metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-hy­dr­oxy-3-meth­­oxy­benzaldehyde 4-phenyl­thio­semicarbazonato-N1,S)nickel(II)

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: adriano@daad-alumni.de

(Received 9 April 2014; accepted 21 April 2014; online 30 April 2014)

In the title compound, [Ni(C15H14N3O2S)2], the NiII atom lies on a center of symmetry. The deprotonated ligands act as N,S-donors, forming five-membered metalla-rings. The NiII atom is four-coordinated in a slightly distorted square-planar environment. In the crystal, the discrete complex mol­ecules are linked by weak N—H⋯O hydrogen bonds, generating chains along [110]. The chains are further connected via weak O—H⋯N inter­actions into a layered network extending parallel to (001).

Related literature

For the crystal structure of the ligand, see: Oliveira et al. (2013[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2013). Acta Cryst. E69, o1861.]). For the crystal structure of a similar complex, see: Akinchan & Abram (2000[Akinchan, N. T. & Abram, U. (2000). Acta Cryst. C56, 549-550.]). For the coordination chemistry of thio­semicarbazone compounds, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H14N3O2S)2]

  • Mr = 659.41

  • Triclinic, [P \overline 1]

  • a = 6.8080 (4) Å

  • b = 7.5569 (4) Å

  • c = 14.3902 (8) Å

  • α = 98.514 (4)°

  • β = 92.062 (5)°

  • γ = 102.698 (5)°

  • V = 712.47 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 200 K

  • 0.12 × 0.08 × 0.04 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.800, Tmax = 0.936

  • 3117 measured reflections

  • 2539 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.06

  • 3117 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.81 (3) 2.37 (3) 3.122 (2) 154 (2)
O1—H1O1⋯N2ii 0.84 2.54 3.131 (2) 129
Symmetry codes: (i) x-1, y+1, z; (ii) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. ]).

Supporting information


Experimental top

Synthesis and crystallization top

Starting materials were commercially available and were used without further purification. 4-Hy­droxy-3-meth­oxy­benzaldehyde 4-phenyl­thio­semicarbazone was dissolved in THF (2 mmol/40 ml) with stirring maintained for 30 min, while the solution turns yellow. A solution of nickel acetate tetra­hydrate (1 mmol/40 ml) in THF was added under continuous stirring. After 3 h the solvent was removed and the solid redissolved in methanol. Crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined anisotropic. Most C—H atoms were positioned with idealized geometry (methyl and O—H atoms allowed to rotate but no to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C, N) (1.5 for methyl and O—H atoms) using a riding model. The H atoms attached to N1 and C8 were refined with varying coordinates and varying isotropic displacement parameters.

Results and discussion top

Thio­semicarbazone derivatives are N,S-donors with a wide range of coordination modes (Lobana et al., 2009). As part of our inter­est on the coordination chemistry of thio­semicarbazone ligands, we report herein the synthesis and the crystal structure of a new NiII complex with the 4-hy­droxy-3-meth­oxy­benzaldehyde 4-phenyl­thio­semicarbazone.

The NiII atoms are four-coordinated in a slightly distorted planar environment by two bidentate deprotonated ligands forming discrete complexes. The asymmetric unit consists of one NiII cation that is located on a centre of inversion and one anionic ligand that occupies a general position (Fig. 1). During complex formation signficant structural changes of the N–N–C–S fragment are observed. For the uncoordinated 4-hy­droxy-3-meth­oxy­benzaldehyde 4-phenyl­thio­semicarbazone ligand the N–N, N–C and C–S bond distances amount to 1.3792 (17) Å, 1.3404 (19) Å and 1.6962 (15) Å. The distances indicate the double bond character for the N–N and C–S bonds, and the single bond character for the N–C bond (Oliveira et al., 2013).

For the title compound, the acidic hydrogen of the hydrazine fragment is lost and the negative charge is delocalized over the N–N–C–S fragment. Therefore, for the coordinated ligand the N–N, N–C and C–S bond distances amount to 1.407 (4) Å, 1.306 (3) Å and 1.732 (4) Å. Similar values are found in the literature for the bis­(4-hy­droxy-3-meth­oxy­benzaldehyde thio­semicarbazonato-N1,S)nickel(II) complex: 1.401 (3) Å, 1.317 (3) Å and 1.726 (3) Å (Akinchan & Abram, 2000). The N–C bond distances indicate a considerable double bond character, while the N–N and C–S bond distances are consistent with an increased single bond character.

The ligands are coordinated to the metal as N,S-donors (Fig. 1), building a slightly distorted planar environment, typical for low spin, strong field and d8 electronic configuration with Jahn-Teller effect. The maximal deviation from the least squares plane through all non-hydrogen atoms for the Ni1/C7/N2/N3/S1 ring amounts to 0.2373 (15) Å for N3. Additionally, the dihedral angle between the two aromatic rings of the ligands is 42.270 (68)°, showing that they are not planar (Fig. 1).

The molecules are linked into chains along the a-b-direction forming a H-bonded coordination polymer (Fig. 2). The crystal packing is stabilized by inter­molecular N—H···O and O—H···N hydrogen bonding (Table 1).

Related literature top

For the crystal structure of the ligand, see: Oliveira et al. (2013). For the crystal structure of a similar complex, see: Akinchan & Abram (2000). For the coordination chemistry of thiosemicarbazone compounds, see: Lobana et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Symmetry code for the generation of equivalent atoms: (i)-x + 1,-y + 2,-z.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view along the b-axis. The hydrogen interactions are shown as dashed lines.
Bis(4-hydroxy-3-methoxybenzaldehyde 4-phenylthiosemicarbazonato-N1,S)nickel(II) top
Crystal data top
[Ni(C15H14N3O2S)2]V = 712.47 (7) Å3
Mr = 659.41Z = 1
Triclinic, P1F(000) = 342
Hall symbol: -P 1Dx = 1.537 Mg m3
a = 6.8080 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5569 (4) Åθ = 1.4–27.0°
c = 14.3902 (8) ŵ = 0.88 mm1
α = 98.514 (4)°T = 200 K
β = 92.062 (5)°Prism, red
γ = 102.698 (5)°0.12 × 0.08 × 0.04 mm
Data collection top
Stoe IPDS-1
diffractometer
2539 independent reflections
Radiation source: fine-focus sealed tube, Stoe IPDS-12539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ scansθmax = 27.0°, θmin = 1.4°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 88
Tmin = 0.800, Tmax = 0.936k = 99
3117 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0121P]
where P = (Fo2 + 2Fc2)/3
3117 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Ni(C15H14N3O2S)2]γ = 102.698 (5)°
Mr = 659.41V = 712.47 (7) Å3
Triclinic, P1Z = 1
a = 6.8080 (4) ÅMo Kα radiation
b = 7.5569 (4) ŵ = 0.88 mm1
c = 14.3902 (8) ÅT = 200 K
α = 98.514 (4)°0.12 × 0.08 × 0.04 mm
β = 92.062 (5)°
Data collection top
Stoe IPDS-1
diffractometer
2539 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2539 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.936Rint = 0.033
3117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
3117 reflectionsΔρmin = 0.19 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.02742 (11)
C10.1523 (3)0.8520 (2)0.32101 (13)0.0331 (4)
C20.3262 (3)0.8457 (3)0.37156 (15)0.0435 (5)
H20.45370.87890.34630.052*
C30.3138 (4)0.7905 (3)0.45971 (16)0.0516 (6)
H30.43380.78740.49460.062*
C40.1309 (5)0.7404 (4)0.49672 (18)0.0651 (7)
H40.12330.70250.55680.078*
C50.0420 (5)0.7461 (5)0.4453 (2)0.0808 (10)
H50.16970.71120.47010.097*
C60.0314 (4)0.8019 (4)0.35813 (18)0.0580 (6)
H60.15160.80580.32360.070*
N10.1511 (3)0.9162 (2)0.23399 (12)0.0329 (3)
H1N10.056 (4)0.957 (3)0.2191 (18)0.051 (7)*
C70.2813 (3)0.9123 (2)0.16455 (13)0.0281 (4)
S10.21900 (7)1.00329 (7)0.06685 (3)0.03549 (13)
N20.4377 (2)0.8401 (2)0.17166 (11)0.0312 (3)
N30.5427 (2)0.8441 (2)0.08926 (11)0.0300 (3)
C80.6613 (3)0.7309 (3)0.07729 (14)0.0337 (4)
H80.739 (3)0.737 (3)0.0244 (16)0.035 (5)*
C90.6955 (3)0.5875 (2)0.12971 (13)0.0317 (4)
C100.8662 (3)0.5206 (3)0.10650 (14)0.0364 (4)
H100.95380.57600.06370.044*
C110.9096 (3)0.3751 (3)0.14491 (14)0.0362 (4)
H111.02600.33070.12860.043*
C120.7829 (3)0.2951 (2)0.20690 (14)0.0322 (4)
C130.6150 (3)0.3636 (2)0.23340 (13)0.0302 (4)
C140.5702 (3)0.5083 (2)0.19495 (13)0.0315 (4)
H140.45520.55390.21260.038*
O10.8234 (2)0.14835 (19)0.24410 (11)0.0411 (3)
H1O10.71740.08960.26350.062*
O20.5064 (2)0.27403 (18)0.29749 (10)0.0392 (3)
C150.3366 (4)0.3391 (3)0.33051 (18)0.0478 (5)
H15A0.38160.46550.36370.072*
H15B0.26880.26040.37360.072*
H15C0.24230.33620.27690.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03166 (19)0.03038 (17)0.02632 (18)0.01380 (13)0.00733 (13)0.01269 (13)
C10.0424 (11)0.0294 (8)0.0300 (10)0.0098 (8)0.0091 (8)0.0086 (7)
C20.0491 (12)0.0518 (12)0.0369 (11)0.0196 (10)0.0086 (9)0.0170 (9)
C30.0757 (17)0.0529 (12)0.0328 (11)0.0258 (12)0.0006 (11)0.0125 (10)
C40.094 (2)0.0699 (16)0.0338 (12)0.0125 (15)0.0135 (14)0.0237 (12)
C50.073 (2)0.120 (3)0.0497 (16)0.0017 (18)0.0235 (15)0.0408 (17)
C60.0508 (14)0.0816 (17)0.0419 (13)0.0049 (12)0.0113 (11)0.0246 (12)
N10.0338 (8)0.0393 (8)0.0330 (8)0.0168 (7)0.0097 (7)0.0155 (7)
C70.0309 (9)0.0265 (8)0.0288 (9)0.0073 (7)0.0057 (7)0.0092 (7)
S10.0338 (3)0.0491 (3)0.0333 (3)0.0198 (2)0.0090 (2)0.0209 (2)
N20.0375 (8)0.0353 (8)0.0285 (8)0.0173 (7)0.0103 (7)0.0140 (6)
N30.0349 (8)0.0322 (7)0.0281 (8)0.0136 (6)0.0083 (6)0.0114 (6)
C80.0405 (10)0.0369 (9)0.0320 (10)0.0188 (8)0.0123 (8)0.0149 (8)
C90.0377 (10)0.0332 (9)0.0302 (9)0.0166 (8)0.0069 (8)0.0106 (7)
C100.0432 (11)0.0371 (9)0.0360 (10)0.0180 (8)0.0142 (9)0.0127 (8)
C110.0366 (10)0.0402 (10)0.0393 (11)0.0204 (8)0.0094 (8)0.0118 (8)
C120.0360 (10)0.0306 (8)0.0347 (10)0.0137 (7)0.0011 (8)0.0114 (7)
C130.0334 (9)0.0293 (8)0.0303 (9)0.0091 (7)0.0043 (8)0.0096 (7)
C140.0343 (9)0.0308 (8)0.0351 (10)0.0152 (7)0.0067 (8)0.0112 (7)
O10.0414 (8)0.0405 (7)0.0524 (9)0.0213 (6)0.0094 (7)0.0239 (6)
O20.0418 (8)0.0387 (7)0.0475 (8)0.0176 (6)0.0163 (7)0.0240 (6)
C150.0532 (13)0.0436 (11)0.0576 (14)0.0213 (10)0.0292 (11)0.0226 (10)
Geometric parameters (Å, º) top
Ni1—N31.9220 (15)N2—N31.407 (2)
Ni1—N3i1.9220 (15)N3—C81.298 (2)
Ni1—S1i2.1753 (5)C8—C91.462 (2)
Ni1—S12.1753 (5)C8—H80.94 (2)
C1—C61.376 (3)C9—C101.398 (3)
C1—C21.380 (3)C9—C141.402 (3)
C1—N11.409 (2)C10—C111.383 (3)
C2—C31.392 (3)C10—H100.9500
C2—H20.9500C11—C121.375 (3)
C3—C41.370 (4)C11—H110.9500
C3—H30.9500C12—O11.375 (2)
C4—C51.380 (5)C12—C131.398 (3)
C4—H40.9500C13—O21.367 (2)
C5—C61.381 (4)C13—C141.381 (2)
C5—H50.9500C14—H140.9500
C6—H60.9500O1—H1O10.8400
N1—C71.361 (2)O2—C151.423 (2)
N1—H1N10.81 (3)C15—H15A0.9800
C7—N21.306 (2)C15—H15B0.9800
C7—S11.7322 (18)C15—H15C0.9800
N3—Ni1—N3i180.00 (6)C8—N3—N2115.09 (15)
N3—Ni1—S1i95.42 (5)C8—N3—Ni1123.66 (13)
N3i—Ni1—S1i84.58 (5)N2—N3—Ni1121.20 (11)
N3—Ni1—S184.58 (5)N3—C8—C9131.97 (17)
N3i—Ni1—S195.42 (5)N3—C8—H8116.2 (13)
S1i—Ni1—S1180.00 (3)C9—C8—H8111.8 (13)
C6—C1—C2119.5 (2)C10—C9—C14119.10 (16)
C6—C1—N1116.8 (2)C10—C9—C8114.36 (17)
C2—C1—N1123.65 (18)C14—C9—C8126.46 (16)
C1—C2—C3119.7 (2)C11—C10—C9120.99 (18)
C1—C2—H2120.1C11—C10—H10119.5
C3—C2—H2120.1C9—C10—H10119.5
C4—C3—C2120.9 (2)C12—C11—C10119.49 (17)
C4—C3—H3119.6C12—C11—H11120.3
C2—C3—H3119.6C10—C11—H11120.3
C3—C4—C5118.9 (2)C11—C12—O1119.75 (16)
C3—C4—H4120.5C11—C12—C13120.43 (16)
C5—C4—H4120.5O1—C12—C13119.81 (17)
C4—C5—C6120.7 (3)O2—C13—C14125.69 (16)
C4—C5—H5119.6O2—C13—C12113.95 (15)
C6—C5—H5119.6C14—C13—C12120.35 (17)
C1—C6—C5120.3 (3)C13—C14—C9119.58 (16)
C1—C6—H6119.8C13—C14—H14120.2
C5—C6—H6119.8C9—C14—H14120.2
C7—N1—C1130.38 (17)C12—O1—H1O1109.5
C7—N1—H1N1111.6 (19)C13—O2—C15117.54 (14)
C1—N1—H1N1117.9 (19)O2—C15—H15A109.5
N2—C7—N1121.37 (16)O2—C15—H15B109.5
N2—C7—S1123.56 (14)H15A—C15—H15B109.5
N1—C7—S1115.05 (13)O2—C15—H15C109.5
C7—S1—Ni196.21 (6)H15A—C15—H15C109.5
C7—N2—N3110.66 (14)H15B—C15—H15C109.5
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1ii0.81 (3)2.37 (3)3.122 (2)154 (2)
O1—H1O1···N2iii0.842.543.131 (2)129
Symmetry codes: (ii) x1, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.81 (3)2.37 (3)3.122 (2)154 (2)
O1—H1O1···N2ii0.842.543.131 (2)129
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

First citationAkinchan, N. T. & Abram, U. (2000). Acta Cryst. C56, 549–550.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2013). Acta Cryst. E69, o1861.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.   Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds