Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound [systematic name: 2,4-diamino-5-(4-chloro­phenyl)-6-ethyl­pyrimidin-1-ium 3,5-dinitrobenzoate], C12H14ClN4+·C7H3N2O6, the pyrimethamine mol­ecule is protonated at one of the pyrimidine N atoms. The carboxyl­ate group of the 3,5-dinitrobenzoate anion forms double hydrogen bonds of type N—H...O, resulting in a fork-like inter­action with the protonated diamino­pyrimidine rings [graph-set notation R22(8)]. This motif self-assembles through a DDAA array of quadruple hydrogen bonds. The crystal structure is also stabilized by C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038342/lw2025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038342/lw2025Isup2.hkl
Contains datablock I

CCDC reference: 660265

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.049
  • wR factor = 0.144
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.26 PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4B ... ? PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. O5 .. 3.06 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C7 H3 N2 O6
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrimethamine [PMN] is an well known antifolate drug used in the treatment of malaria. In the chemotheraphy of malaria and neoplastic diseases, substituted 2,4-diaminopyrimidines are widely employed as metabolic inhibitors of pathways leading to the synthesis of proteins and nucleic acid (Hitchings & Burchall, 1965). The crystal structures of PMN (Sethuraman & Muthiah, 2002) and some of its complexes such as PMN hydrogen succinate, PMN hydrogen maleate, PMN hydrogen phthalate and PMN fumarate (Sethuraman et al., 2003), and PMN hydrogen glutarate and PMN formate (Stanley et al., 2002) have been reported from our laboratory. Most of the supramolecular crystals originate from strong N—H···O and O—H···N hydrogen bonds; the weak C—H···O bonds are known to play a significant role in determining the molecular packing of organic solids (Taylor & Kennard,1982). The present study has been undertaken to study the hydrogen bonding patterns involved in aminopyrimidine-carboxylate interactions.

The asymmetric unit of (I) contains a protonated PMN cation and a 3,5-dintrobenzoate anion. PMN is protonated at N1, as evident from the increase in the internal angle at N1 from 116.25 (18)° in neutral PMN molecule A and 116.09 (18)° in molecule B (Sethuraman & Muthiah, 2002) to 121.5 (2)°. The key conformational features of the PMN cations are described by two angles. The first is the dihedral angle between the 2,4-diaminopyrimidine and the 4-chlorophenyl mean planes. The second is the torsion angle that represents the deviation of the ethyl group from the pyrimidine plane. The dihedral angle between the pyrimidine and benzene ring is 63.17 (13)° and the torsion angle C5—C6—C7—C8 is -100.3 (3)°. These values are close to those observed in modelling studies of dihydrofolate reductase-pyrimethamine complexes, which indicates that these angles play an important role in the proper docking of the drug molecule in the active site of the enzyme (Sansom et al., 1989). The bond connecting the pyrimidine ring and the C5—C9 benzene ring is 1.490 (4) Å in length (De et al., 1989). The PMN cation interacts with atoms O1 and O2 of the carboxylate group, forming a cyclic hydrogen-bonded R22(8) dimer (Lynch & Jones, 2004). Two such motifs, related by inversion, are hydrogen-bonded to give a complementary DDAA (D= donor in hydrogen bond, A=acceptor in hydrogen bond) array of quadruple hydrogen-bonding patterns, comprising fused R22(8), R42(8) and R22(8) motifs (Fig. 2). A similar type of interaction has been observed in pyrimethaminium 3-chlorobenzoate (Devi et al., 2006), PMN nitrobenzoate salts (Stanley et al., 2005) and in some TMP(trimethoprim) salts with oxy acids (Giuseppetti et al., 1984; Cody, 1984; Baskar Raj et al., 2002). Each DDAA array is flanked on either side by R22(14) ring through N—H···O hydrogen bonds involving 4-amino group and one of the oxygen (O3) atom of the 5-nitro group. Here, one of the hydrogen (H7B) atom of the methylene (–CH2) group interacts with O6 oxygen atom of the 6-nitro group through C—H···O hydrogen bonds. Two inversion related PMN cations (atoms C11 and C13) and 3,5-dinitro benzoate anions (O5 & O6) are connected through the weak C—H···O hydrogen bonds forming a 24 membered ring with graph-set notation R44(24) as shown in Fig. 3.

Related literature top

For related literature, see: Baskar et al. (2002); Cody (1984); De et al. (1989); Devi et al. (2006); Giuseppetti et al. (1984); Hitchings & Burchall (1965); Lynch & Jones (2004); Sansom et al. (1989); Sethuraman & Muthiah (2002); Sethuraman et al. (2003); Stanley et al. (2002, 2005); Taylor & Kennard (1982).

Experimental top

A hot methanol solution of pyrimethamine (62 mg, Shah Pharma Chemicals., India) and an aqueous solution of 3,5-dinitrobenzoic acid (53 mg, Merck) were mixed in a 1:1 molar ratio and warmed for half an hour over a water bath. The product was then recrystallized from ethanol. After about a week, colourless crystals of (I) were obtained.

Refinement top

Methyl H atoms were placed in idealized positions, with Uiso(H)= 1.5Ueq(C). Other H atoms were placed in idealized positions, with C—H =0.97 (methylene) and 0.93 Å (aromatic), and N—H = 0.86 Å, and refined as riding on their carrier atoms, with Uiso(H) = 1.2Ueq (C, N).

Structure description top

Pyrimethamine [PMN] is an well known antifolate drug used in the treatment of malaria. In the chemotheraphy of malaria and neoplastic diseases, substituted 2,4-diaminopyrimidines are widely employed as metabolic inhibitors of pathways leading to the synthesis of proteins and nucleic acid (Hitchings & Burchall, 1965). The crystal structures of PMN (Sethuraman & Muthiah, 2002) and some of its complexes such as PMN hydrogen succinate, PMN hydrogen maleate, PMN hydrogen phthalate and PMN fumarate (Sethuraman et al., 2003), and PMN hydrogen glutarate and PMN formate (Stanley et al., 2002) have been reported from our laboratory. Most of the supramolecular crystals originate from strong N—H···O and O—H···N hydrogen bonds; the weak C—H···O bonds are known to play a significant role in determining the molecular packing of organic solids (Taylor & Kennard,1982). The present study has been undertaken to study the hydrogen bonding patterns involved in aminopyrimidine-carboxylate interactions.

The asymmetric unit of (I) contains a protonated PMN cation and a 3,5-dintrobenzoate anion. PMN is protonated at N1, as evident from the increase in the internal angle at N1 from 116.25 (18)° in neutral PMN molecule A and 116.09 (18)° in molecule B (Sethuraman & Muthiah, 2002) to 121.5 (2)°. The key conformational features of the PMN cations are described by two angles. The first is the dihedral angle between the 2,4-diaminopyrimidine and the 4-chlorophenyl mean planes. The second is the torsion angle that represents the deviation of the ethyl group from the pyrimidine plane. The dihedral angle between the pyrimidine and benzene ring is 63.17 (13)° and the torsion angle C5—C6—C7—C8 is -100.3 (3)°. These values are close to those observed in modelling studies of dihydrofolate reductase-pyrimethamine complexes, which indicates that these angles play an important role in the proper docking of the drug molecule in the active site of the enzyme (Sansom et al., 1989). The bond connecting the pyrimidine ring and the C5—C9 benzene ring is 1.490 (4) Å in length (De et al., 1989). The PMN cation interacts with atoms O1 and O2 of the carboxylate group, forming a cyclic hydrogen-bonded R22(8) dimer (Lynch & Jones, 2004). Two such motifs, related by inversion, are hydrogen-bonded to give a complementary DDAA (D= donor in hydrogen bond, A=acceptor in hydrogen bond) array of quadruple hydrogen-bonding patterns, comprising fused R22(8), R42(8) and R22(8) motifs (Fig. 2). A similar type of interaction has been observed in pyrimethaminium 3-chlorobenzoate (Devi et al., 2006), PMN nitrobenzoate salts (Stanley et al., 2005) and in some TMP(trimethoprim) salts with oxy acids (Giuseppetti et al., 1984; Cody, 1984; Baskar Raj et al., 2002). Each DDAA array is flanked on either side by R22(14) ring through N—H···O hydrogen bonds involving 4-amino group and one of the oxygen (O3) atom of the 5-nitro group. Here, one of the hydrogen (H7B) atom of the methylene (–CH2) group interacts with O6 oxygen atom of the 6-nitro group through C—H···O hydrogen bonds. Two inversion related PMN cations (atoms C11 and C13) and 3,5-dinitro benzoate anions (O5 & O6) are connected through the weak C—H···O hydrogen bonds forming a 24 membered ring with graph-set notation R44(24) as shown in Fig. 3.

For related literature, see: Baskar et al. (2002); Cody (1984); De et al. (1989); Devi et al. (2006); Giuseppetti et al. (1984); Hitchings & Burchall (1965); Lynch & Jones (2004); Sansom et al. (1989); Sethuraman & Muthiah (2002); Sethuraman et al. (2003); Stanley et al. (2002, 2005); Taylor & Kennard (1982).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen bonding patterns in compound (I). Symmetry codes: (i) -x, -y, -z; (ii) -x, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. A view of C—H···O interactions in compound (I). Symmetry codes: (iii) -x, y - 3/2, -z + 1/2; (iv) 1 + x, -y + 3/2, 1/2 + z.
2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 3,5-dinitrobenzoate top
Crystal data top
C12H14ClN4+·C7H3N2O6F(000) = 952
Mr = 460.84Dx = 1.484 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 45 reflections
a = 13.034 (2) Åθ = 3.4–70.2°
b = 7.099 (2) ŵ = 2.10 mm1
c = 22.468 (3) ÅT = 293 K
β = 97.11 (3)°Prism, colourless
V = 2062.9 (7) Å30.13 × 0.10 × 0.08 mm
Z = 4
Data collection top
Siemens AED single-crystal
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 70.2°, θmin = 3.4°
Graphite monochromatorh = 1514
ω–2θ scansk = 88
4017 measured reflectionsl = 827
3922 independent reflections1 standard reflections every 100 reflections
2350 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0787P)2],
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3922 reflectionsΔρmax = 0.23 e Å3
291 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (2)
Crystal data top
C12H14ClN4+·C7H3N2O6V = 2062.9 (7) Å3
Mr = 460.84Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.034 (2) ŵ = 2.10 mm1
b = 7.099 (2) ÅT = 293 K
c = 22.468 (3) Å0.13 × 0.10 × 0.08 mm
β = 97.11 (3)°
Data collection top
Siemens AED single-crystal
diffractometer
Rint = 0.022
4017 measured reflections1 standard reflections every 100 reflections
3922 independent reflections intensity decay: none
2350 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.91Δρmax = 0.23 e Å3
3922 reflectionsΔρmin = 0.24 e Å3
291 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52577 (7)0.23938 (13)0.45621 (4)0.0715 (3)
N10.10982 (16)0.1850 (3)0.15156 (9)0.0413 (7)
N20.06617 (19)0.0094 (3)0.07126 (10)0.0534 (8)
N30.19609 (18)0.1033 (3)0.14335 (10)0.0464 (7)
N40.3256 (2)0.1913 (4)0.21484 (12)0.0613 (9)
C20.1242 (2)0.0225 (4)0.12227 (12)0.0408 (8)
C40.2526 (2)0.0642 (4)0.19524 (12)0.0427 (8)
C50.2411 (2)0.1036 (4)0.22933 (12)0.0414 (8)
C60.1659 (2)0.2262 (4)0.20558 (11)0.0400 (8)
C70.1334 (2)0.4014 (4)0.23515 (13)0.0479 (9)
C80.0348 (3)0.3676 (5)0.26294 (16)0.0669 (12)
C90.3088 (2)0.1389 (4)0.28669 (12)0.0427 (8)
C100.3087 (2)0.0216 (4)0.33584 (12)0.0478 (9)
C110.3758 (2)0.0503 (4)0.38781 (13)0.0526 (10)
C120.4418 (2)0.2014 (4)0.39072 (13)0.0486 (9)
C130.4434 (2)0.3226 (5)0.34340 (14)0.0571 (10)
C140.3783 (2)0.2898 (4)0.29103 (13)0.0530 (10)
O10.02513 (18)0.4454 (3)0.10443 (9)0.0642 (8)
O20.06964 (17)0.2731 (3)0.02248 (9)0.0610 (7)
O30.3249 (2)0.5328 (3)0.13549 (10)0.0716 (9)
O40.4092 (2)0.7804 (4)0.11937 (11)0.0882 (10)
O50.3036 (2)1.1559 (4)0.05664 (12)0.0925 (10)
O60.1869 (2)1.0551 (3)0.12436 (10)0.0747 (9)
N50.3424 (2)0.6653 (3)0.10412 (11)0.0524 (8)
N60.2407 (2)1.0385 (3)0.07634 (11)0.0565 (9)
C150.1492 (2)0.5704 (4)0.02909 (12)0.0419 (8)
C160.2084 (2)0.5473 (4)0.02585 (12)0.0447 (8)
C170.2784 (2)0.6882 (4)0.04601 (12)0.0434 (8)
C180.2896 (2)0.8512 (4)0.01397 (13)0.0472 (9)
C190.2291 (2)0.8697 (4)0.03992 (12)0.0449 (9)
C200.1582 (2)0.7329 (4)0.06244 (12)0.0447 (9)
C210.0745 (2)0.4170 (4)0.05396 (13)0.0465 (9)
H10.064400.264300.135900.0500*
H2A0.074500.110900.051500.0640*
H2B0.019900.071100.057600.0640*
H4A0.333500.290800.194000.0740*
H4B0.364400.173100.248200.0740*
H7A0.122300.501700.205700.0580*
H7B0.187800.440700.266000.0580*
H8A0.020200.336600.232000.1000*
H8B0.017000.479500.283400.1000*
H8C0.045100.265400.291000.1000*
H100.262500.078800.333900.0570*
H110.376100.031500.420200.0630*
H130.487700.425700.346500.0690*
H140.380700.369100.258300.0640*
H160.201600.440100.048800.0540*
H180.336200.944500.028400.0570*
H200.117700.750000.099100.0540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0730 (5)0.0757 (6)0.0580 (5)0.0147 (4)0.0234 (4)0.0001 (4)
N10.0449 (12)0.0360 (11)0.0410 (12)0.0058 (10)0.0025 (10)0.0030 (9)
N20.0620 (15)0.0468 (13)0.0472 (14)0.0135 (12)0.0102 (11)0.0143 (11)
N30.0486 (13)0.0410 (12)0.0474 (13)0.0063 (10)0.0030 (10)0.0056 (10)
N40.0671 (17)0.0504 (14)0.0602 (16)0.0203 (13)0.0167 (13)0.0138 (12)
C20.0446 (15)0.0371 (13)0.0395 (14)0.0022 (11)0.0001 (11)0.0038 (11)
C40.0438 (15)0.0361 (13)0.0470 (15)0.0040 (11)0.0007 (12)0.0021 (12)
C50.0466 (15)0.0348 (13)0.0418 (15)0.0002 (11)0.0010 (12)0.0011 (11)
C60.0458 (14)0.0331 (13)0.0400 (14)0.0011 (11)0.0011 (11)0.0020 (11)
C70.0567 (17)0.0392 (14)0.0453 (16)0.0036 (13)0.0042 (13)0.0081 (12)
C80.076 (2)0.060 (2)0.066 (2)0.0129 (17)0.0143 (18)0.0121 (17)
C90.0477 (16)0.0355 (13)0.0435 (15)0.0019 (11)0.0006 (12)0.0024 (12)
C100.0515 (16)0.0379 (14)0.0523 (17)0.0101 (12)0.0005 (13)0.0029 (13)
C110.0633 (19)0.0452 (16)0.0465 (16)0.0074 (14)0.0039 (14)0.0047 (13)
C120.0464 (15)0.0517 (17)0.0444 (15)0.0011 (13)0.0078 (12)0.0056 (13)
C130.0598 (19)0.0485 (16)0.0604 (19)0.0151 (14)0.0029 (15)0.0018 (15)
C140.0619 (19)0.0443 (16)0.0505 (17)0.0084 (14)0.0024 (14)0.0097 (13)
O10.0791 (15)0.0488 (12)0.0572 (13)0.0225 (11)0.0212 (11)0.0088 (10)
O20.0760 (14)0.0493 (12)0.0528 (12)0.0239 (11)0.0115 (10)0.0122 (10)
O30.0985 (18)0.0525 (13)0.0577 (13)0.0149 (13)0.0142 (12)0.0140 (11)
O40.0986 (19)0.0760 (17)0.0780 (17)0.0400 (15)0.0369 (14)0.0123 (14)
O50.117 (2)0.0597 (15)0.0901 (18)0.0453 (15)0.0292 (16)0.0253 (14)
O60.115 (2)0.0535 (13)0.0500 (13)0.0183 (13)0.0120 (13)0.0116 (11)
N50.0606 (15)0.0433 (13)0.0504 (14)0.0029 (12)0.0051 (12)0.0007 (12)
N60.0746 (18)0.0415 (13)0.0516 (15)0.0112 (13)0.0004 (13)0.0069 (12)
C150.0460 (15)0.0345 (13)0.0449 (15)0.0052 (11)0.0042 (12)0.0009 (11)
C160.0517 (16)0.0368 (13)0.0454 (15)0.0049 (12)0.0054 (12)0.0009 (12)
C170.0490 (15)0.0398 (14)0.0395 (14)0.0005 (12)0.0022 (12)0.0023 (12)
C180.0551 (17)0.0360 (14)0.0497 (16)0.0086 (12)0.0034 (13)0.0014 (12)
C190.0575 (17)0.0322 (13)0.0448 (15)0.0042 (12)0.0054 (13)0.0007 (12)
C200.0519 (16)0.0378 (14)0.0429 (15)0.0022 (12)0.0002 (12)0.0001 (12)
C210.0494 (16)0.0416 (15)0.0468 (16)0.0094 (12)0.0006 (13)0.0006 (13)
Geometric parameters (Å, º) top
Cl1—C121.743 (3)C9—C101.383 (4)
O1—C211.249 (4)C9—C141.398 (4)
O2—C211.249 (4)C10—C111.385 (4)
O3—N51.214 (3)C11—C121.371 (4)
O4—N51.212 (4)C12—C131.370 (4)
O5—N61.214 (4)C13—C141.383 (4)
O6—N61.218 (3)C7—H7A0.9706
N1—C21.353 (4)C7—H7B0.9692
N1—C61.369 (3)C8—H8B0.9605
N2—C21.312 (4)C8—H8C0.9596
N3—C41.329 (4)C8—H8A0.9603
N3—C21.338 (4)C10—H100.9306
N4—C41.345 (4)C11—H110.9307
N1—H10.8600C13—H130.9295
N2—H2B0.8595C14—H140.9297
N2—H2A0.8602C15—C161.382 (4)
N4—H4A0.8606C15—C201.388 (4)
N4—H4B0.8605C15—C211.520 (4)
N5—C171.469 (4)C16—C171.391 (4)
N6—C191.469 (4)C17—C181.380 (4)
C4—C51.434 (4)C18—C191.367 (4)
C5—C61.369 (4)C19—C201.392 (4)
C5—C91.490 (4)C16—H160.9296
C6—C71.496 (4)C18—H180.9295
C7—C81.516 (5)C20—H200.9296
Cl1···C18i3.575 (3)C19···C11viii3.493 (4)
Cl1···O5ii3.057 (3)C20···C11viii3.429 (4)
Cl1···H18ii2.8703C20···N2x3.434 (4)
O1···N12.678 (3)C20···C10viii3.526 (4)
O1···C73.390 (4)C21···C21iv3.494 (4)
O2···N2iii2.822 (3)C2···H8Bi2.9896
O2···C15iv3.396 (4)C6···H143.0740
O2···N22.806 (3)C6···H8Bi2.9929
O2···N6v3.143 (3)C8···H13.0177
O3···N4iii3.009 (4)C8···H8Bi2.9927
O3···C6iv3.242 (4)C9···H7B2.6669
O5···Cl1vi3.057 (3)C9···H4B2.5167
O5···C11vii3.252 (4)C10···H4B2.5824
O6···C7viii3.331 (4)C14···H7B2.6988
O6···C8viii3.297 (4)C21···H12.6490
O1···H11.8194C21···H2B2.7432
O1···H202.4719H1···O22.9065
O1···H7A2.8191H1···H2B2.2494
O2···H12.9065H1···C83.0177
O2···H162.4993H1···C212.6490
O2···H2Aiii2.0166H1···O11.8194
O2···H2B1.9527H1···H8A2.5944
O3···H162.4566H1···H7A2.3614
O3···H4Aiii2.1577H2A···O2iii2.0166
O3···H14iv2.8515H2B···O21.9527
O4···H13vi2.5479H2B···H12.2494
O4···H182.4410H2B···C212.7432
O5···H182.4254H4A···O3iii2.1577
O5···H11vii2.4920H4B···H102.5598
O6···H7Bviii2.5952H4B···C102.5824
O6···H202.4400H4B···C92.5167
O6···H8Bviii2.8898H7A···H12.3614
N1···O12.678 (3)H7A···O12.8191
N2···O2iii2.822 (3)H7B···C142.6988
N2···C20v3.434 (4)H7B···H142.5918
N2···O22.806 (3)H7B···O6i2.5952
N4···C13ix3.430 (4)H7B···C92.6669
N4···O3iii3.009 (4)H8A···N12.8381
N4···C103.142 (4)H8A···H12.5944
N6···O2x3.143 (3)H8A···H8Bi2.5596
N1···H8Bi2.7557H8B···N1viii2.7557
N1···H8A2.8381H8B···C8viii2.9927
C2···C18iv3.560 (4)H8B···C2viii2.9896
C2···C17iv3.471 (4)H8B···C6viii2.9929
C6···O3iv3.242 (4)H8B···O6i2.8898
C7···C143.377 (4)H8B···H8Aviii2.5596
C7···O13.390 (4)H8C···H20i2.5350
C7···O6i3.331 (4)H10···H4B2.5598
C8···O6i3.297 (4)H11···O5xi2.4920
C10···C20i3.526 (4)H13···O4ii2.5479
C10···N43.142 (4)H14···H7B2.5918
C11···C20i3.429 (4)H14···O3iv2.8515
C11···O5xi3.252 (4)H14···C63.0740
C11···C19i3.493 (4)H16···O22.4993
C12···C19i3.551 (4)H16···O32.4566
C13···N4xii3.430 (4)H18···O42.4410
C14···C73.377 (4)H18···O52.4254
C15···O2iv3.396 (4)H18···Cl1vi2.8703
C17···C2iv3.471 (4)H20···O12.4719
C18···C2iv3.560 (4)H20···O62.4400
C18···Cl1viii3.575 (3)H20···H8Cviii2.5350
C19···C12viii3.551 (4)
C2—N1—C6121.5 (2)C6—C7—H7A109.49
C2—N3—C4117.3 (2)C6—C7—H7B109.55
C2—N1—H1119.28C8—C7—H7A109.54
C6—N1—H1119.21H7A—C7—H7B108.09
C2—N2—H2A119.96H8B—C8—H8C109.47
C2—N2—H2B120.01C7—C8—H8B109.48
H2A—N2—H2B120.03C7—C8—H8A109.46
H4A—N4—H4B120.01H8A—C8—H8C109.48
C4—N4—H4A119.99C7—C8—H8C109.48
C4—N4—H4B120.00H8A—C8—H8B109.46
O3—N5—O4122.6 (3)C9—C10—H10119.22
O3—N5—C17118.4 (2)C11—C10—H10119.32
O4—N5—C17119.1 (2)C12—C11—H11120.59
O5—N6—O6123.1 (3)C10—C11—H11120.58
O6—N6—C19119.0 (2)C12—C13—H13120.36
O5—N6—C19117.9 (2)C14—C13—H13120.43
N1—C2—N3122.0 (2)C13—C14—H14119.60
N2—C2—N3119.8 (3)C9—C14—H14119.58
N1—C2—N2118.2 (2)C16—C15—C20120.4 (3)
N3—C4—C5124.0 (2)C16—C15—C21120.3 (3)
N3—C4—N4116.1 (3)C20—C15—C21119.3 (2)
N4—C4—C5119.9 (2)C15—C16—C17118.5 (3)
C6—C5—C9123.3 (3)N5—C17—C16119.2 (2)
C4—C5—C6115.9 (2)N5—C17—C18118.1 (2)
C4—C5—C9120.8 (2)C16—C17—C18122.7 (3)
C5—C6—C7125.7 (2)C17—C18—C19117.1 (3)
N1—C6—C7115.0 (2)N6—C19—C18118.9 (2)
N1—C6—C5119.2 (2)N6—C19—C20118.4 (2)
C6—C7—C8110.6 (2)C18—C19—C20122.6 (3)
C10—C9—C14118.0 (3)C15—C20—C19118.7 (2)
C5—C9—C10122.0 (2)O1—C21—O2126.1 (3)
C5—C9—C14119.9 (2)O1—C21—C15116.9 (3)
C9—C10—C11121.5 (3)O2—C21—C15116.9 (2)
C10—C11—C12118.8 (3)C15—C16—H16120.76
Cl1—C12—C11119.1 (2)C17—C16—H16120.77
Cl1—C12—C13119.3 (2)C17—C18—H18121.49
C11—C12—C13121.6 (3)C19—C18—H18121.39
C12—C13—C14119.2 (3)C15—C20—H20120.67
C9—C14—C13120.8 (3)C19—C20—H20120.64
C8—C7—H7B109.48
C6—N1—C2—N2178.6 (2)N1—C6—C7—C876.1 (3)
C6—N1—C2—N32.3 (4)C5—C6—C7—C8100.3 (3)
C2—N1—C6—C52.6 (4)C14—C9—C10—C110.6 (4)
C2—N1—C6—C7174.0 (2)C5—C9—C14—C13178.6 (3)
C4—N3—C2—N11.1 (4)C5—C9—C10—C11176.6 (3)
C4—N3—C2—N2179.9 (3)C10—C9—C14—C131.3 (4)
C2—N3—C4—N4178.8 (2)C9—C10—C11—C121.6 (4)
C2—N3—C4—C50.2 (4)C10—C11—C12—C130.6 (4)
O4—N5—C17—C186.9 (4)C10—C11—C12—Cl1179.5 (2)
O3—N5—C17—C167.2 (4)C11—C12—C13—C141.2 (4)
O3—N5—C17—C18171.9 (3)Cl1—C12—C13—C14178.6 (2)
O4—N5—C17—C16174.0 (3)C12—C13—C14—C92.2 (4)
O6—N6—C19—C18180.0 (3)C20—C15—C16—C171.5 (4)
O6—N6—C19—C201.3 (4)C21—C15—C16—C17177.8 (2)
O5—N6—C19—C20179.1 (3)C16—C15—C20—C191.1 (4)
O5—N6—C19—C180.5 (4)C21—C15—C20—C19178.1 (2)
N4—C4—C5—C90.4 (4)C16—C15—C21—O1178.5 (3)
N3—C4—C5—C9178.9 (3)C16—C15—C21—O20.3 (4)
N4—C4—C5—C6179.1 (3)C20—C15—C21—O10.8 (4)
N3—C4—C5—C60.6 (4)C20—C15—C21—O2179.6 (3)
C4—C5—C9—C1062.7 (4)C15—C16—C17—N5179.6 (2)
C4—C5—C6—C7174.5 (3)C15—C16—C17—C181.3 (4)
C9—C5—C6—N1177.7 (2)N5—C17—C18—C19179.9 (2)
C4—C5—C9—C14114.5 (3)C16—C17—C18—C190.7 (4)
C6—C5—C9—C10117.9 (3)C17—C18—C19—N6178.2 (2)
C4—C5—C6—N11.7 (4)C17—C18—C19—C200.4 (4)
C6—C5—C9—C1464.9 (4)N6—C19—C20—C15178.0 (2)
C9—C5—C6—C76.0 (4)C18—C19—C20—C150.6 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y, z; (iv) x, y+1, z; (v) x, y1, z; (vi) x1, y+3/2, z1/2; (vii) x, y+3/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y1/2, z+1/2; (x) x, y+1, z; (xi) x, y3/2, z+1/2; (xii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.822.678 (3)176
N2—H2A···O2iii0.862.022.822 (3)156
N2—H2B···O20.861.952.806 (3)172
N4—H4A···O3iii0.862.163.009 (4)170
C7—H7B···O6i0.972.603.331 (4)133
C11—H11···O5xi0.932.493.252 (4)139
C13—H13···O4ii0.932.553.455 (4)165
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y, z; (xi) x, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14ClN4+·C7H3N2O6
Mr460.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.034 (2), 7.099 (2), 22.468 (3)
β (°) 97.11 (3)
V3)2062.9 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.10
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerSiemens AED single-crystal
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4017, 3922, 2350
Rint0.022
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 0.91
No. of reflections3922
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
Cl1—C121.743 (3)N1—C61.369 (3)
O1—C211.249 (4)N2—C21.312 (4)
O2—C211.249 (4)N3—C41.329 (4)
O3—N51.214 (3)N3—C21.338 (4)
O4—N51.212 (4)N4—C41.345 (4)
O5—N61.214 (4)N5—C171.469 (4)
O6—N61.218 (3)N6—C191.469 (4)
N1—C21.353 (4)
C2—N1—C6121.5 (2)N4—C4—C5119.9 (2)
C2—N3—C4117.3 (2)N1—C6—C7115.0 (2)
O3—N5—O4122.6 (3)N1—C6—C5119.2 (2)
O3—N5—C17118.4 (2)Cl1—C12—C11119.1 (2)
O4—N5—C17119.1 (2)Cl1—C12—C13119.3 (2)
O5—N6—O6123.1 (3)N5—C17—C16119.2 (2)
O6—N6—C19119.0 (2)N5—C17—C18118.1 (2)
O5—N6—C19117.9 (2)N6—C19—C18118.9 (2)
N1—C2—N3122.0 (2)N6—C19—C20118.4 (2)
N2—C2—N3119.8 (3)O1—C21—O2126.1 (3)
N1—C2—N2118.2 (2)O1—C21—C15116.9 (3)
N3—C4—C5124.0 (2)O2—C21—C15116.9 (2)
N3—C4—N4116.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.822.678 (3)176
N2—H2A···O2i0.862.022.822 (3)156
N2—H2B···O20.861.952.806 (3)172
N4—H4A···O3i0.862.163.009 (4)170
C7—H7B···O6ii0.972.603.331 (4)133
C11—H11···O5iii0.932.493.252 (4)139
C13—H13···O4iv0.932.553.455 (4)165
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2; (iii) x, y3/2, z+1/2; (iv) x+1, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds