Download citation
Download citation
link to html
In the title compound, [Sb(C5H8NS2)2Cl], the SbIII ion is coordinated by the four S atoms belonging to two pyrrolidine-1-dithio­carboxyl­ate ligands and a Cl atom in a distorted trigonal–bipyramidal geometry. The crystal structure is stabilized by inter­molecular Sb...S inter­actions of 3.689 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053962/lx2025sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053962/lx2025Isup2.hkl
Contains datablock I

CCDC reference: 625167

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.027
  • wR factor = 0.060
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 300 Deg.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Sb (3) 3.26
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Dithiocarbamates have been known as effective ligands for transition metal ions, which can form chelates (Xu et al., 2001) or act as bridging ligands (Bardaji et al., 1994). We have reported a similar compound, C10H16N2S4SbBr (Zhai et al., 2007). As part of our continuing studies on the chemistry of main-group metal complexes with dithiocarbamates, we have recently described the crystal structure of a similar compound, [SbBr(C5H8NS2]2, (Zhai et al., 2007). Herein we report the crystal structure of the title compound, bis(pyrrolidine-1-dithiocarboxylato-κ2S,S') chloridoantimony(III) (Fig. 1).

In the title compound (Fig. 1), the SbIII ion is coordinated by the four S atoms [Sb—S; 2.466 (1)–2.942 (1) Å] from two pyrrolidine-1-dithiocarboxylate ligands and a chloride atom in a distorted trigonal-bipyramid geometry, with S2, Cl in the axial sites and S1, S3, S4, Sb occupying the equatorial plane. The angles at Sb confirm that the complex has a distorted trigonal-bipyramid configuration. The short intermolecular distance Sb···S1i of 3.689 (1) Å suggests a presence of Sb···S interactions (Symmetry code as in Fig. 2).

Related literature top

For details of the versatile coordination fashions of dithiocarbamates, see: Bardaji et al. (1994) and Xu et al. (2001). For the crystal structure of a isomer of the title compound, see: Zhai et al. (2007).

Experimental top

The title compound were prepared by reaction of antimony trichloride (22.8 mg, 0.1 mmol) with the corresponding sodium dithiocarbamate (33.8 mg, 0.2 mmol), in absolute acetone. After stirring for 5 h at room temperature, the yellow paste was obtained and then filtered. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol/dichloromethane (1:2 v/v) solution over a period of two weeks (yield 85%. m.p. 421k).

Refinement top

All methylene H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: Please supply; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Sb···S interactions (dashed lines) in the title compound. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
Chloridobis(pyrrolidine-1-dithiocarboxylato- κ2S,S')antimony(III) top
Crystal data top
[Sb(C5H8NS2)2Cl]Z = 2
Mr = 449.69F(000) = 444
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -p_1Melting point: 421 K
a = 6.367 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.368 (3) ÅCell parameters from 2270 reflections
c = 13.414 (4) Åθ = 2.2–27.2°
α = 111.451 (3)°µ = 2.40 mm1
β = 91.950 (3)°T = 298 K
γ = 102.334 (3)°Block, yellow
V = 799.0 (4) Å30.43 × 0.22 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2764 independent reflections
Radiation source: fine-focus sealed tube2300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.6°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.540, Tmax = 0.748l = 1514
4147 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.5878P]
where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Sb(C5H8NS2)2Cl]γ = 102.334 (3)°
Mr = 449.69V = 799.0 (4) Å3
Triclinic, P1Z = 2
a = 6.367 (2) ÅMo Kα radiation
b = 10.368 (3) ŵ = 2.40 mm1
c = 13.414 (4) ÅT = 298 K
α = 111.451 (3)°0.43 × 0.22 × 0.12 mm
β = 91.950 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2764 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2300 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.748Rint = 0.016
4147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
2764 reflectionsΔρmin = 0.39 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb0.47864 (4)0.69539 (3)0.67024 (2)0.04236 (10)
Cl0.55811 (19)0.51311 (11)0.75268 (10)0.0617 (3)
N10.8661 (5)0.7553 (3)0.4252 (2)0.0407 (7)
N20.6570 (5)1.1281 (3)0.9245 (2)0.0422 (8)
S10.79220 (18)0.62807 (11)0.56520 (8)0.0470 (3)
S20.57692 (18)0.84792 (11)0.55290 (9)0.0494 (3)
S30.73312 (16)0.87619 (11)0.82510 (8)0.0461 (3)
S40.32233 (16)0.95228 (11)0.78277 (9)0.0492 (3)
C10.7584 (6)0.7455 (4)0.5043 (3)0.0409 (9)
C21.0227 (7)0.6709 (4)0.3792 (3)0.0491 (10)
H2A0.95010.57190.33700.059*
H2B1.12670.67460.43540.059*
C31.1315 (8)0.7439 (5)0.3083 (4)0.0653 (13)
H3A1.25430.82170.34910.078*
H3B1.18050.67660.24760.078*
C40.9570 (7)0.7985 (5)0.2707 (4)0.0607 (12)
H4A0.86400.72390.20870.073*
H4B1.01930.87850.25110.073*
C50.8312 (7)0.8447 (4)0.3655 (3)0.0493 (10)
H5A0.88650.94540.40970.059*
H5B0.67850.82720.34160.059*
C60.5738 (6)1.0000 (4)0.8510 (3)0.0373 (9)
C70.5537 (7)1.2488 (4)0.9503 (4)0.0542 (11)
H7A0.43851.23970.99460.065*
H7B0.49501.25530.88510.065*
C80.7370 (8)1.3764 (5)1.0113 (4)0.0682 (13)
H8A0.68351.45271.06200.082*
H8B0.81601.41190.96230.082*
C90.8783 (8)1.3204 (5)1.0696 (4)0.0726 (14)
H9A0.82281.31881.13570.087*
H9B1.02571.37901.08720.087*
C100.8697 (6)1.1707 (4)0.9909 (3)0.0513 (11)
H10A0.98731.17020.94680.062*
H10B0.87731.10741.02850.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb0.04020 (17)0.03755 (16)0.04356 (17)0.00320 (11)0.00365 (11)0.01315 (12)
Cl0.0679 (8)0.0477 (6)0.0738 (8)0.0122 (5)0.0030 (6)0.0298 (6)
N10.0409 (19)0.0416 (18)0.0417 (19)0.0116 (15)0.0013 (15)0.0180 (15)
N20.0419 (19)0.0383 (18)0.0404 (19)0.0063 (15)0.0001 (15)0.0105 (15)
S10.0551 (7)0.0439 (6)0.0477 (6)0.0167 (5)0.0046 (5)0.0214 (5)
S20.0574 (7)0.0480 (6)0.0487 (6)0.0223 (5)0.0068 (5)0.0201 (5)
S30.0399 (6)0.0441 (6)0.0479 (6)0.0109 (5)0.0091 (5)0.0112 (5)
S40.0333 (5)0.0490 (6)0.0586 (7)0.0080 (5)0.0051 (5)0.0149 (5)
C10.041 (2)0.034 (2)0.040 (2)0.0037 (17)0.0081 (18)0.0107 (17)
C20.046 (2)0.048 (2)0.059 (3)0.014 (2)0.007 (2)0.025 (2)
C30.064 (3)0.074 (3)0.077 (3)0.030 (3)0.026 (3)0.041 (3)
C40.063 (3)0.071 (3)0.061 (3)0.021 (2)0.014 (2)0.036 (3)
C50.053 (3)0.052 (2)0.050 (3)0.013 (2)0.001 (2)0.027 (2)
C60.033 (2)0.041 (2)0.037 (2)0.0022 (17)0.0027 (16)0.0185 (18)
C70.057 (3)0.043 (2)0.056 (3)0.016 (2)0.007 (2)0.010 (2)
C80.084 (4)0.046 (3)0.063 (3)0.006 (3)0.006 (3)0.012 (2)
C90.079 (4)0.056 (3)0.060 (3)0.006 (3)0.010 (3)0.009 (2)
C100.044 (2)0.056 (3)0.041 (2)0.000 (2)0.0083 (19)0.012 (2)
Geometric parameters (Å, º) top
Sb—S12.555 (1)C3—C41.499 (6)
Sb—S22.614 (1)C3—H3A0.9700
Sb—S32.466 (1)C3—H3B0.9700
Sb—S42.942 (1)C4—C51.509 (6)
Sb—S1i3.689 (2)C4—H4A0.9700
Sb—Cl2.636 (1)C4—H4B0.9700
N1—C11.306 (5)C5—H5A0.9700
N1—C21.469 (5)C5—H5B0.9700
N1—C51.473 (4)C7—C81.505 (6)
N2—C61.312 (5)C7—H7A0.9700
N2—C71.473 (5)C7—H7B0.9700
N2—C101.482 (5)C8—C91.505 (6)
S1—C11.739 (4)C8—H8A0.9700
S2—C11.719 (4)C8—H8B0.9700
S3—C61.747 (4)C9—C101.513 (6)
S4—C61.696 (4)C9—H9A0.9700
C2—C31.519 (5)C9—H9B0.9700
C2—H2A0.9700C10—H10A0.9700
C2—H2B0.9700C10—H10B0.9700
S3—Sb—S191.14 (4)C3—C4—C5105.1 (3)
S3—Sb—S291.50 (4)C3—C4—H4A110.7
S1—Sb—S269.56 (3)C5—C4—H4A110.7
S3—Sb—Cl84.64 (4)C3—C4—H4B110.7
S1—Sb—Cl82.23 (4)C5—C4—H4B110.7
S2—Sb—Cl151.46 (4)H4A—C4—H4B108.8
S3—Sb—S466.25 (4)N1—C5—C4103.4 (3)
S1—Sb—S4138.73 (3)N1—C5—H5A111.1
S2—Sb—S476.71 (4)C4—C5—H5A111.1
Cl—Sb—S4126.19 (4)N1—C5—H5B111.1
S3—Sb—S1i164.90 (3)C4—C5—H5B111.1
S1—Sb—S1i77.01 (4)H5A—C5—H5B109.0
S2—Sb—S1i93.03 (4)N2—C6—S4122.8 (3)
Cl—Sb—S1i84.50 (4)N2—C6—S3117.2 (3)
S4—Sb—S1i128.84 (3)S4—C6—S3120.0 (2)
C1—N1—C2124.6 (3)N2—C7—C8103.3 (3)
C1—N1—C5123.4 (3)N2—C7—H7A111.1
C2—N1—C5111.8 (3)C8—C7—H7A111.1
C6—N2—C7124.5 (3)N2—C7—H7B111.1
C6—N2—C10124.3 (3)C8—C7—H7B111.1
C7—N2—C10111.2 (3)H7A—C7—H7B109.1
C1—S1—Sb87.21 (14)C7—C8—C9104.1 (4)
C1—S2—Sb85.70 (13)C7—C8—H8A110.9
C6—S3—Sb93.81 (13)C9—C8—H8A110.9
C6—S4—Sb79.43 (13)C7—C8—H8B110.9
N1—C1—S2121.6 (3)C9—C8—H8B110.9
N1—C1—S1121.4 (3)H8A—C8—H8B109.0
S2—C1—S1117.0 (2)C8—C9—C10104.5 (4)
N1—C2—C3102.8 (3)C8—C9—H9A110.8
N1—C2—H2A111.2C10—C9—H9A110.8
C3—C2—H2A111.2C8—C9—H9B110.8
N1—C2—H2B111.2C10—C9—H9B110.8
C3—C2—H2B111.2H9A—C9—H9B108.9
H2A—C2—H2B109.1N2—C10—C9103.4 (3)
C4—C3—C2103.9 (3)N2—C10—H10A111.1
C4—C3—H3A111.0C9—C10—H10A111.1
C2—C3—H3A111.0N2—C10—H10B111.1
C4—C3—H3B111.0C9—C10—H10B111.1
C2—C3—H3B111.0H10A—C10—H10B109.0
H3A—C3—H3B109.0
S3—Sb—S1—C195.47 (13)Sb—S2—C1—S16.72 (19)
S2—Sb—S1—C14.29 (12)Sb—S1—C1—N1173.1 (3)
Cl—Sb—S1—C1179.90 (13)Sb—S1—C1—S26.9 (2)
S4—Sb—S1—C141.48 (14)C1—N1—C2—C3168.9 (4)
S1i—Sb—S1—C193.98 (13)C5—N1—C2—C315.7 (5)
S3—Sb—S2—C195.01 (13)N1—C2—C3—C431.5 (5)
S1—Sb—S2—C14.35 (13)C2—C3—C4—C536.4 (5)
Cl—Sb—S2—C113.47 (16)C1—N1—C5—C4169.2 (4)
S4—Sb—S2—C1160.16 (13)C2—N1—C5—C46.3 (4)
S1i—Sb—S2—C170.58 (13)C3—C4—C5—N126.3 (5)
S1—Sb—S3—C6140.29 (12)C7—N2—C6—S45.7 (5)
S2—Sb—S3—C670.71 (12)C10—N2—C6—S4175.7 (3)
Cl—Sb—S3—C6137.62 (12)C7—N2—C6—S3174.7 (3)
S4—Sb—S3—C64.06 (12)C10—N2—C6—S33.9 (5)
S1i—Sb—S3—C6178.18 (14)Sb—S4—C6—N2174.1 (3)
S3—Sb—S4—C64.24 (12)Sb—S4—C6—S36.34 (18)
S1—Sb—S4—C657.83 (13)Sb—S3—C6—N2172.9 (3)
S2—Sb—S4—C693.42 (12)Sb—S3—C6—S47.5 (2)
Cl—Sb—S4—C667.61 (13)C6—N2—C7—C8163.2 (4)
S1i—Sb—S4—C6176.51 (12)C10—N2—C7—C815.6 (4)
C2—N1—C1—S2179.7 (3)N2—C7—C8—C932.2 (5)
C5—N1—C1—S24.8 (5)C7—C8—C9—C1037.3 (5)
C2—N1—C1—S10.3 (5)C6—N2—C10—C9174.1 (4)
C5—N1—C1—S1175.2 (3)C7—N2—C10—C97.1 (4)
Sb—S2—C1—N1173.3 (3)C8—C9—C10—N227.1 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sb(C5H8NS2)2Cl]
Mr449.69
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.367 (2), 10.368 (3), 13.414 (4)
α, β, γ (°)111.451 (3), 91.950 (3), 102.334 (3)
V3)799.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.43 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.540, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
4147, 2764, 2300
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.06
No. of reflections2764
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.39

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), Please supply, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds