organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2305-o2306

3-(6-Benz­yl­oxy-2,2-di­methyl­perhydro­furo[2,3-d][1,3]dioxolan-5-yl)-5-(4-chloro­phen­yl)-4-nitro-2-phenyl-2,3,4,5-tetra­hydro­isoxazole

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 16 April 2009; accepted 25 August 2009; online 5 September 2009)

In the title compound, C29H29ClN2O7, the isoxazole and dioxolane rings adopt envelope conformations, and the furan ring adopts a twisted conformation. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions between a benz­yloxy methyl­ene H atom and the 4-chloro­phenyl ring of an adjacent mol­ecule, and by weak non-classical inter­molecular C—H⋯O hydrogen bonds. In addition, the crystal structure exhibits a Cl⋯O halogen bond of 3.111 (3) Å, with a nearly linear C—Cl⋯O angle of 160.7 (1)°.

Related literature

For general background to 1,3-dipolar cyclo­addition reactions, see: Gothelf & Jorgensen (1998[Gothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863-909.]); Bernotas et al. (1996[Bernotas, R. C., Adams, G. & Albert, C. A. (1996). Tetrahedron, 52, 6519-6526.]); Breuer (1982[Breuer, E. (1982). The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part I, edited by S. Patai, ch. 13. New York: Wiley Interscience.]); Colombi et al. (1978[Colombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967-2976.]); Hossain et al. (1993[Hossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133-10156.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For halogen bonds, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29ClN2O7

  • Mr = 552.99

  • Orthorhombic, P 21 21 21

  • a = 12.7862 (5) Å

  • b = 13.0160 (5) Å

  • c = 16.8232 (6) Å

  • V = 2799.80 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.964

  • 17056 measured reflections

  • 4764 independent reflections

  • 3446 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.02

  • 4764 reflections

  • 355 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1975 Friedel pairs

  • Flack parameter: −0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.98 2.54 3.298 (3) 134
C17—H17B⋯O1ii 0.97 2.46 3.218 (3) 135
C21—H21⋯Cg1i 0.93 2.75 3.598 (1) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,3-dipolar cycloaddition of nitrones with olefinic dipolarophiles proceeds through a concerted mechanism yielding highly substituted isoxazolidines (Gothelf & Jorgensen, 1998). The cornerstone for cycloaddition reactions, nitrones, are excellent spin traping (Bernotas et al., 1996) and highly versatile synthetic intermediates (Breuer, 1982). Highly substituted spiro-isoxazolidines result from the 1,3-dipolar cycloaddition of exocylic olefins with nitrones and these spiro-isoxazolidines have also been transformed into complex heterocycles (Colombi et al., 1978, Hossain et al., 1993). Here we report the crystal structure of the title compound (Fig. 1).

The dihedral angle between the phenyl rings C1-C6 and C18-C23, C18-C23 and C24-C29, and, C1-C6 and C24-C29 are 8.4 (2), 83.9 (1) and 75.7 (1)°, respectively. The five membered tetrahydrofuran ring (C10-C13/O4) adopts a twisted conformation and the other five membered rings, isoxazole ring (C7-C9/O1/N1) and the dioxolan ring (C12-C14/O5/O6), adopt envelope conformations on C11 and C10, O1 and O5 with a pseudo-twofold axis passing through C12–C11, C9–C8 and C13–O6 bonds. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983)as follows: for the tetrahydrofuran ring q2 = 0.365 (1) Å, ϕ = 304.9 (1)°, ΔS (C10) is 12.8 (1)° and Δ2 (C13) is 1.8 (1)°, for the isoxazolidine ring q2 = 0.377 (1) Å, ϕ = 359.7 (1)°, ΔS (O1) is 1.0 (1)° and Δ2(C8) is 19.6 (1)° and for the dioxolone ring q2 = 0.248 (1) Å, ϕ = 181.2 (1)°, ΔS (O5) is 0.3 (1)° and Δ2 (C13) is 13.3 (1)°.

The molecular packing is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds (Table 1 and Fig. 2; symmetry code as in Fig. 2). Additionally, the crystal structure exhibits a Cl···O halogen bond (Politzer et al., 2007) between the chlorine atom and the oxygen of a neighbouring NO2 group, with a Cl1···O2iv distance of 3.111 (3) Å (symmetry code as in Fig. 2). The molecular packing (Fig. 3) is further stabilized by an intermolecular C–H···π interactions between the methylene H atom of benzyloxy substituent and the 4-chlorophenyl ring of an adjacent molecule, with a C21–H21···Cg1iii separation of 2.75 Å (Table 1, Cg1 is the centroid of C1-C6 benzene ring).

Related literature top

For general background to 1,3-dipolar cycloaddition reactions, see: Gothelf & Jorgensen (1998); Bernotas et al. (1996); Breuer (1982); Colombi et al. (1978); Hossain et al. (1993). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983). For halogen bonds, see: Politzer et al. (2007). Cg1 is the centroid of the C1–C6 ring.

Experimental top

A mixture of D-glucose derived nitrone (0.5 mmol) and β-nitrostyrene (0.5 mmol) was refluxed in dry toluene (10 ml) until completion of the reaction as evidenced by TLC analysis. The solvent was evaporated under reduced pressure. The crude was purified by column chromatography on silica gel (Merck, 100-200 mesh, ethylacetate-petroleum ether (10 : 90) to afford pure isoxazolidine. Single crystals of the title compound suitable for X-ray diffraction was recrystallized from ethanol.

Refinement top

All H atoms were positioned geometrically, with C–H = 0.93-0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The C–H···O interactions, and Cl1···O halogen bond (dashed lines) in the title compound. [Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1; (ii) - x + 1, y - 1/2, -z + 3/2; (iv) x - 1/2, - y + 3/2, -z + 1.]
[Figure 3] Fig. 3. C–H···π interactions (dashed lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (iii) x + 1/2, - y + 1/2, - z + 1; (v) x - 1/2, - y + 1/2, - z + 1.]
3-(6-Benzyloxy-2,2-dimethylperhydrofuro[2,3-d][1,3]dioxolan-5-yl)- 5-(4-chlorophenyl)-4-nitro-2-phenyl-2,3,4,5-tetrahydroisoxazole top
Crystal data top
C29H29ClN2O7F(000) = 1160
Mr = 552.99Dx = 1.312 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3652 reflections
a = 12.7862 (5) Åθ = 2.5–25°
b = 13.0160 (5) ŵ = 0.19 mm1
c = 16.8232 (6) ÅT = 293 K
V = 2799.80 (18) Å3Needle, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4764 independent reflections
Radiation source: fine-focus sealed tube3446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 1515
Tmin = 0.926, Tmax = 0.964k = 1314
17056 measured reflectionsl = 1620
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2549P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.15 e Å3
4764 reflectionsΔρmin = 0.14 e Å3
355 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0045 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1975 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C29H29ClN2O7V = 2799.80 (18) Å3
Mr = 552.99Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.7862 (5) ŵ = 0.19 mm1
b = 13.0160 (5) ÅT = 293 K
c = 16.8232 (6) Å0.3 × 0.2 × 0.2 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4764 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
3446 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.964Rint = 0.034
17056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.15 e Å3
S = 1.02Δρmin = 0.14 e Å3
4764 reflectionsAbsolute structure: Flack (1983), 1975 Friedel pairs
355 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33984 (19)0.6866 (2)0.65294 (16)0.0602 (7)
H10.34150.64590.69830.072*
C20.2814 (2)0.7761 (2)0.65257 (18)0.0692 (7)
H20.24570.79640.69810.083*
C30.2765 (2)0.8340 (2)0.5857 (2)0.0673 (7)
C40.3326 (2)0.8082 (2)0.5200 (2)0.0760 (9)
H40.33010.84930.47490.091*
C50.3933 (2)0.7205 (2)0.52082 (18)0.0691 (8)
H50.43320.70390.47640.083*
C60.39575 (17)0.65738 (18)0.58632 (15)0.0471 (6)
C70.45334 (17)0.55719 (17)0.58177 (14)0.0455 (6)
H70.51810.56580.55130.055*
C80.38927 (17)0.46762 (17)0.54776 (13)0.0427 (6)
H80.31430.48080.55440.051*
C90.42248 (17)0.37460 (18)0.59803 (14)0.0434 (6)
H90.45360.32140.56430.052*
C100.33056 (15)0.33112 (18)0.64465 (14)0.0434 (6)
H100.30920.38020.68570.052*
C110.34793 (16)0.22621 (18)0.68184 (14)0.0448 (6)
H110.38310.23100.73350.054*
C120.23650 (18)0.18767 (19)0.68975 (14)0.0474 (6)
H120.23140.11260.68860.057*
C130.17952 (16)0.23875 (19)0.62140 (14)0.0460 (6)
H130.16060.18840.58050.055*
C140.08681 (19)0.2635 (2)0.73843 (15)0.0582 (7)
C150.0626 (3)0.3618 (3)0.7812 (2)0.1063 (12)
H15A0.11320.41310.76680.159*
H15B0.06530.35030.83750.159*
H15C0.00600.38490.76660.159*
C160.0104 (2)0.1788 (3)0.7552 (2)0.0866 (10)
H16A0.05750.19810.73590.130*
H16B0.00690.16690.81140.130*
H16C0.03280.11710.72890.130*
C170.4468 (2)0.0741 (2)0.66159 (16)0.0585 (7)
H17A0.39030.03190.68190.070*
H17B0.49170.09250.70580.070*
C180.50869 (17)0.01390 (19)0.60141 (15)0.0493 (6)
C190.5602 (2)0.0733 (2)0.62669 (19)0.0713 (8)
H190.55700.09280.67980.086*
C200.6160 (2)0.1312 (3)0.5736 (2)0.0875 (10)
H200.65070.18990.59100.105*
C210.6215 (2)0.1038 (3)0.4954 (2)0.0811 (9)
H210.65910.14390.45970.097*
C220.5717 (2)0.0176 (2)0.46998 (17)0.0713 (8)
H220.57570.00180.41690.086*
C230.5151 (2)0.0412 (2)0.52292 (16)0.0608 (7)
H230.48090.10000.50520.073*
C240.60915 (17)0.3964 (2)0.63870 (14)0.0489 (6)
C250.63995 (19)0.2974 (2)0.62056 (17)0.0639 (8)
H250.59050.24570.61400.077*
C260.7453 (2)0.2761 (3)0.61224 (17)0.0790 (9)
H260.76630.21000.59880.095*
C270.8194 (2)0.3512 (3)0.62345 (18)0.0847 (11)
H270.89010.33590.61870.102*
C280.7876 (2)0.4485 (3)0.64162 (19)0.0805 (10)
H280.83730.49990.64850.097*
C290.68311 (17)0.4720 (2)0.64995 (16)0.0618 (7)
H290.66260.53840.66310.074*
N10.50029 (14)0.41439 (15)0.65469 (12)0.0476 (5)
N20.4148 (2)0.45251 (17)0.46170 (13)0.0574 (6)
O10.47679 (12)0.52172 (12)0.66073 (9)0.0517 (4)
O20.4993 (2)0.4215 (2)0.44423 (13)0.0993 (8)
O30.3483 (2)0.4733 (2)0.41370 (13)0.1086 (8)
O40.24623 (11)0.31531 (12)0.59000 (9)0.0503 (4)
O50.19043 (12)0.23172 (14)0.75864 (9)0.0588 (5)
O60.08979 (12)0.28308 (14)0.65527 (10)0.0613 (5)
O70.40491 (11)0.16447 (12)0.62710 (9)0.0478 (4)
Cl10.19572 (8)0.94167 (6)0.58228 (7)0.1059 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0647 (16)0.0588 (18)0.0572 (16)0.0114 (14)0.0014 (14)0.0080 (14)
C20.0688 (17)0.070 (2)0.0692 (16)0.0167 (16)0.0049 (15)0.0232 (13)
C30.0706 (18)0.0432 (17)0.0883 (19)0.0018 (14)0.0139 (17)0.0167 (13)
C40.099 (2)0.0429 (18)0.086 (2)0.0020 (17)0.0028 (19)0.0106 (16)
C50.088 (2)0.0506 (18)0.0687 (19)0.0036 (16)0.0181 (16)0.0007 (15)
C60.0449 (13)0.0404 (15)0.0559 (15)0.0077 (11)0.0023 (12)0.0126 (13)
C70.0447 (13)0.0421 (15)0.0497 (15)0.0055 (11)0.0041 (11)0.0071 (12)
C80.0416 (12)0.0425 (14)0.0439 (14)0.0004 (11)0.0024 (10)0.0035 (11)
C90.0385 (12)0.0433 (15)0.0485 (14)0.0025 (10)0.0014 (11)0.0027 (12)
C100.0388 (12)0.0432 (15)0.0482 (14)0.0006 (11)0.0034 (10)0.0004 (11)
C110.0452 (13)0.0443 (15)0.0450 (13)0.0031 (11)0.0028 (11)0.0019 (12)
C120.0530 (14)0.0414 (15)0.0479 (14)0.0007 (12)0.0052 (11)0.0001 (12)
C130.0439 (12)0.0471 (15)0.0471 (13)0.0059 (12)0.0000 (10)0.0003 (12)
C140.0540 (15)0.0662 (19)0.0544 (16)0.0074 (14)0.0049 (13)0.0018 (14)
C150.120 (3)0.101 (3)0.099 (3)0.031 (2)0.007 (2)0.033 (2)
C160.0640 (18)0.104 (3)0.091 (2)0.0119 (19)0.0126 (16)0.026 (2)
C170.0702 (17)0.0496 (17)0.0556 (16)0.0215 (14)0.0020 (13)0.0105 (13)
C180.0447 (13)0.0441 (16)0.0592 (17)0.0053 (12)0.0004 (11)0.0064 (13)
C190.0730 (18)0.065 (2)0.076 (2)0.0201 (17)0.0068 (15)0.0156 (16)
C200.078 (2)0.069 (2)0.115 (3)0.0330 (17)0.018 (2)0.013 (2)
C210.0659 (19)0.065 (2)0.112 (3)0.0099 (17)0.0286 (18)0.014 (2)
C220.0799 (19)0.069 (2)0.0653 (19)0.0030 (18)0.0187 (16)0.0046 (16)
C230.0703 (17)0.0506 (17)0.0615 (18)0.0124 (14)0.0001 (14)0.0040 (14)
C240.0386 (13)0.0631 (19)0.0451 (15)0.0009 (13)0.0026 (11)0.0005 (12)
C250.0474 (14)0.070 (2)0.0742 (18)0.0103 (14)0.0031 (13)0.0081 (15)
C260.0579 (17)0.100 (3)0.080 (2)0.0289 (19)0.0031 (15)0.0037 (19)
C270.0411 (16)0.138 (3)0.075 (2)0.015 (2)0.0063 (14)0.023 (2)
C280.0423 (15)0.117 (3)0.082 (2)0.0142 (18)0.0024 (14)0.024 (2)
C290.0479 (14)0.0722 (19)0.0652 (17)0.0065 (14)0.0031 (12)0.0012 (15)
N10.0396 (11)0.0478 (13)0.0553 (12)0.0014 (9)0.0010 (9)0.0058 (10)
N20.0776 (15)0.0449 (13)0.0497 (14)0.0107 (12)0.0008 (13)0.0059 (11)
O10.0526 (9)0.0512 (11)0.0513 (11)0.0034 (8)0.0048 (7)0.0116 (9)
O20.1055 (18)0.123 (2)0.0690 (14)0.0167 (16)0.0285 (13)0.0203 (13)
O30.136 (2)0.125 (2)0.0645 (14)0.0038 (17)0.0251 (14)0.0137 (14)
O40.0404 (8)0.0540 (11)0.0565 (10)0.0071 (8)0.0082 (7)0.0133 (8)
O50.0541 (10)0.0757 (13)0.0465 (10)0.0024 (9)0.0008 (8)0.0010 (9)
O60.0485 (10)0.0762 (13)0.0591 (11)0.0070 (9)0.0053 (8)0.0097 (10)
O70.0547 (9)0.0422 (10)0.0467 (9)0.0116 (8)0.0005 (7)0.0056 (8)
Cl10.1104 (7)0.0618 (5)0.1454 (9)0.0290 (5)0.0323 (6)0.0224 (6)
Geometric parameters (Å, º) top
C1—C61.383 (3)C15—H15A0.9600
C1—C21.383 (4)C15—H15B0.9600
C1—H10.9300C15—H15C0.9600
C2—C31.355 (4)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.360 (4)C16—H16C0.9600
C3—Cl11.742 (3)C17—O71.417 (3)
C4—C51.380 (4)C17—C181.505 (3)
C4—H40.9300C17—H17A0.9700
C5—C61.375 (4)C17—H17B0.9700
C5—H50.9300C18—C231.370 (3)
C6—C71.500 (3)C18—C191.380 (3)
C7—O11.438 (3)C19—C201.369 (4)
C7—C81.535 (3)C19—H190.9300
C7—H70.9800C20—C211.364 (5)
C8—N21.497 (3)C20—H200.9300
C8—C91.537 (3)C21—C221.360 (4)
C8—H80.9800C21—H210.9300
C9—N11.472 (3)C22—C231.380 (4)
C9—C101.522 (3)C22—H220.9300
C9—H90.9800C23—H230.9300
C10—O41.432 (3)C24—C291.378 (3)
C10—C111.518 (3)C24—C251.382 (4)
C10—H100.9800C24—N11.437 (3)
C11—O71.423 (3)C25—C261.382 (4)
C11—C121.516 (3)C25—H250.9300
C11—H110.9800C26—C271.374 (4)
C12—O51.421 (3)C26—H260.9300
C12—C131.515 (3)C27—C281.366 (5)
C12—H120.9800C27—H270.9300
C13—O61.405 (3)C28—C291.377 (4)
C13—O41.414 (3)C28—H280.9300
C13—H130.9800C29—H290.9300
C14—O61.423 (3)N1—O11.433 (2)
C14—O51.429 (3)N2—O21.191 (3)
C14—C151.500 (4)N2—O31.203 (3)
C14—C161.500 (4)Cl1—O2i3.111 (3)
C6—C1—C2120.5 (3)C14—C15—H15A109.5
C6—C1—H1119.8C14—C15—H15B109.5
C2—C1—H1119.8H15A—C15—H15B109.5
C3—C2—C1119.8 (3)C14—C15—H15C109.5
C3—C2—H2120.1H15A—C15—H15C109.5
C1—C2—H2120.1H15B—C15—H15C109.5
C2—C3—C4120.8 (3)C14—C16—H16A109.5
C2—C3—Cl1120.2 (2)C14—C16—H16B109.5
C4—C3—Cl1119.0 (3)H16A—C16—H16B109.5
C3—C4—C5119.6 (3)C14—C16—H16C109.5
C3—C4—H4120.2H16A—C16—H16C109.5
C5—C4—H4120.2H16B—C16—H16C109.5
C6—C5—C4121.0 (3)O7—C17—C18110.8 (2)
C6—C5—H5119.5O7—C17—H17A109.5
C4—C5—H5119.5C18—C17—H17A109.5
C5—C6—C1118.3 (2)O7—C17—H17B109.5
C5—C6—C7119.3 (2)C18—C17—H17B109.5
C1—C6—C7122.3 (2)H17A—C17—H17B108.1
O1—C7—C6109.53 (18)C23—C18—C19118.9 (2)
O1—C7—C8102.22 (18)C23—C18—C17123.0 (2)
C6—C7—C8114.67 (18)C19—C18—C17118.2 (2)
O1—C7—H7110.0C20—C19—C18120.0 (3)
C6—C7—H7110.0C20—C19—H19120.0
C8—C7—H7110.0C18—C19—H19120.0
N2—C8—C7110.11 (18)C21—C20—C19120.8 (3)
N2—C8—C9111.63 (19)C21—C20—H20119.6
C7—C8—C9104.23 (17)C19—C20—H20119.6
N2—C8—H8110.2C22—C21—C20119.7 (3)
C7—C8—H8110.2C22—C21—H21120.2
C9—C8—H8110.2C20—C21—H21120.2
N1—C9—C10108.61 (18)C21—C22—C23120.0 (3)
N1—C9—C8105.42 (17)C21—C22—H22120.0
C10—C9—C8111.29 (18)C23—C22—H22120.0
N1—C9—H9110.5C18—C23—C22120.6 (3)
C10—C9—H9110.5C18—C23—H23119.7
C8—C9—H9110.5C22—C23—H23119.7
O4—C10—C11104.21 (17)C29—C24—C25120.1 (2)
O4—C10—C9107.70 (18)C29—C24—N1121.5 (2)
C11—C10—C9115.70 (18)C25—C24—N1118.0 (2)
O4—C10—H10109.7C24—C25—C26119.1 (3)
C11—C10—H10109.7C24—C25—H25120.4
C9—C10—H10109.7C26—C25—H25120.4
O7—C11—C12110.55 (18)C27—C26—C25121.1 (3)
O7—C11—C10108.43 (18)C27—C26—H26119.5
C12—C11—C10101.32 (17)C25—C26—H26119.5
O7—C11—H11112.0C28—C27—C26119.0 (3)
C12—C11—H11112.0C28—C27—H27120.5
C10—C11—H11112.0C26—C27—H27120.5
O5—C12—C13104.04 (18)C27—C28—C29121.2 (3)
O5—C12—C11109.12 (19)C27—C28—H28119.4
C13—C12—C11103.89 (18)C29—C28—H28119.4
O5—C12—H12113.0C28—C29—C24119.5 (3)
C13—C12—H12113.0C28—C29—H29120.2
C11—C12—H12113.0C24—C29—H29120.2
O6—C13—O4110.77 (19)O1—N1—C24112.06 (18)
O6—C13—C12105.37 (18)O1—N1—C9104.32 (16)
O4—C13—C12107.62 (17)C24—N1—C9118.42 (18)
O6—C13—H13111.0O2—N2—O3123.5 (3)
O4—C13—H13111.0O2—N2—C8118.8 (2)
C12—C13—H13111.0O3—N2—C8117.8 (2)
O6—C14—O5105.13 (18)N1—O1—C7106.94 (16)
O6—C14—C15108.9 (2)C13—O4—C10108.40 (16)
O5—C14—C15108.9 (2)C12—O5—C14107.88 (17)
O6—C14—C16109.5 (2)C13—O6—C14110.31 (18)
O5—C14—C16110.3 (2)C17—O7—C11113.41 (18)
C15—C14—C16113.8 (3)C3—Cl1—O2i160.74 (11)
C6—C1—C2—C31.9 (4)C17—C18—C23—C22179.1 (3)
C1—C2—C3—C43.4 (4)C21—C22—C23—C180.3 (4)
C1—C2—C3—Cl1175.3 (2)C29—C24—C25—C261.4 (4)
C2—C3—C4—C51.6 (4)N1—C24—C25—C26174.0 (2)
Cl1—C3—C4—C5177.2 (2)C24—C25—C26—C271.5 (4)
C3—C4—C5—C61.8 (4)C25—C26—C27—C281.2 (5)
C4—C5—C6—C13.2 (4)C26—C27—C28—C291.0 (5)
C4—C5—C6—C7173.4 (2)C27—C28—C29—C240.9 (4)
C2—C1—C6—C51.4 (4)C25—C24—C29—C281.1 (4)
C2—C1—C6—C7175.1 (2)N1—C24—C29—C28173.5 (2)
C5—C6—C7—O1160.2 (2)C29—C24—N1—O116.3 (3)
C1—C6—C7—O123.3 (3)C25—C24—N1—O1171.2 (2)
C5—C6—C7—C885.6 (3)C29—C24—N1—C9137.8 (2)
C1—C6—C7—C890.9 (3)C25—C24—N1—C949.7 (3)
O1—C7—C8—N2143.01 (19)C10—C9—N1—O195.32 (19)
C6—C7—C8—N298.6 (2)C8—C9—N1—O124.0 (2)
O1—C7—C8—C923.2 (2)C10—C9—N1—C24139.3 (2)
C6—C7—C8—C9141.6 (2)C8—C9—N1—C24101.3 (2)
N2—C8—C9—N1118.5 (2)C7—C8—N2—O268.6 (3)
C7—C8—C9—N10.3 (2)C9—C8—N2—O246.6 (3)
N2—C8—C9—C10124.0 (2)C7—C8—N2—O3110.8 (2)
C7—C8—C9—C10117.22 (19)C9—C8—N2—O3133.9 (2)
N1—C9—C10—O4166.62 (17)C24—N1—O1—C788.2 (2)
C8—C9—C10—O451.0 (2)C9—N1—O1—C741.12 (19)
N1—C9—C10—C1177.3 (2)C6—C7—O1—N1161.96 (16)
C8—C9—C10—C11167.08 (18)C8—C7—O1—N139.96 (19)
O4—C10—C11—O778.2 (2)O6—C13—O4—C10101.9 (2)
C9—C10—C11—O739.9 (2)C12—C13—O4—C1012.8 (2)
O4—C10—C11—C1238.2 (2)C11—C10—O4—C1332.4 (2)
C9—C10—C11—C12156.24 (19)C9—C10—O4—C13155.77 (18)
O7—C11—C12—O5164.63 (18)C13—C12—O5—C1426.3 (2)
C10—C11—C12—O580.6 (2)C11—C12—O5—C14136.67 (19)
O7—C11—C12—C1384.9 (2)O6—C14—O5—C1226.7 (3)
C10—C11—C12—C1329.9 (2)C15—C14—O5—C12143.2 (2)
O5—C12—C13—O615.9 (2)C16—C14—O5—C1291.3 (2)
C11—C12—C13—O6130.13 (19)O4—C13—O6—C14116.2 (2)
O5—C12—C13—O4102.3 (2)C12—C13—O6—C140.1 (3)
C11—C12—C13—O411.9 (2)O5—C14—O6—C1316.1 (3)
O7—C17—C18—C234.6 (3)C15—C14—O6—C13132.6 (2)
O7—C17—C18—C19176.1 (2)C16—C14—O6—C13102.4 (2)
C23—C18—C19—C200.3 (4)C18—C17—O7—C11178.33 (18)
C17—C18—C19—C20179.0 (3)C12—C11—O7—C1783.7 (2)
C18—C19—C20—C210.1 (5)C10—C11—O7—C17166.09 (18)
C19—C20—C21—C220.6 (5)C2—C3—Cl1—O2i90.1 (5)
C20—C21—C22—C230.7 (5)C4—C3—Cl1—O2i88.7 (5)
C19—C18—C23—C220.2 (4)
Symmetry code: (i) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2ii0.982.543.298 (3)134
C17—H17B···O1iii0.972.463.218 (3)135
C21—H21···Cg1ii0.932.753.598 (1)152
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC29H29ClN2O7
Mr552.99
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)12.7862 (5), 13.0160 (5), 16.8232 (6)
V3)2799.80 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.926, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
17056, 4764, 3446
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.02
No. of reflections4764
No. of parameters355
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14
Absolute structureFlack (1983), 1975 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.982.543.298 (3)133.7
C17—H17B···O1ii0.972.463.218 (3)134.8
C21—H21···Cg1i0.932.753.598 (1)152.0
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities. The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the X-ray data collection.

References

First citationBernotas, R. C., Adams, G. & Albert, C. A. (1996). Tetrahedron, 52, 6519–6526.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreuer, E. (1982). The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part I, edited by S. Patai, ch. 13. New York: Wiley Interscience.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967–2976.  CSD CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863–909.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133–10156.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2305-o2306
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds