Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title cocrystal, C6H9N3O2·C8H6O4, both carboxylic acid groups of phthalic acid form an R22(8) ring motif (through N—H...O and O—H...N hydrogen bonds) on either side of the 2-amino-4,6-dimethoxy­pyrimidine mol­ecule, generating a helical chain along the b axis. This chain is inter­penetrated by a centrosymmetrically related chain to which it is linked by π–π stacking [perpendicular separation 3.332 Å, centroid–centroid distance 3.6424 (7) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047447/lw2035sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047447/lw2035Isup2.hkl
Contains datablock I

CCDC reference: 609700

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.114
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.08 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C6 H9 N3 O2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Aminopyrimidine-carboxylate interactions are of fundamental important since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). The adducts of carboxylic acid with 2-amino heterocylic ring system have a graph-set motif [R22(8)] (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine- carboxylic acid/ carboxylate systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Muthiah et al., 2006) and cocrystals (Chinnakali et al., 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine (Low et al., 2002) and 2-amino-4,6-dimethoxypyrimidine-4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006) have also been reported. The crystal structure of phthalic acid (Van Schalkwyk, 1954) is known. The present study investigates the hydrogen bonding patterns in 2-amino-4,6-dimethoxy pyrimidine: phthalic acid (1/1) cocrystal(I).

The asymmetric unit (Fig 1) contains one 2-amino-4,6-dimethoxypyrimidine molecule and one phthalic acid molecule, which are linked by N—H···O and O—H···N intermolecular hydrogen bonds involving the nitrogen (N1) atom and 2-amino (NH2) group of the pyrimidine ring and carboxyl oxygen atoms (O3 and O4) to form a eight membered ring motif of graph-set notation of [R22(8)] (Etter, 1990; Bernstein et al., 1995). The another nitrogen atom (N3) and 2-amino (NH2) group of the pyrimidine ring also interact with carboxyl oxygen atoms (O5 and O6) to form a similar eight membered ring motif, generating a helical chain (made up of alternating pyrimidine and phthalic acid molecules) along the b axis (Fig 2). This chain is interpenetrated by a centrosymmetrically related chain (Fig 3) to which it is linked by π-π stacking of pyrimidines with a perpendicular separation of 3.332 Å, a centroid-centroid distance of 3.6424 (7) Å, ring offset of 1.471 Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 23.81° These are typical aromatic stacking values (Hunter, 1994).

Related literature top

For related literature, see: Baker & Santi (1965); Bernstein et al. (1995); Chinnakali et al. (1999); Etter (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah et al. (2006); Schwalbe & Williams (1982); Thanigaimani et al. (2006); Van Schalkwyk (1954).

Experimental top

A hot methanolic solution (20 ml) of 2-amino-4,6-dimethoxy pyrimidine (38 mg, Aldrich) and phthalic acid (41 mg, Loba chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate-like crystals were obtained.

Refinement top

All H atoms were positioned geometrically and were refined using a riding model. The C—H, O—H and N—H bond lengths are 0.93–0.96, 0.82 and 0.86 Å, respectively [Uiso (H)=1.2 Ueq(parent atom)].

Structure description top

Aminopyrimidine-carboxylate interactions are of fundamental important since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). The adducts of carboxylic acid with 2-amino heterocylic ring system have a graph-set motif [R22(8)] (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine- carboxylic acid/ carboxylate systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Muthiah et al., 2006) and cocrystals (Chinnakali et al., 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine (Low et al., 2002) and 2-amino-4,6-dimethoxypyrimidine-4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006) have also been reported. The crystal structure of phthalic acid (Van Schalkwyk, 1954) is known. The present study investigates the hydrogen bonding patterns in 2-amino-4,6-dimethoxy pyrimidine: phthalic acid (1/1) cocrystal(I).

The asymmetric unit (Fig 1) contains one 2-amino-4,6-dimethoxypyrimidine molecule and one phthalic acid molecule, which are linked by N—H···O and O—H···N intermolecular hydrogen bonds involving the nitrogen (N1) atom and 2-amino (NH2) group of the pyrimidine ring and carboxyl oxygen atoms (O3 and O4) to form a eight membered ring motif of graph-set notation of [R22(8)] (Etter, 1990; Bernstein et al., 1995). The another nitrogen atom (N3) and 2-amino (NH2) group of the pyrimidine ring also interact with carboxyl oxygen atoms (O5 and O6) to form a similar eight membered ring motif, generating a helical chain (made up of alternating pyrimidine and phthalic acid molecules) along the b axis (Fig 2). This chain is interpenetrated by a centrosymmetrically related chain (Fig 3) to which it is linked by π-π stacking of pyrimidines with a perpendicular separation of 3.332 Å, a centroid-centroid distance of 3.6424 (7) Å, ring offset of 1.471 Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 23.81° These are typical aromatic stacking values (Hunter, 1994).

For related literature, see: Baker & Santi (1965); Bernstein et al. (1995); Chinnakali et al. (1999); Etter (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah et al. (2006); Schwalbe & Williams (1982); Thanigaimani et al. (2006); Van Schalkwyk (1954).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Helical chain containing alternative pyrimidine and phthalic acid molecules (I) [symmetry code: (i) -x + 2, y + 1/2, -z + 1/2 (ii) -x + 2, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. Two interpenetrated centrosymmetrically related helical chain along the b axis (I).
2-amino-4,6-dimethoxypyrimidine–phthalic acid (1/1) top
Crystal data top
C6H9N3O2·C8H6O4F(000) = 672
Mr = 321.29Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.2175 (3) Åθ = 2.9–27.5°
b = 7.3323 (2) ŵ = 0.12 mm1
c = 17.7651 (4) ÅT = 120 K
β = 90.776 (2)°Plate, colourless
V = 1461.05 (6) Å30.50 × 0.40 × 0.25 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2748 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
φ and ω scansh = 1414
17905 measured reflectionsk = 99
3328 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.062P)2 + 0.4007P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3328 reflectionsΔρmax = 0.33 e Å3
211 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (4)
Crystal data top
C6H9N3O2·C8H6O4V = 1461.05 (6) Å3
Mr = 321.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2175 (3) ŵ = 0.12 mm1
b = 7.3323 (2) ÅT = 120 K
c = 17.7651 (4) Å0.50 × 0.40 × 0.25 mm
β = 90.776 (2)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2748 reflections with I > 2σ(I)
17905 measured reflectionsRint = 0.029
3328 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
3328 reflectionsΔρmin = 0.30 e Å3
211 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.33166 (8)0.41207 (13)0.01434 (5)0.0234 (3)
O20.94377 (8)0.19097 (15)0.08929 (5)0.0270 (3)
N10.99024 (9)0.26729 (16)0.02820 (6)0.0207 (3)
N21.03481 (10)0.33885 (18)0.15133 (6)0.0275 (4)
N31.18347 (9)0.37441 (15)0.06527 (6)0.0206 (3)
C21.07043 (11)0.32599 (18)0.08002 (7)0.0202 (4)
C41.21785 (11)0.35975 (17)0.00621 (7)0.0190 (3)
C51.14427 (11)0.29757 (18)0.06394 (7)0.0205 (3)
C61.02900 (11)0.25317 (18)0.04249 (7)0.0203 (4)
C71.38345 (12)0.39831 (19)0.08761 (7)0.0248 (4)
C80.97333 (13)0.1688 (2)0.16733 (7)0.0313 (5)
O30.76763 (8)0.15122 (14)0.05538 (5)0.0255 (3)
O40.79349 (9)0.23059 (17)0.17615 (5)0.0361 (4)
O50.76904 (9)0.13437 (16)0.24381 (5)0.0335 (3)
O60.65842 (8)0.00257 (14)0.33283 (5)0.0266 (3)
C90.61256 (11)0.08770 (17)0.13920 (7)0.0189 (3)
C100.58606 (11)0.00391 (17)0.20794 (7)0.0191 (3)
C110.47029 (11)0.05260 (19)0.22163 (8)0.0246 (4)
C120.38160 (12)0.0300 (2)0.16694 (9)0.0293 (4)
C130.40797 (12)0.0508 (2)0.09912 (8)0.0283 (4)
C140.52267 (11)0.11137 (19)0.08528 (7)0.0230 (4)
C150.73442 (11)0.16274 (18)0.12583 (7)0.0202 (4)
C160.68190 (11)0.04810 (18)0.26337 (7)0.0206 (4)
H2A1.083500.376900.185700.0330*
H2B0.963200.309100.162900.0330*
H51.169900.286300.113300.0250*
H7A1.464400.440600.085300.0370*
H7B1.338600.471700.122600.0370*
H7C1.382000.273400.103800.0370*
H8A0.905100.123500.194600.0470*
H8B1.037900.083700.171600.0470*
H8C0.996700.284300.187800.0470*
H30.835200.192500.051400.0380*
H60.711700.040000.360900.0400*
H110.451900.105800.267600.0300*
H120.304400.069500.176100.0350*
H130.348600.064800.062500.0340*
H140.539600.168000.039800.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (4)0.0317 (5)0.0188 (4)0.0030 (4)0.0051 (3)0.0006 (4)
O20.0199 (5)0.0452 (6)0.0160 (4)0.0030 (4)0.0022 (3)0.0057 (4)
N10.0188 (5)0.0277 (6)0.0156 (5)0.0002 (4)0.0027 (4)0.0000 (4)
N20.0186 (5)0.0486 (8)0.0155 (5)0.0066 (5)0.0037 (4)0.0022 (5)
N30.0189 (5)0.0263 (6)0.0165 (5)0.0003 (4)0.0022 (4)0.0002 (4)
C20.0193 (6)0.0232 (7)0.0181 (6)0.0013 (5)0.0015 (5)0.0014 (5)
C40.0187 (6)0.0196 (6)0.0188 (6)0.0025 (5)0.0035 (5)0.0022 (5)
C50.0224 (6)0.0247 (7)0.0145 (5)0.0017 (5)0.0037 (5)0.0003 (5)
C60.0209 (6)0.0228 (7)0.0173 (6)0.0027 (5)0.0007 (5)0.0002 (5)
C70.0242 (7)0.0273 (7)0.0231 (6)0.0019 (5)0.0099 (5)0.0009 (6)
C80.0248 (7)0.0522 (10)0.0170 (6)0.0034 (6)0.0021 (5)0.0083 (6)
O30.0210 (5)0.0382 (6)0.0174 (5)0.0054 (4)0.0041 (4)0.0006 (4)
O40.0277 (5)0.0595 (8)0.0212 (5)0.0182 (5)0.0044 (4)0.0079 (5)
O50.0236 (5)0.0565 (7)0.0204 (5)0.0149 (5)0.0017 (4)0.0024 (5)
O60.0273 (5)0.0363 (6)0.0162 (4)0.0104 (4)0.0020 (4)0.0001 (4)
C90.0197 (6)0.0190 (6)0.0180 (6)0.0009 (5)0.0011 (5)0.0018 (5)
C100.0192 (6)0.0185 (6)0.0198 (6)0.0023 (5)0.0030 (5)0.0011 (5)
C110.0225 (6)0.0233 (7)0.0282 (7)0.0008 (5)0.0071 (5)0.0016 (6)
C120.0164 (6)0.0305 (8)0.0411 (8)0.0022 (5)0.0036 (6)0.0023 (6)
C130.0218 (7)0.0295 (8)0.0334 (8)0.0043 (5)0.0062 (5)0.0011 (6)
C140.0242 (6)0.0225 (7)0.0223 (6)0.0021 (5)0.0017 (5)0.0008 (5)
C150.0208 (6)0.0225 (7)0.0173 (6)0.0011 (5)0.0024 (5)0.0028 (5)
C160.0201 (6)0.0238 (7)0.0180 (6)0.0001 (5)0.0039 (5)0.0016 (5)
Geometric parameters (Å, º) top
O1—C41.3427 (15)C5—H50.9300
O1—C71.4361 (15)C7—H7B0.9600
O2—C61.3386 (16)C7—H7A0.9600
O2—C81.4391 (15)C7—H7C0.9600
O3—C151.3134 (15)C8—H8C0.9600
O4—C151.2123 (16)C8—H8A0.9600
O5—C161.2188 (16)C8—H8B0.9600
O6—C161.3086 (15)C9—C101.4025 (18)
O3—H30.8200C9—C151.4955 (18)
O6—H60.8200C9—C141.3922 (18)
N1—C21.3489 (16)C10—C161.4974 (18)
N1—C61.3385 (16)C10—C111.3878 (18)
N2—C21.3368 (16)C11—C121.391 (2)
N3—C41.3364 (16)C12—C131.378 (2)
N3—C21.3460 (16)C13—C141.3863 (18)
N2—H2B0.8600C11—H110.9300
N2—H2A0.8600C12—H120.9300
C4—C51.3849 (18)C13—H130.9300
C5—C61.3916 (18)C14—H140.9300
O3···N12.6881 (14)C13···H14v3.0100
O4···C162.8629 (17)C14···H14v3.1000
O4···N22.8609 (15)C14···H7Cii3.0300
O4···O52.9479 (16)C15···H7Bvi2.8000
O5···O42.9479 (16)C15···H2B2.8500
O5···N2i2.8704 (15)C16···H2Ai2.8300
O5···C8ii3.2199 (17)H2A···C16iii2.8300
O5···C153.0443 (17)H2A···O5iii2.0600
O6···N3i2.6738 (14)H2A···H6iii2.5300
O1···H6iii2.8000H2A···C8vii2.9200
O1···H13iv2.8900H2B···O42.0100
O2···H32.8000H2B···C8vii3.0200
O3···H142.5700H2B···H32.5800
O3···H13v2.9200H2B···C152.8500
O4···H7Bvi2.8000H3···C22.8500
O4···H2B2.0100H3···N11.8700
O4···H8Avii2.8100H3···O22.8000
O5···H2Ai2.0600H3···C62.7900
O5···H8Bii2.5600H3···H2B2.5800
O5···H5ii2.6700H5···C72.5700
O6···H112.6900H5···O5ii2.6700
O6···H7Aviii2.6700H5···H8C2.3400
N1···O32.6881 (14)H5···C82.5400
N2···O5iii2.8704 (15)H5···H7B2.3400
N2···O42.8609 (15)H5···H7C2.3800
N2···C8vii3.3041 (17)H5···H8B2.3300
N3···O6iii2.6738 (14)H6···C4i2.7900
N3···C16iii3.4273 (16)H6···H2Ai2.5300
N1···H31.8700H6···C2i2.8200
N2···H8Cvi2.8600H6···N3i1.8600
N3···H6iii1.8600H6···O1i2.8000
N3···H13iv2.9300H7A···O6xii2.6700
C2···C6vi3.3452 (19)H7B···C52.7400
C6···C2vi3.3452 (19)H7B···C15vi2.8000
C7···C15vi3.5417 (19)H7B···H11xii2.5400
C8···O5ii3.2199 (17)H7B···O4vi2.8000
C8···N2ix3.3041 (17)H7B···H52.3400
C10···C11x3.5441 (19)H7C···H52.3800
C11···C10xi3.5441 (19)H7C···C9ii2.7200
C13···C14v3.5805 (19)H7C···C14ii3.0300
C14···C14v3.4735 (18)H7C···C10ii2.7800
C14···C13v3.5805 (19)H7C···C52.7700
C15···O53.0443 (17)H8A···H12v2.4100
C15···C7vi3.5417 (19)H8A···O4ix2.8100
C16···O42.8629 (17)H8B···H52.3300
C16···N3i3.4273 (16)H8B···O5ii2.5600
C2···H6iii2.8200H8B···C52.7300
C2···H32.8500H8C···N2vi2.8600
C4···H6iii2.7900H8C···C52.7400
C4···H13iv2.8800H8C···H52.3400
C5···H7C2.7700H11···O62.6900
C5···H8B2.7300H11···C9xi2.8900
C5···H8C2.7400H11···C10xi2.9300
C5···H7B2.7400H11···C7viii3.0900
C6···H32.7900H11···H7Bviii2.5400
C7···H11xii3.0900H12···H8Av2.4100
C7···H52.5700H13···O1xiii2.8900
C8···H2Bix3.0200H13···N3xiii2.9300
C8···H2Aix2.9200H13···C4xiii2.8800
C8···H52.5400H13···O3v2.9200
C9···H7Cii2.7200H14···O32.5700
C9···H11x2.8900H14···C13v3.0100
C10···H7Cii2.7800H14···C14v3.1000
C10···H11x2.9300
C4—O1—C7118.31 (10)H8A—C8—H8C110.00
C6—O2—C8117.70 (10)H8B—C8—H8C109.00
C15—O3—H3109.00O2—C8—H8A109.00
C16—O6—H6109.00O2—C8—H8B109.00
C2—N1—C6116.29 (11)C10—C9—C14119.58 (11)
C2—N3—C4116.65 (11)C14—C9—C15120.00 (11)
C2—N2—H2B120.00C10—C9—C15120.29 (11)
H2A—N2—H2B120.00C9—C10—C16121.70 (11)
C2—N2—H2A120.00C11—C10—C16118.29 (11)
N1—C2—N3124.93 (11)C9—C10—C11119.56 (12)
N2—C2—N3117.41 (11)C10—C11—C12120.28 (13)
N1—C2—N2117.65 (11)C11—C12—C13120.12 (13)
O1—C4—C5124.92 (11)C12—C13—C14120.23 (13)
N3—C4—C5123.60 (11)C9—C14—C13120.22 (12)
O1—C4—N3111.49 (11)O3—C15—C9113.54 (11)
C4—C5—C6114.89 (11)O4—C15—C9121.70 (11)
O2—C6—C5124.62 (11)O3—C15—O4124.74 (12)
N1—C6—C5123.62 (11)O6—C16—C10113.78 (11)
O2—C6—N1111.76 (11)O5—C16—O6125.01 (12)
C4—C5—H5123.00O5—C16—C10121.07 (11)
C6—C5—H5123.00C10—C11—H11120.00
O1—C7—H7B109.00C12—C11—H11120.00
O1—C7—H7C109.00C11—C12—H12120.00
H7A—C7—H7C109.00C13—C12—H12120.00
H7B—C7—H7C110.00C12—C13—H13120.00
H7A—C7—H7B110.00C14—C13—H13120.00
O1—C7—H7A109.00C9—C14—H14120.00
O2—C8—H8C109.00C13—C14—H14120.00
H8A—C8—H8B109.00
C7—O1—C4—N3177.86 (11)C15—C9—C10—C11175.14 (12)
C7—O1—C4—C51.95 (18)C15—C9—C10—C1612.75 (18)
C8—O2—C6—N1179.91 (11)C10—C9—C14—C130.7 (2)
C8—O2—C6—C50.14 (19)C15—C9—C14—C13176.50 (12)
C6—N1—C2—N2179.02 (12)C10—C9—C15—O3147.33 (12)
C6—N1—C2—N31.7 (2)C10—C9—C15—O434.25 (19)
C2—N1—C6—O2178.89 (11)C14—C9—C15—O336.88 (17)
C2—N1—C6—C50.89 (19)C14—C9—C15—O4141.55 (14)
C4—N3—C2—N11.06 (19)C9—C10—C11—C121.4 (2)
C4—N3—C2—N2179.63 (12)C16—C10—C11—C12170.97 (13)
C2—N3—C4—O1179.80 (11)C9—C10—C16—O549.60 (19)
C2—N3—C4—C50.39 (19)C9—C10—C16—O6134.45 (13)
O1—C4—C5—C6179.18 (12)C11—C10—C16—O5122.61 (15)
N3—C4—C5—C61.04 (19)C11—C10—C16—O653.35 (16)
C4—C5—C6—O2179.89 (12)C10—C11—C12—C130.8 (2)
C4—C5—C6—N10.36 (19)C11—C12—C13—C140.6 (2)
C14—C9—C10—C110.67 (19)C12—C13—C14—C91.3 (2)
C14—C9—C10—C16171.44 (12)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+2, y+1, z; (vii) x, y+1/2, z+1/2; (viii) x1, y+1/2, z+1/2; (ix) x, y+1/2, z1/2; (x) x+1, y+1/2, z+1/2; (xi) x+1, y1/2, z+1/2; (xii) x+1, y+1/2, z1/2; (xiii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5iii0.862.062.8704 (15)156
N2—H2B···O40.862.012.8609 (15)173
O3—H3···N10.821.872.6881 (14)171
O6—H6···N3i0.821.862.6738 (14)172
C8—H8B···O5ii0.962.563.2199 (17)126
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y, z; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N3O2·C8H6O4
Mr321.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.2175 (3), 7.3323 (2), 17.7651 (4)
β (°) 90.776 (2)
V3)1461.05 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.40 × 0.25
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17905, 3328, 2748
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.08
No. of reflections3328
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O1—C41.3427 (15)O6—C161.3086 (15)
O1—C71.4361 (15)N1—C21.3489 (16)
O2—C61.3386 (16)N1—C61.3385 (16)
O2—C81.4391 (15)N2—C21.3368 (16)
O3—C151.3134 (15)N3—C41.3364 (16)
O4—C151.2123 (16)N3—C21.3460 (16)
O5—C161.2188 (16)
C4—O1—C7118.31 (10)O2—C6—C5124.62 (11)
C6—O2—C8117.70 (10)N1—C6—C5123.62 (11)
C2—N1—C6116.29 (11)O2—C6—N1111.76 (11)
C2—N3—C4116.65 (11)O3—C15—C9113.54 (11)
N1—C2—N3124.93 (11)O4—C15—C9121.70 (11)
N2—C2—N3117.41 (11)O3—C15—O4124.74 (12)
N1—C2—N2117.65 (11)O6—C16—C10113.78 (11)
O1—C4—C5124.92 (11)O5—C16—O6125.01 (12)
N3—C4—C5123.60 (11)O5—C16—C10121.07 (11)
O1—C4—N3111.49 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.86002.06002.8704 (15)156.00
N2—H2B···O40.86002.01002.8609 (15)173.00
O3—H3···N10.82001.87002.6881 (14)171.00
O6—H6···N3ii0.82001.86002.6738 (14)172.00
C8—H8B···O5iii0.96002.56003.2199 (17)126.00
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+2, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds