976; Feeder et al., 1996). Both molecules possess similar geometric parameters except for the slight differences in some bond lenghths and angles. The 2,3-dioxopiperazine ring adopts a half-chair conformation with torsion angles of -7.6 (4) and 35.1 (4)° in A, while 5.3 (4) and 45.4 (4)° in B, similar to those of -3.3 (4) and 38.6 (4)° reported previously for the related molecule 2,3-diketopiperazine (Lenstra et al., 1998). The dihedral angle between the two benzene rings belonging to A and B in the dimer is 47.32 (10)°. The intramolecular N3—H3···O2 and N6—H6D···O8 hydrogen bonds exist (Table 1) and create an R(6) ring motif (Bernstein et al., 1995) in either molecule.

The packing of the title compound is obviously stabilized by the intermolecular O—H···O and C—H···O hydrogen bonds. For the molecule A, an infinite one-dimensional helix chain (Adachi et al. 2001; Xu et al. 2003) is formed by a combination of the intermolecular O—H···O and C—H···O hydrogen bonds (Fig. 2), locally giving an R22(9) ring motif (Bernstein et al., 1995). This motif arises from atoms O6—H6 and C12—H12 in the molecule at (x, y, z), which act as hydrogen-bond donors, to atoms O1 and O2 in the neighboring molecule at (x + 1/2, -y + 1/2, -z + 1). For the molecule B, the same infinite one-dimensional helix chain is generated through a combination of the intermolecular O12—H12A···O7ii and C27—H27···O8ii [symmetry code: (ii) x + 1/2, -y + 5/2, -z + 1] hydrogen bonds. Finally, the helix chains of both molecules are alternatively linked by the interchain O—H···O hydrogen bonds to produce a two-dimensional network (Fig. 3) in the ab plane. Such helix chains of the title molecule may be significant in simulating of the life system.

Related literature top

For general background to cefoperazone, a third generation cephalosporin antibiotic, and HO-EPCP, which has been investigated extensively as a key intermediate for the synthesis of cefoperazone, see: Spyker et al. (1985); Chen et al. (2009); Murakami et al. (1981); Albrecht et al. (1991); De Lorenzi et al. (2001). For a related structure, see: Lenstra et al. (1998). For disordered carboxy dimers, see: Leiserowitz (1976); Feeder et al. (1996). For helical chains, see: Adachi et al. (2001); Xu et al.(2003); Enamullah et al.(2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Saikawa et al. (1978).

Experimental top

The title compound was obtained as a white solid in 80% yield by a similar method used for the synthesis of its (2R)-enantiomer (Saikawa et al., 1978). 1H NMR (300 MHz, DMSO-d6): δ 9.68 (d, 1H, J = 6.42 Hz), 9.58 (s, 1H), 7.18 (d, 2H, J = 8.27 Hz), 6.77 (d, 2H, J = 8.27 Hz), 5.20 (d, 1H, J = 6.44 Hz), 3.90 (br, 2H), 3.56 (br, 2H), 3.40 (m, 2H), 1.08 (t, 3H, J = 7.06 Hz). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow cooling of a hot solution in H2O.

Refinement top

Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) =1.2Ueq(C) for all other H atoms. The H atoms (H4O, H5O, H11O, and H10O) of carboxy groups were located in the different map and refined isotropically subject to an O—H = 0.85 (10) Å distance over two orientations in a 50/50 ratio. These C—O bonds were restrained to be the same within a standard deviation of 0.01 Å, total 16 restrains were used to model the two carboxy groups. In the absence of significant anomalous scattering effects, measured Friedel pairs were merged.

Structure description top

Among enantiomers of 2-(4-ethyl-3-dioxo-1-piperazinyl)carboxamido]-2-(4-hydroxyphenyl)acetic acid, its (2R)-enantiomer (HO-EPCP) has been extensively investigated as a key intermediate for the synthesis of cefoperazone (Murakami et al., 1981; Albrecht et al., 1991), which is a third generation cephalosporin antibiotic (Spyker et al., 1985; Chen et al., 2009), whereas its (2S)-enantiomer was presented only one time as a chiral compound of pharmaceutical interest evaluated for enantiorecognition (De Lorenzi et al., 2001). Now we report the crystal structure of the title compound which crystallizes with two unique molecules, denoted as A & B, in the asymmetric unit (Fig. 1).

The two molecules (A and B) are linked into a dimer through classical inversion-related O—H···O hydrogen bonds (Table 1) between the carboxy groups of A and B, where the H atoms of the carboxy groups are disordered over two positions, with refined site-occupancy factors of 0.5 and 0.5. The disordered model for the carboxy group may be ascribed to the requirement of intermolecular forces (Leiserowitz, 1976; Feeder et al., 1996). Both molecules possess similar geometric parameters except for the slight differences in some bond lenghths and angles. The 2,3-dioxopiperazine ring adopts a half-chair conformation with torsion angles of -7.6 (4) and 35.1 (4)° in A, while 5.3 (4) and 45.4 (4)° in B, similar to those of -3.3 (4) and 38.6 (4)° reported previously for the related molecule 2,3-diketopiperazine (Lenstra et al., 1998). The dihedral angle between the two benzene rings belonging to A and B in the dimer is 47.32 (10)°. The intramolecular N3—H3···O2 and N6—H6D···O8 hydrogen bonds exist (Table 1) and create an R(6) ring motif (Bernstein et al., 1995) in either molecule.

The packing of the title compound is obviously stabilized by the intermolecular O—H···O and C—H···O hydrogen bonds. For the molecule A, an infinite one-dimensional helix chain (Adachi et al. 2001; Xu et al. 2003) is formed by a combination of the intermolecular O—H···O and C—H···O hydrogen bonds (Fig. 2), locally giving an R22(9) ring motif (Bernstein et al., 1995). This motif arises from atoms O6—H6 and C12—H12 in the molecule at (x, y, z), which act as hydrogen-bond donors, to atoms O1 and O2 in the neighboring molecule at (x + 1/2, -y + 1/2, -z + 1). For the molecule B, the same infinite one-dimensional helix chain is generated through a combination of the intermolecular O12—H12A···O7ii and C27—H27···O8ii [symmetry code: (ii) x + 1/2, -y + 5/2, -z + 1] hydrogen bonds. Finally, the helix chains of both molecules are alternatively linked by the interchain O—H···O hydrogen bonds to produce a two-dimensional network (Fig. 3) in the ab plane. Such helix chains of the title molecule may be significant in simulating of the life system.

For general background to cefoperazone, a third generation cephalosporin antibiotic, and HO-EPCP, which has been investigated extensively as a key intermediate for the synthesis of cefoperazone, see: Spyker et al. (1985); Chen et al. (2009); Murakami et al. (1981); Albrecht et al. (1991); De Lorenzi et al. (2001). For a related structure, see: Lenstra et al. (1998). For disordered carboxy dimers, see: Leiserowitz (1976); Feeder et al. (1996). For helical chains, see: Adachi et al. (2001); Xu et al.(2003); Enamullah et al.(2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Saikawa et al. (1978).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids. The disordered moieties (dotted lines) are shown.
[Figure 2] Fig. 2. The hydrogen-bonded one-dimensional helix chain of the molecule A with an R22(9) ring motif viewed along the c axis. The disordered moieties and some hydrogen atoms are omitted for clarity. [Symmetry code: (i) x + 1/2, - y + 1/2, - z + 1].
[Figure 3] Fig. 3. The two-dimensional network of the title compound with R22(8) and R22(9) ring motifs viewed along the c axis. The disordered moieties and some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) x + 1/2, - y + 1/2, - z + 1; (ii) x + 1/2, - y+ 5/2, - z + 1].
(2S)-2-(4-Ethyl-2,3-dioxopiperazine-1-carboxamido)-2-(4- hydroxyphenyl)acetic acid top
Crystal data top
C15H17N3O6F(000) = 1408
Mr = 335.32Dx = 1.418 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3149 reflections
a = 11.5899 (19) Åθ = 2.5–22.5°
b = 13.038 (2) ŵ = 0.11 mm1
c = 20.794 (3) ÅT = 298 K
V = 3142.2 (9) Å3Bar, colourless
Z = 80.51 × 0.15 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2722 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
Detector resolution: 10.0 pixels mm-1h = 1313
phi and ω scansk = 1515
16467 measured reflectionsl = 1825
3237 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.0947P]
where P = (Fo2 + 2Fc2)/3
3237 reflections(Δ/σ)max < 0.001
449 parametersΔρmax = 0.18 e Å3
16 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H17N3O6V = 3142.2 (9) Å3
Mr = 335.32Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 11.5899 (19) ŵ = 0.11 mm1
b = 13.038 (2) ÅT = 298 K
c = 20.794 (3) Å0.51 × 0.15 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2722 reflections with I > 2σ(I)
16467 measured reflectionsRint = 0.040
3237 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04416 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
3237 reflectionsΔρmin = 0.16 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.6862 (2)0.66654 (17)0.51841 (12)0.0584 (6)
C10.4645 (3)0.3773 (2)0.73859 (14)0.0421 (7)
C20.5301 (3)0.4183 (2)0.67963 (14)0.0379 (7)
C30.6229 (4)0.5339 (3)0.75568 (14)0.0608 (10)
H3A0.56140.58310.76300.073*
H3B0.69600.56960.75980.073*
C40.6161 (3)0.4511 (3)0.80428 (14)0.0515 (8)
H4A0.68150.40520.79940.062*
H4B0.61910.48050.84710.062*
C50.4652 (3)0.3361 (3)0.85232 (14)0.0534 (9)
H5A0.38410.32060.84570.064*
H5B0.47170.37810.89060.064*
C60.5296 (4)0.2396 (3)0.86191 (19)0.0841 (13)
H6A0.49730.20280.89760.126*
H6B0.60910.25490.87050.126*
H6C0.52420.19830.82380.126*
C70.6935 (3)0.5273 (2)0.64418 (14)0.0468 (8)
C80.78013 (16)0.6197 (2)0.52363 (14)0.0420 (7)
C90.7784 (3)0.5059 (2)0.53998 (13)0.0417 (7)
H90.85360.48650.55780.050*
C100.7571 (3)0.4445 (2)0.47940 (13)0.0392 (7)
C110.8371 (3)0.3733 (2)0.45867 (14)0.0445 (8)
H110.90520.36460.48170.053*
C120.8176 (3)0.3146 (2)0.40408 (15)0.0474 (8)
H120.87230.26710.39050.057*
C130.7164 (3)0.3271 (2)0.37011 (14)0.0435 (8)
C140.6354 (3)0.3972 (3)0.39031 (15)0.0507 (8)
H140.56710.40580.36740.061*
C150.6563 (3)0.4549 (2)0.44491 (15)0.0480 (8)
H150.60110.50180.45870.058*
C160.4769 (4)1.2845 (3)0.1574 (2)0.0929 (15)
H16A0.44131.30660.19670.139*
H16B0.44161.31920.12180.139*
H16C0.55771.30030.15850.139*
C170.4611 (3)1.1708 (3)0.14984 (15)0.0552 (9)
H17A0.37941.15480.14950.066*
H17B0.49351.14920.10900.066*
C180.4657 (3)1.1091 (2)0.25917 (14)0.0415 (7)
C190.5391 (3)1.0779 (2)0.31764 (13)0.0379 (7)
C200.6653 (3)0.9982 (3)0.23883 (13)0.0564 (9)
H20A0.61980.93810.22820.068*
H20B0.74620.98060.23440.068*
C210.6363 (3)1.0832 (3)0.19387 (14)0.0535 (9)
H21A0.68671.14120.20200.064*
H21B0.64841.06080.14990.064*
C220.7251 (3)1.0017 (2)0.35317 (14)0.0413 (7)
C230.7895 (3)1.0151 (2)0.46270 (13)0.0400 (7)
H230.86711.03220.44740.048*
C240.78669 (17)0.9022 (2)0.48071 (13)0.0403 (7)
C250.7646 (3)1.0775 (2)0.52265 (13)0.0380 (7)
C260.8464 (3)1.1431 (2)0.54761 (15)0.0450 (7)
H260.91701.15000.52680.054*
C270.8258 (3)1.1987 (2)0.60304 (14)0.0484 (8)
H270.88231.24230.61930.058*
C280.7214 (3)1.1894 (2)0.63420 (14)0.0441 (8)
C290.6382 (3)1.1250 (3)0.60949 (15)0.0540 (9)
H290.56731.11880.63010.065*
C300.6598 (3)1.0695 (2)0.55422 (15)0.0494 (8)
H300.60321.02620.53800.059*
N10.5094 (2)0.39370 (19)0.79653 (11)0.0421 (6)
N20.6125 (2)0.49079 (18)0.69051 (11)0.0448 (6)
N30.6901 (2)0.48256 (18)0.58659 (10)0.0440 (6)
H30.63570.44020.57730.053*
N40.5174 (2)1.11428 (19)0.20220 (11)0.0412 (6)
N50.6415 (2)1.02945 (18)0.30565 (10)0.0402 (6)
N60.7073 (2)1.03845 (17)0.41218 (10)0.0421 (6)
H6D0.64771.07560.42020.051*
O10.3770 (2)0.3277 (2)0.72961 (11)0.0663 (7)
O20.50699 (18)0.38196 (17)0.62759 (9)0.0482 (6)
O30.7594 (2)0.59548 (19)0.65771 (11)0.0759 (9)
O40.8770 (2)0.65925 (18)0.51346 (13)0.0615 (7)
H4O0.900 (8)0.722 (3)0.509 (4)0.092*0.50
H5O0.687 (9)0.726 (3)0.500 (4)0.092*0.50
O60.6918 (2)0.27188 (18)0.31598 (10)0.0590 (6)
H60.74930.24010.30460.088*
O70.3658 (2)1.1346 (2)0.26865 (11)0.0609 (7)
O80.50410 (18)1.10077 (18)0.37060 (9)0.0507 (6)
O90.8068 (2)0.94970 (17)0.33806 (10)0.0625 (7)
O100.8777 (2)0.86393 (17)0.50285 (12)0.0532 (6)
H10O0.881 (7)0.798 (2)0.503 (4)0.080*0.50
O110.6930 (2)0.85492 (17)0.47513 (12)0.0604 (7)
H11O0.679 (8)0.800 (4)0.496 (4)0.091*0.50
O120.6966 (2)1.24064 (19)0.68955 (10)0.0615 (7)
H12A0.75211.27580.70000.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0529 (15)0.0450 (13)0.0772 (16)0.0050 (12)0.0103 (13)0.0107 (12)
C10.0428 (19)0.0438 (17)0.0398 (17)0.0002 (16)0.0001 (15)0.0009 (13)
C20.0387 (17)0.0364 (15)0.0386 (17)0.0030 (14)0.0005 (14)0.0016 (13)
C30.085 (3)0.059 (2)0.0387 (18)0.026 (2)0.0137 (18)0.0173 (16)
C40.057 (2)0.066 (2)0.0320 (16)0.0083 (18)0.0017 (15)0.0093 (15)
C50.057 (2)0.064 (2)0.0388 (17)0.0020 (18)0.0073 (16)0.0106 (15)
C60.115 (4)0.065 (3)0.072 (3)0.010 (3)0.007 (3)0.021 (2)
C70.060 (2)0.0418 (16)0.0389 (17)0.0105 (17)0.0088 (15)0.0007 (14)
C80.046 (2)0.0422 (16)0.0375 (16)0.0016 (16)0.0079 (15)0.0004 (13)
C90.0481 (19)0.0394 (15)0.0375 (16)0.0039 (15)0.0048 (14)0.0043 (12)
C100.0469 (19)0.0338 (14)0.0370 (15)0.0008 (13)0.0073 (14)0.0068 (12)
C110.0459 (19)0.0422 (16)0.0454 (17)0.0058 (15)0.0025 (15)0.0069 (14)
C120.051 (2)0.0400 (15)0.0511 (19)0.0093 (15)0.0143 (16)0.0010 (14)
C130.055 (2)0.0370 (15)0.0383 (16)0.0053 (15)0.0132 (15)0.0008 (13)
C140.051 (2)0.0588 (19)0.0428 (18)0.0054 (18)0.0011 (15)0.0040 (16)
C150.050 (2)0.0492 (18)0.0447 (18)0.0147 (16)0.0060 (16)0.0026 (15)
C160.126 (4)0.071 (3)0.082 (3)0.003 (3)0.029 (3)0.025 (2)
C170.046 (2)0.081 (2)0.0387 (18)0.0045 (19)0.0083 (16)0.0017 (17)
C180.044 (2)0.0415 (17)0.0391 (17)0.0024 (15)0.0020 (15)0.0052 (13)
C190.0425 (18)0.0359 (15)0.0353 (16)0.0011 (14)0.0030 (14)0.0010 (12)
C200.064 (2)0.069 (2)0.0363 (17)0.026 (2)0.0042 (16)0.0180 (16)
C210.047 (2)0.080 (2)0.0333 (17)0.0110 (19)0.0011 (14)0.0053 (16)
C220.0510 (19)0.0342 (14)0.0387 (16)0.0073 (15)0.0022 (15)0.0003 (12)
C230.0442 (18)0.0400 (15)0.0357 (15)0.0017 (14)0.0033 (13)0.0050 (12)
C240.0473 (19)0.0417 (15)0.0319 (15)0.0015 (16)0.0054 (14)0.0003 (12)
C250.0423 (18)0.0354 (14)0.0364 (15)0.0009 (13)0.0058 (14)0.0050 (12)
C260.0423 (19)0.0475 (17)0.0453 (17)0.0079 (15)0.0012 (14)0.0069 (14)
C270.051 (2)0.0456 (17)0.0486 (18)0.0088 (16)0.0108 (16)0.0060 (14)
C280.049 (2)0.0426 (15)0.0408 (17)0.0048 (16)0.0101 (15)0.0007 (13)
C290.049 (2)0.065 (2)0.0489 (19)0.0050 (19)0.0057 (16)0.0076 (16)
C300.047 (2)0.0521 (19)0.0492 (19)0.0146 (16)0.0025 (16)0.0068 (15)
N10.0449 (16)0.0437 (13)0.0377 (13)0.0032 (12)0.0022 (12)0.0041 (11)
N20.0634 (18)0.0390 (13)0.0320 (13)0.0106 (13)0.0090 (12)0.0028 (11)
N30.0565 (17)0.0417 (13)0.0339 (13)0.0120 (13)0.0062 (12)0.0009 (11)
N40.0406 (15)0.0501 (14)0.0330 (13)0.0015 (12)0.0020 (11)0.0019 (11)
N50.0478 (16)0.0409 (13)0.0318 (12)0.0108 (12)0.0036 (11)0.0057 (10)
N60.0526 (17)0.0398 (13)0.0339 (13)0.0080 (13)0.0028 (12)0.0020 (11)
O10.0525 (16)0.0900 (18)0.0564 (15)0.0224 (15)0.0003 (12)0.0063 (14)
O20.0522 (14)0.0569 (13)0.0355 (12)0.0080 (11)0.0067 (10)0.0026 (10)
O30.099 (2)0.0766 (16)0.0520 (14)0.0526 (17)0.0165 (14)0.0137 (13)
O40.0525 (16)0.0522 (14)0.0799 (17)0.0074 (13)0.0115 (13)0.0142 (13)
O60.0652 (16)0.0586 (14)0.0530 (14)0.0088 (13)0.0116 (12)0.0176 (11)
O70.0371 (14)0.0910 (18)0.0545 (14)0.0106 (13)0.0005 (11)0.0080 (13)
O80.0486 (14)0.0694 (14)0.0341 (12)0.0074 (12)0.0080 (10)0.0019 (10)
O90.0718 (17)0.0650 (15)0.0508 (13)0.0346 (14)0.0129 (12)0.0133 (11)
O100.0516 (14)0.0462 (12)0.0619 (14)0.0026 (12)0.0150 (11)0.0048 (11)
O110.0536 (15)0.0461 (12)0.0816 (18)0.0110 (12)0.0200 (14)0.0137 (12)
O120.0635 (17)0.0705 (16)0.0504 (13)0.0077 (14)0.0068 (12)0.0234 (12)
Geometric parameters (Å, º) top
O5—C81.2534 (17)C16—H16C0.9600
O5—O103.414 (3)C17—N41.468 (4)
O5—H5O0.86 (3)C17—H17A0.9700
C1—O11.217 (4)C17—H17B0.9700
C1—N11.330 (4)C18—O71.221 (4)
C1—C21.539 (4)C18—N41.329 (4)
C2—O21.211 (3)C18—C191.539 (4)
C2—N21.362 (4)C19—O81.211 (3)
C3—N21.472 (4)C19—N51.367 (4)
C3—C41.482 (5)C20—N51.474 (3)
C3—H3A0.9700C20—C211.488 (4)
C3—H3B0.9700C20—H20A0.9700
C4—N11.454 (4)C20—H20B0.9700
C4—H4A0.9700C21—N41.447 (4)
C4—H4B0.9700C21—H21A0.9700
C5—N11.474 (4)C21—H21B0.9700
C5—C61.476 (5)C22—O91.206 (4)
C5—H5A0.9700C22—N61.333 (3)
C5—H5B0.9700C22—N51.431 (4)
C6—H6A0.9600C23—N61.450 (4)
C6—H6B0.9600C23—C251.516 (4)
C6—H6C0.9600C23—C241.520 (4)
C7—O31.206 (4)C23—H230.9800
C7—N31.332 (4)C24—O101.2537 (17)
C7—N21.427 (4)C24—O111.2538 (17)
C8—O41.2538 (17)C25—C261.378 (4)
C8—C91.523 (4)C25—C301.384 (4)
C9—N31.442 (4)C26—C271.383 (4)
C9—C101.513 (4)C26—H260.9300
C9—H90.9800C27—C281.378 (5)
C10—C151.378 (4)C27—H270.9300
C10—C111.381 (4)C28—O121.362 (3)
C11—C121.388 (4)C28—C291.379 (4)
C11—H110.9300C29—C301.381 (4)
C12—C131.379 (5)C29—H290.9300
C12—H120.9300C30—H300.9300
C13—O61.367 (3)N3—H30.8600
C13—C141.376 (4)N6—H6D0.8600
C14—C151.383 (4)O4—H4O0.86 (3)
C14—H140.9300O6—H60.8200
C15—H150.9300O10—H10O0.86 (3)
C16—C171.501 (6)O11—H11O0.86 (3)
C16—H16A0.9600O12—H12A0.8200
C16—H16B0.9600
C8—O5—O1079.07 (15)H17A—C17—H17B108.0
C8—O5—H5O117 (7)O7—C18—N4123.9 (3)
O10—O5—H5O43 (7)O7—C18—C19118.0 (3)
O1—C1—N1123.4 (3)N4—C18—C19117.9 (3)
O1—C1—C2118.3 (3)O8—C19—N5124.8 (3)
N1—C1—C2118.2 (3)O8—C19—C18117.9 (3)
O2—C2—N2125.1 (3)N5—C19—C18117.3 (2)
O2—C2—C1117.8 (3)N5—C20—C21110.1 (3)
N2—C2—C1117.1 (3)N5—C20—H20A109.6
N2—C3—C4110.2 (3)C21—C20—H20A109.6
N2—C3—H3A109.6N5—C20—H20B109.6
C4—C3—H3A109.6C21—C20—H20B109.6
N2—C3—H3B109.6H20A—C20—H20B108.1
C4—C3—H3B109.6N4—C21—C20110.4 (3)
H3A—C3—H3B108.1N4—C21—H21A109.6
N1—C4—C3110.2 (3)C20—C21—H21A109.6
N1—C4—H4A109.6N4—C21—H21B109.6
C3—C4—H4A109.6C20—C21—H21B109.6
N1—C4—H4B109.6H21A—C21—H21B108.1
C3—C4—H4B109.6O9—C22—N6124.3 (3)
H4A—C4—H4B108.1O9—C22—N5119.6 (3)
N1—C5—C6111.4 (3)N6—C22—N5116.1 (3)
N1—C5—H5A109.3N6—C23—C25111.0 (2)
C6—C5—H5A109.3N6—C23—C24111.6 (2)
N1—C5—H5B109.3C25—C23—C24108.3 (2)
C6—C5—H5B109.3N6—C23—H23108.7
H5A—C5—H5B108.0C25—C23—H23108.7
C5—C6—H6A109.5C24—C23—H23108.7
C5—C6—H6B109.5O10—C24—O11124.5 (3)
H6A—C6—H6B109.5O10—C24—C23117.2 (2)
C5—C6—H6C109.5O11—C24—C23118.2 (2)
H6A—C6—H6C109.5C26—C25—C30118.2 (3)
H6B—C6—H6C109.5C26—C25—C23120.7 (3)
O3—C7—N3123.5 (3)C30—C25—C23121.1 (3)
O3—C7—N2120.3 (3)C25—C26—C27121.3 (3)
N3—C7—N2116.2 (3)C25—C26—H26119.3
O5—C8—O4124.3 (3)C27—C26—H26119.3
O5—C8—C9118.9 (2)C28—C27—C26119.8 (3)
O4—C8—C9116.8 (2)C28—C27—H27120.1
N3—C9—C10109.4 (2)C26—C27—H27120.1
N3—C9—C8111.4 (2)O12—C28—C27122.7 (3)
C10—C9—C8109.4 (2)O12—C28—C29117.8 (3)
N3—C9—H9108.9C27—C28—C29119.5 (3)
C10—C9—H9108.9C28—C29—C30120.1 (3)
C8—C9—H9108.9C28—C29—H29119.9
C15—C10—C11118.2 (3)C30—C29—H29119.9
C15—C10—C9121.3 (3)C29—C30—C25121.0 (3)
C11—C10—C9120.4 (3)C29—C30—H30119.5
C10—C11—C12121.1 (3)C25—C30—H30119.5
C10—C11—H11119.4C1—N1—C4121.1 (3)
C12—C11—H11119.4C1—N1—C5119.7 (3)
C13—C12—C11119.5 (3)C4—N1—C5118.1 (2)
C13—C12—H12120.3C2—N2—C7125.5 (2)
C11—C12—H12120.3C2—N2—C3118.4 (2)
O6—C13—C14117.3 (3)C7—N2—C3116.1 (3)
O6—C13—C12122.5 (3)C7—N3—C9119.4 (3)
C14—C13—C12120.2 (3)C7—N3—H3120.3
C13—C14—C15119.5 (3)C9—N3—H3120.3
C13—C14—H14120.3C18—N4—C21121.4 (3)
C15—C14—H14120.3C18—N4—C17119.1 (3)
C10—C15—C14121.5 (3)C21—N4—C17118.4 (2)
C10—C15—H15119.3C19—N5—C22125.4 (2)
C14—C15—H15119.3C19—N5—C20117.5 (2)
C17—C16—H16A109.5C22—N5—C20117.0 (2)
C17—C16—H16B109.5C22—N6—C23119.3 (3)
H16A—C16—H16B109.5C22—N6—H6D120.4
C17—C16—H16C109.5C23—N6—H6D120.4
H16A—C16—H16C109.5C8—O4—H4O133 (6)
H16B—C16—H16C109.5C13—O6—H6109.5
N4—C17—C16111.3 (3)C24—O10—O577.75 (16)
N4—C17—H17A109.4C24—O10—H10O116 (6)
C16—C17—H17A109.4O5—O10—H10O44 (6)
N4—C17—H17B109.4C24—O11—H11O122 (6)
C16—C17—H17B109.4C28—O12—H12A109.5
O1—C1—C2—O215.5 (4)O1—C1—N1—C4178.2 (3)
N1—C1—C2—O2161.3 (3)C2—C1—N1—C41.6 (4)
O1—C1—C2—N2166.5 (3)O1—C1—N1—C510.9 (5)
N1—C1—C2—N216.8 (4)C2—C1—N1—C5165.7 (3)
N2—C3—C4—N156.5 (4)C3—C4—N1—C135.1 (4)
O10—O5—C8—O48.8 (3)C3—C4—N1—C5157.4 (3)
O10—O5—C8—C9174.5 (3)C6—C5—N1—C190.2 (4)
O5—C8—C9—N339.2 (4)C6—C5—N1—C477.4 (4)
O4—C8—C9—N3143.9 (3)O2—C2—N2—C77.5 (5)
O5—C8—C9—C1081.9 (3)C1—C2—N2—C7170.4 (3)
O4—C8—C9—C1095.0 (3)O2—C2—N2—C3174.5 (3)
N3—C9—C10—C1559.9 (3)C1—C2—N2—C37.6 (4)
C8—C9—C10—C1562.4 (3)O3—C7—N2—C2176.3 (3)
N3—C9—C10—C11117.6 (3)N3—C7—N2—C23.0 (4)
C8—C9—C10—C11120.1 (3)O3—C7—N2—C35.7 (5)
C15—C10—C11—C120.8 (4)N3—C7—N2—C3175.0 (3)
C9—C10—C11—C12178.4 (3)C4—C3—N2—C244.0 (4)
C10—C11—C12—C130.3 (4)C4—C3—N2—C7134.1 (3)
C11—C12—C13—O6180.0 (3)O3—C7—N3—C98.6 (5)
C11—C12—C13—C140.1 (4)N2—C7—N3—C9172.2 (3)
O6—C13—C14—C15179.9 (3)C10—C9—N3—C7178.9 (3)
C12—C13—C14—C150.0 (5)C8—C9—N3—C760.1 (3)
C11—C10—C15—C141.0 (4)O7—C18—N4—C21179.8 (3)
C9—C10—C15—C14178.5 (3)C19—C18—N4—C215.3 (4)
C13—C14—C15—C100.6 (5)O7—C18—N4—C1711.8 (5)
O7—C18—C19—O815.6 (4)C19—C18—N4—C17162.6 (3)
N4—C18—C19—O8159.2 (3)C20—C21—N4—C1832.0 (4)
O7—C18—C19—N5166.6 (3)C20—C21—N4—C17159.9 (3)
N4—C18—C19—N518.6 (4)C16—C17—N4—C1878.3 (4)
N5—C20—C21—N456.3 (4)C16—C17—N4—C2190.0 (4)
N6—C23—C24—O10152.5 (3)O8—C19—N5—C222.6 (5)
C25—C23—C24—O1085.1 (3)C18—C19—N5—C22175.0 (3)
N6—C23—C24—O1130.5 (4)O8—C19—N5—C20174.1 (3)
C25—C23—C24—O1191.8 (3)C18—C19—N5—C208.4 (4)
N6—C23—C25—C26120.9 (3)O9—C22—N5—C19172.3 (3)
C24—C23—C25—C26116.4 (3)N6—C22—N5—C199.2 (4)
N6—C23—C25—C3059.8 (3)O9—C22—N5—C204.4 (4)
C24—C23—C25—C3062.9 (3)N6—C22—N5—C20174.2 (3)
C30—C25—C26—C270.7 (4)C21—C20—N5—C1945.4 (4)
C23—C25—C26—C27178.5 (3)C21—C20—N5—C22137.7 (3)
C25—C26—C27—C280.3 (5)O9—C22—N6—C230.4 (5)
C26—C27—C28—O12178.8 (3)N5—C22—N6—C23178.9 (2)
C26—C27—C28—C290.4 (5)C25—C23—N6—C22170.7 (2)
O12—C28—C29—C30178.6 (3)C24—C23—N6—C2268.5 (3)
C27—C28—C29—C300.6 (5)O11—C24—O10—O52.3 (3)
C28—C29—C30—C250.1 (5)C23—C24—O10—O5174.5 (3)
C26—C25—C30—C290.5 (5)C8—O5—O10—C24162.7 (3)
C23—C25—C30—C29178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···O50.86 (3)1.80 (4)2.617 (3)159 (9)
O10—H10O···O40.86 (3)1.82 (3)2.678 (3)171 (9)
O5—H5O···O110.86 (3)1.76 (3)2.617 (3)171 (8)
O4—H4O···O100.86 (3)1.88 (5)2.678 (3)154 (9)
N6—H6D···O80.861.982.637 (3)132
N3—H3···O20.861.972.636 (3)133
O6—H6···O1i0.821.872.682 (3)174
C12—H12···O2i0.932.523.438 (4)169
O12—H12A···O7ii0.821.882.692 (3)172
C27—H27···O8ii0.932.503.378 (4)158
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H17N3O6
Mr335.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)11.5899 (19), 13.038 (2), 20.794 (3)
V3)3142.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.51 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16467, 3237, 2722
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.06
No. of reflections3237
No. of parameters449
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···O50.86 (3)1.80 (4)2.617 (3)159 (9)
O10—H10O···O40.86 (3)1.82 (3)2.678 (3)171 (9)
O5—H5O···O110.86 (3)1.76 (3)2.617 (3)171 (8)
O4—H4O···O100.86 (3)1.88 (5)2.678 (3)154 (9)
N6—H6D···O80.861.982.637 (3)131.8
N3—H3···O20.861.972.636 (3)133.0
O6—H6···O1i0.821.872.682 (3)174.2
C12—H12···O2i0.932.523.438 (4)168.7
O12—H12A···O7ii0.821.882.692 (3)172.4
C27—H27···O8ii0.932.503.378 (4)158.4
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+5/2, z+1.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province, China (grant No. Y2006B30) is gratefully acknowledged.

References

First citationAdachi, K., Irikawa, H., Shiratori, K., Sugiyama, Y. & Kawata, S. (2001). CrystEngComm. 3, 128–130.  Web of Science CSD CrossRef Google Scholar
First citationAlbrecht, H. A., Beskid, G., Christenson, J. G., Georgopapadakou, N. H., Keith, D. D., Konzelmann, F. M., Pruess, D. L., Rossman, P. L. & Wei, C.-C. (1991). J. Med. Chem. 34, 2857–2864.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q., Wang, Y., Li, Y. & Wang, J. (2009). J. Chem. Eng. Data, 54, 1123–1125.  Web of Science CrossRef CAS Google Scholar
First citationDe Lorenzi, E., Massolini, G., Molinari, P., Galbusera, C., Longhi, R., Marinzi, C., Consonni, R. & Chiari, M. (2001). Electrophoresis, 22, 1373–1384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnamullah, M., Sharmin, A., Hasegawa, M., Hoshi, T., Chamayou, A.-C. & Janiak, C. (2006). Eur. J. Inorg. Chem. pp. 2146–2154.  Web of Science CSD CrossRef Google Scholar
First citationFeeder, N. & Jones, W. (1996). Acta Cryst. C52, 913–919.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLenstra, A. T. H., Bracke, B., van Dijk, B., Maes, S., Van Alsenoy, C., Desseyn, H. O. & Perlepes, S. P. (1998). Acta Cryst. B54, 859–865.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurakami, K., Takasuka, M., Motokawa, K. & Yoshida, T. (1981). J. Med. Chem. 24, 88–93.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSaikawa, I., Takano, S., Yoshida, C., Takashima, O., Momonoi, K., Kuroda, S., Komatsu, M., Yasuda, T. & Kodama, Y. (1978). US Patent No. 4 110 327.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpyker, D. A., Richmond, J. D., Scheld, W. M. & Bolton, W. K. (1985). Am. J. Nephrol. 5, 355–360.  CrossRef CAS PubMed Web of Science Google Scholar
First citationXu, L., Qin, C., Wang, X., Wei, Y. & Wang, E. (2003). Inorg. Chem. 42, 7342–7344.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds