organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Iodo­phen­yl)isoindoline-1,3-dione

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey
*Correspondence e-mail: gunesd@omu.edu.tr

(Received 18 February 2011; accepted 21 February 2011; online 12 March 2011)

In the title compound, C14H8INO2, the dihedral angle between the isoindole ring and the phenyl ring of the 1-iodo­benzene group is 84.77 (15)°. There is a short inter­molecular I⋯O contact of 3.068 (3) Å in the crystal.

Related literature

For the biological activity of phthalimides, see: Kerrigan et al. (2000[Kerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B. & Christopher, L. J. (2000). Bioorg. Med. Chem. Lett. 10, 27-30.]); Lima et al. (2002[Lima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., Gonçalves de Moraes, V. L. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 10, 3067-3073.]). For the crystal structures of phthalimide derivatives, see: Devarajegowda et al. (2010[Devarajegowda, H. C., Revanasiddappa, H. D., Kumar, L. S., Sumangala, V. & Prasad, V. D. J. (2010). Acta Cryst. E66, o2703.]); Sakthivel et al. (2007a[Sakthivel, P., Joseph, P. S., Sebastiyan, A., Ramesh, M. & Suvaikin, M. Y. (2007a). Acta Cryst. E63, o4284.],b[Sakthivel, P., Joseph, P. S., Sebastiyan, A., Suvaikin, M. Y. & Ramesh, M. (2007b). Acta Cryst. E63, o4388.]); Nagaraj et al. (2005[Nagaraj, B., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o928-o929.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8INO2

  • Mr = 349.11

  • Monoclinic, P 21 /c

  • a = 11.5318 (5) Å

  • b = 8.0597 (2) Å

  • c = 15.6134 (7) Å

  • β = 118.157 (3)°

  • V = 1279.42 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.50 mm−1

  • T = 296 K

  • 0.69 × 0.51 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.291, Tmax = 0.590

  • 13075 measured reflections

  • 2517 independent reflections

  • 2434 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.11

  • 2517 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The importance of the biological activity of the phthalimide group with reference to N-2-Iodophenylphthalimide is described by Kerrigan et al., (2000) and Lima et al., (2002).

The C—C bond distances are 1.485 (4) Å for C1—C2 and 1.481 (4)Å for C7—C8. The bond distances between carbon atoms in the aromatic rings range from 1.369 (6)Å to 1.390 (5)Å. The C1=O1 and C8=O2 bond distances are 1.204 (3)Å and 1.196 (4)Å, respectively. The N—C bond distances range from 1.399 (4) Å to 1.432 (4)Å. These values are consistent with those reported in the literature (Devarajegowda et al., 2010; Sakthivel et al., 2007a; Sakthivel et al.2007b; Nagaraj et al., 2005). C10—I1 bond distance is 2.094 (3) Å. An intermolecular I1···O2 contact of 3.068 (3)Å is present in the crystal.

Related literature top

For the biological activity of phthalimides, see: Kerrigan et al. (2000); Lima et al. (2002). For the crystal structures of phthalimide derivatives, see: Devarajegowda et al. (2010); Sakthivel et al. (2007a,b); Nagaraj et al. (2005).

Experimental top

The compound N-2-Iodophenylphthalimide was prepared by refluxing a mixture of a solution containing N-hydroxyphthalimide (0.0113 g 0.069 mmol) in 20 ml ethanol and a solution containing 4-amino-4-methylphenol (0.0303 g 0.069 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1h under reflux. The crystals of N-2-Iodophenylphthalimide suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield % 41; m.p 180.3–184.0 oC).

Refinement top

All hydrogen atoms were positioned geometrically (C—H=0.93 Å) and treated as riding with Uiso(H)=1.1Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1999) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound in the unit cell.
2-(2-Iodophenyl)isoindoline-1,3-dione top
Crystal data top
C14H8INO2F(000) = 672
Mr = 349.11Dx = 1.812 Mg m3
Monoclinic, P21/cMelting point: 455 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.5318 (5) ÅCell parameters from 26549 reflections
b = 8.0597 (2) Åθ = 1.8–28.0°
c = 15.6134 (7) ŵ = 2.50 mm1
β = 118.157 (3)°T = 296 K
V = 1279.42 (9) Å3Prism, red
Z = 40.69 × 0.51 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
2517 independent reflections
Radiation source: fine-focus sealed tube2434 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
rotation method scansθmax = 26.0°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1414
Tmin = 0.291, Tmax = 0.590k = 99
13075 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.3378P]
where P = (Fo2 + 2Fc2)/3
2517 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
C14H8INO2V = 1279.42 (9) Å3
Mr = 349.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5318 (5) ŵ = 2.50 mm1
b = 8.0597 (2) ÅT = 296 K
c = 15.6134 (7) Å0.69 × 0.51 × 0.28 mm
β = 118.157 (3)°
Data collection top
Stoe IPDS 2
diffractometer
2517 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2434 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.590Rint = 0.033
13075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.11Δρmax = 0.82 e Å3
2517 reflectionsΔρmin = 1.05 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6644 (3)0.2407 (4)0.1170 (2)0.0391 (6)
C20.6487 (3)0.3409 (4)0.1906 (2)0.0388 (6)
C30.5850 (3)0.4891 (4)0.1819 (2)0.0500 (7)
H30.54180.54380.12250.060*
C40.5880 (4)0.5537 (5)0.2652 (3)0.0581 (8)
H40.54850.65570.26220.070*
C50.6482 (4)0.4699 (5)0.3524 (3)0.0588 (9)
H50.64690.51560.40660.071*
C60.7105 (4)0.3194 (4)0.3610 (2)0.0535 (8)
H60.75060.26240.41970.064*
C70.7105 (3)0.2578 (4)0.2786 (2)0.0405 (6)
C80.7669 (3)0.1017 (4)0.2642 (2)0.0445 (6)
C90.7720 (3)0.0319 (3)0.12144 (19)0.0392 (6)
C100.8848 (3)0.0215 (4)0.1120 (2)0.0425 (6)
C110.9183 (4)0.1504 (5)0.0691 (2)0.0540 (8)
H110.99390.14330.06210.065*
C120.8393 (5)0.2892 (4)0.0369 (3)0.0630 (10)
H120.86210.37620.00870.076*
C130.7274 (5)0.2994 (4)0.0464 (3)0.0627 (10)
H130.67440.39330.02430.075*
C140.6924 (4)0.1705 (4)0.0887 (3)0.0527 (8)
H140.61620.17740.09490.063*
I11.00579 (2)0.18859 (3)0.158933 (17)0.06096 (11)
N10.7345 (2)0.0987 (3)0.16550 (16)0.0399 (5)
O10.6253 (2)0.2689 (3)0.03201 (15)0.0534 (5)
O20.8266 (3)0.0042 (3)0.32190 (18)0.0722 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (14)0.0404 (14)0.0373 (14)0.0006 (12)0.0207 (12)0.0023 (12)
C20.0407 (14)0.0423 (14)0.0353 (13)0.0008 (11)0.0196 (12)0.0009 (11)
C30.0539 (17)0.0491 (17)0.0505 (16)0.0086 (14)0.0277 (14)0.0063 (14)
C40.060 (2)0.0550 (19)0.065 (2)0.0098 (16)0.0335 (17)0.0071 (16)
C50.0586 (19)0.071 (2)0.0498 (17)0.0052 (17)0.0283 (16)0.0170 (16)
C60.0536 (18)0.070 (2)0.0362 (15)0.0082 (15)0.0204 (14)0.0010 (14)
C70.0411 (14)0.0462 (15)0.0354 (13)0.0040 (12)0.0192 (12)0.0000 (12)
C80.0501 (16)0.0492 (17)0.0353 (13)0.0087 (13)0.0211 (12)0.0053 (12)
C90.0462 (15)0.0376 (14)0.0340 (13)0.0001 (11)0.0191 (12)0.0003 (11)
C100.0453 (15)0.0443 (15)0.0374 (14)0.0020 (12)0.0191 (12)0.0035 (12)
C110.0600 (19)0.0583 (19)0.0499 (17)0.0068 (16)0.0309 (16)0.0063 (15)
C120.089 (3)0.0476 (18)0.058 (2)0.0041 (17)0.039 (2)0.0110 (15)
C130.087 (3)0.0417 (17)0.061 (2)0.0143 (17)0.037 (2)0.0098 (15)
C140.064 (2)0.0464 (17)0.0532 (18)0.0091 (14)0.0324 (16)0.0014 (14)
I10.05713 (16)0.06921 (18)0.05964 (17)0.02284 (10)0.03011 (12)0.02193 (10)
N10.0480 (13)0.0408 (12)0.0341 (11)0.0045 (10)0.0222 (10)0.0021 (9)
O10.0687 (15)0.0578 (13)0.0354 (11)0.0109 (11)0.0259 (11)0.0079 (10)
O20.102 (2)0.0705 (16)0.0473 (13)0.0420 (16)0.0381 (14)0.0217 (12)
Geometric parameters (Å, º) top
C1—O11.204 (3)C8—O21.196 (4)
C1—N11.399 (4)C8—N11.403 (3)
C1—C21.485 (4)C9—C101.379 (4)
C2—C31.374 (4)C9—C141.382 (4)
C2—C71.385 (4)C9—N11.432 (4)
C3—C41.387 (5)C10—C111.385 (4)
C3—H30.9300C10—I12.094 (3)
C4—C51.377 (5)C11—C121.379 (5)
C4—H40.9300C11—H110.9300
C5—C61.384 (5)C12—C131.369 (6)
C5—H50.9300C12—H120.9300
C6—C71.379 (4)C13—C141.390 (5)
C6—H60.9300C13—H130.9300
C7—C81.481 (4)C14—H140.9300
O1—C1—N1124.8 (3)N1—C8—C7105.8 (2)
O1—C1—C2129.2 (3)C10—C9—C14120.4 (3)
N1—C1—C2106.0 (2)C10—C9—N1121.4 (3)
C3—C2—C7121.3 (3)C14—C9—N1118.2 (3)
C3—C2—C1130.5 (3)C9—C10—C11119.9 (3)
C7—C2—C1108.1 (2)C9—C10—I1121.2 (2)
C2—C3—C4117.2 (3)C11—C10—I1118.9 (2)
C2—C3—H3121.4C12—C11—C10119.8 (3)
C4—C3—H3121.4C12—C11—H11120.1
C5—C4—C3121.4 (3)C10—C11—H11120.1
C5—C4—H4119.3C13—C12—C11120.2 (3)
C3—C4—H4119.3C13—C12—H12119.9
C4—C5—C6121.5 (3)C11—C12—H12119.9
C4—C5—H5119.3C12—C13—C14120.4 (3)
C6—C5—H5119.3C12—C13—H13119.8
C7—C6—C5117.0 (3)C14—C13—H13119.8
C7—C6—H6121.5C9—C14—C13119.2 (3)
C5—C6—H6121.5C9—C14—H14120.4
C6—C7—C2121.6 (3)C13—C14—H14120.4
C6—C7—C8129.9 (3)C1—N1—C8111.5 (2)
C2—C7—C8108.5 (2)C1—N1—C9124.7 (2)
O2—C8—N1125.1 (3)C8—N1—C9123.7 (2)
O2—C8—C7129.0 (3)
O1—C1—C2—C31.0 (6)C14—C9—C10—I1179.0 (2)
N1—C1—C2—C3178.1 (3)N1—C9—C10—I11.4 (4)
O1—C1—C2—C7180.0 (3)C9—C10—C11—C120.6 (5)
N1—C1—C2—C70.9 (3)I1—C10—C11—C12179.4 (3)
C7—C2—C3—C41.5 (5)C10—C11—C12—C130.6 (6)
C1—C2—C3—C4179.7 (3)C11—C12—C13—C140.2 (6)
C2—C3—C4—C52.2 (5)C10—C9—C14—C130.1 (5)
C3—C4—C5—C61.3 (6)N1—C9—C14—C13179.5 (3)
C4—C5—C6—C70.5 (6)C12—C13—C14—C90.2 (6)
C5—C6—C7—C21.2 (5)O1—C1—N1—C8179.7 (3)
C5—C6—C7—C8179.4 (3)C2—C1—N1—C81.2 (3)
C3—C2—C7—C60.3 (5)O1—C1—N1—C91.3 (5)
C1—C2—C7—C6178.8 (3)C2—C1—N1—C9179.6 (3)
C3—C2—C7—C8178.8 (3)O2—C8—N1—C1180.0 (3)
C1—C2—C7—C80.3 (3)C7—C8—N1—C11.0 (3)
C6—C7—C8—O21.0 (6)O2—C8—N1—C91.5 (5)
C2—C7—C8—O2179.4 (4)C7—C8—N1—C9179.4 (3)
C6—C7—C8—N1178.0 (3)C10—C9—N1—C184.2 (4)
C2—C7—C8—N10.4 (3)C14—C9—N1—C196.2 (3)
C14—C9—C10—C110.3 (4)C10—C9—N1—C894.1 (4)
N1—C9—C10—C11179.9 (3)C14—C9—N1—C885.6 (4)

Experimental details

Crystal data
Chemical formulaC14H8INO2
Mr349.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.5318 (5), 8.0597 (2), 15.6134 (7)
β (°) 118.157 (3)
V3)1279.42 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.69 × 0.51 × 0.28
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.291, 0.590
No. of measured, independent and
observed [I > 2σ(I)] reflections
13075, 2517, 2434
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.11
No. of reflections2517
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.05

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), WinGX (Farrugia, 1999) and SHELXS97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thanks the Ondokuz Mayis University Research Fund for financial support of this project.

References

First citationDevarajegowda, H. C., Revanasiddappa, H. D., Kumar, L. S., Sumangala, V. & Prasad, V. D. J. (2010). Acta Cryst. E66, o2703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B. & Christopher, L. J. (2000). Bioorg. Med. Chem. Lett. 10, 27–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., Gonçalves de Moraes, V. L. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 10, 3067–3073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNagaraj, B., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o928–o929.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakthivel, P., Joseph, P. S., Sebastiyan, A., Ramesh, M. & Suvaikin, M. Y. (2007a). Acta Cryst. E63, o4284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakthivel, P., Joseph, P. S., Sebastiyan, A., Suvaikin, M. Y. & Ramesh, M. (2007b). Acta Cryst. E63, o4388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds