organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-{(E)-[(4-Chloro­phen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-1,2,3,5,6,7-hexa­hydro­pyrido[3,2,1-ij]quinolin-9-ol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, cDepartment of Chemistry, Amasya Faculty of Arts and Sciences, Ondokuz Mayıs University, 05000 Amasya, Turkey, dDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
*Correspondence e-mail: esen.nur@oposta.omu.edu.tr

(Received 22 March 2013; accepted 7 May 2013; online 15 May 2013)

The title Schiff base, C23H27ClN2O adopts the phenol–imine tautomeric form, with an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif. Three C atoms of the heterocyclic moiety of the hexa­hydro­pyrido­quinoline unit, as well as the two methyl groups bonded to one of these C atoms, are disordered over two set of sites, with anoccupancy ratio of 0.740 (4):0.260 (4).

Related literature

For a related structure, see: Kantar et al. (2012[Kantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformational parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C23H27ClN2O

  • Mr = 382.92

  • Triclinic, [P \overline 1]

  • a = 6.4716 (3) Å

  • b = 9.8468 (6) Å

  • c = 16.9206 (7) Å

  • α = 75.438 (4)°

  • β = 80.307 (4)°

  • γ = 75.863 (4)°

  • V = 1005.42 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Oxford Diffraction SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.947, Tmax = 0.975

  • 5887 measured reflections

  • 3651 independent reflections

  • 2959 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.142

  • S = 1.08

  • 3651 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N8 0.98 1.65 2.563 (2) 155

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As can see in Fig. 1, the molecule of the title compound, C23H27N2OCl, exhibits an intra-molecular O13—H13···N8 [d(N···O) 2.563 (3) Å] hydrogen bond which generates an S(6) ring motif (Bernstein, et al., 1995). The compound adopts the phenol-imine tautomeric form. The C7—N8—C9—C10 torsion angle is 177,14 (5)°. The C11—O13 [1.352 (2) Å] bond length is in agreement with our related study of 5-Diethylamino-2-[(E)-(2,4-dimethoxyphenyl) iminomethyl ]phenol, (Kantar et al., 2012). The part A (sof=0.740) of the disordered six-membered ring [N9/C28/C29/C31/C32/C33] adopts a half-chair conformation, with puckering parameters: Q = 0.506 (5) Å, θ = 56.1 (5)°, ϕ = 84.8 (7); while the part B (sof= 0.260) exhibits an envelope conformation with puckering parameters: Q = 0.510 (15) Å, θ = 58.9 (15)°, ϕ = 236.0 (17)°. Finally the [N9/C26/C22/C17/C14/C28] ring exhibits a half-chair conformation with puckering parameters: Q = 0.490 (3) Å, θ = 124.5 (3)°, ϕ = 270.9 (3)° (Cremer & Pople, 1975).

Related literature top

For a related structure, see: Kantar et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational parameters, see: Cremer & Pople (1975)

Experimental top

The title compound was prepared by refluxing a mixture containing 5-nitro-2-thiophene-carboxaldehyde (0.157 g 1.0 mmol) and 4-Chloroaniline (0.185 g 1.0 mmol) in 20 ml of ethanol for 4 hours. Crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol (yield 63%; m.p 129–131 oC).

Refinement top

The disordered C31 and C33 atoms have to be keeped isotropic during the refinement. All H, except de one bonded to the oxygen atom, were fixed geometrically and refined using a riding model with bond distances 0.93-0.97 Å and Uiso(H)=1.5Ueq(Cmethyl) and 1.2 for the remaining hydrogen atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of (I), with the displacement ellipsoids drawn at the 30% probability level .
8-{(E)-[(4-Chlorophenyl)imino]methyl}-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-ol top
Crystal data top
C23H27ClN2OZ = 2
Mr = 382.92F(000) = 408
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4716 (3) ÅCell parameters from 2478 reflections
b = 9.8468 (6) Åθ = 3.3–28.1°
c = 16.9206 (7) ŵ = 0.21 mm1
α = 75.438 (4)°T = 293 K
β = 80.307 (4)°Block, orange
γ = 75.863 (4)°0.30 × 0.10 × 0.10 mm
V = 1005.42 (9) Å3
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
3651 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2959 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 16.2413 pixels mm-1θmax = 25.5°, θmin = 3.3°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1111
Tmin = 0.947, Tmax = 0.975l = 2021
5887 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.4649P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H27ClN2Oγ = 75.863 (4)°
Mr = 382.92V = 1005.42 (9) Å3
Triclinic, P1Z = 2
a = 6.4716 (3) ÅMo Kα radiation
b = 9.8468 (6) ŵ = 0.21 mm1
c = 16.9206 (7) ÅT = 293 K
α = 75.438 (4)°0.30 × 0.10 × 0.10 mm
β = 80.307 (4)°
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
3651 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2959 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.975Rint = 0.021
5887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08Δρmax = 0.51 e Å3
3651 reflectionsΔρmin = 0.25 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.34788 (11)0.21739 (8)0.48881 (4)0.0504 (2)
O130.5458 (3)0.20809 (16)0.78056 (10)0.0319 (4)
H130.44300.22300.74100.085 (11)*
N80.2753 (3)0.3204 (2)0.67532 (12)0.0320 (5)
N90.8858 (3)0.5185 (2)0.86809 (12)0.0304 (5)
C100.4526 (3)0.4605 (2)0.72697 (13)0.0260 (5)
C140.7036 (3)0.3581 (2)0.83166 (13)0.0226 (5)
C280.7385 (3)0.4979 (2)0.82400 (13)0.0246 (5)
C110.5687 (3)0.3411 (2)0.78026 (13)0.0241 (5)
C290.6219 (3)0.6195 (2)0.77113 (14)0.0270 (5)
C300.4837 (3)0.5960 (2)0.72526 (14)0.0286 (5)
H300.40680.67490.69120.034*
C90.3045 (4)0.4438 (3)0.67669 (14)0.0305 (5)
H90.22810.52530.64430.037*
C261.0326 (4)0.3939 (3)0.90908 (15)0.0344 (6)
H26A1.10060.42110.94800.041*
H26B1.14380.35730.86890.041*
C30.2026 (4)0.3834 (3)0.56288 (15)0.0396 (6)
H30.32250.45380.54750.047*
C20.1648 (4)0.2534 (3)0.54194 (14)0.0375 (6)
C200.9757 (4)0.1232 (3)0.85168 (15)0.0349 (6)
H20A0.91210.09740.81180.052*
H20B1.02830.03860.89150.052*
H20C1.09250.16830.82470.052*
C170.8073 (3)0.2277 (2)0.89482 (14)0.0268 (5)
C40.0146 (4)0.1472 (3)0.56321 (16)0.0436 (7)
H40.03860.05930.54850.052*
C60.1565 (4)0.1746 (3)0.60659 (16)0.0414 (6)
H60.27700.10410.62130.050*
C50.0594 (4)0.4092 (3)0.60749 (15)0.0369 (6)
H50.08580.49640.62320.044*
C70.1227 (4)0.3052 (3)0.62866 (14)0.0319 (6)
C210.6364 (4)0.1482 (3)0.94807 (15)0.0369 (6)
H21A0.52190.21560.97030.055*
H21B0.70040.07680.99220.055*
H21C0.58050.10260.91490.055*
C220.9105 (4)0.2793 (3)0.95351 (15)0.0370 (6)
H22A0.79970.31690.99340.044*
H22B1.00760.19840.98310.044*
C31A0.6373 (6)0.7726 (4)0.7709 (3)0.0261 (12)*0.740 (4)
C32A0.7660 (5)0.7750 (3)0.8375 (2)0.0349 (9)0.740 (4)
H32A0.67600.76730.88980.042*0.740 (4)
H32B0.81150.86560.82500.042*0.740 (4)
C33A0.9657 (7)0.6498 (5)0.8444 (3)0.0270 (13)*0.740 (4)
H33A1.05530.65420.79220.032*0.740 (4)
H33B1.04990.65480.88550.032*0.740 (4)
C25A0.7433 (7)0.8359 (4)0.6858 (2)0.0409 (10)0.740 (4)
H25A0.88660.78110.67720.061*0.740 (4)
H25B0.74800.93370.68280.061*0.740 (4)
H25C0.66160.83240.64430.061*0.740 (4)
C27A0.4126 (6)0.8685 (4)0.7847 (3)0.0413 (10)0.740 (4)
H27A0.33040.87300.74150.062*0.740 (4)
H27B0.42690.96340.78440.062*0.740 (4)
H27C0.34090.82860.83670.062*0.740 (4)
C31B0.6651 (17)0.7763 (12)0.7479 (8)0.023 (3)*0.260 (4)
C32B0.8988 (16)0.7638 (10)0.7656 (6)0.038 (3)0.260 (4)
H32C0.92390.85780.76360.045*0.260 (4)
H32D1.00170.72130.72510.045*0.260 (4)
C33B0.922 (2)0.6647 (14)0.8544 (8)0.031 (4)*0.260 (4)
H33C1.06480.65750.86750.037*0.260 (4)
H33D0.82130.71280.89330.037*0.260 (4)
C25B0.6297 (15)0.8709 (9)0.6668 (6)0.048 (3)0.260 (4)
H25D0.70620.82230.62460.072*0.260 (4)
H25E0.68060.95680.66190.072*0.260 (4)
H25F0.47920.89550.66100.072*0.260 (4)
C27B0.5165 (15)0.8384 (9)0.8190 (6)0.064 (4)0.260 (4)
H27D0.37010.86100.80770.097*0.260 (4)
H27E0.55630.92390.82320.097*0.260 (4)
H27F0.53200.76860.86990.097*0.260 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0556 (5)0.0669 (5)0.0414 (4)0.0331 (4)0.0197 (3)0.0059 (3)
O130.0394 (9)0.0221 (8)0.0378 (10)0.0104 (7)0.0103 (8)0.0053 (7)
N80.0338 (11)0.0336 (11)0.0317 (11)0.0126 (9)0.0055 (9)0.0068 (9)
N90.0298 (10)0.0235 (10)0.0434 (12)0.0069 (8)0.0137 (9)0.0098 (9)
C100.0246 (11)0.0288 (12)0.0260 (12)0.0064 (9)0.0020 (9)0.0085 (10)
C140.0212 (10)0.0206 (11)0.0262 (11)0.0034 (9)0.0012 (9)0.0072 (9)
C280.0221 (11)0.0236 (12)0.0298 (12)0.0032 (9)0.0044 (9)0.0095 (10)
C110.0262 (11)0.0201 (11)0.0283 (12)0.0093 (9)0.0028 (9)0.0088 (9)
C290.0245 (11)0.0207 (11)0.0364 (13)0.0038 (9)0.0045 (10)0.0074 (10)
C300.0263 (12)0.0246 (12)0.0332 (13)0.0032 (10)0.0062 (10)0.0038 (10)
C90.0308 (12)0.0308 (13)0.0305 (13)0.0097 (10)0.0023 (10)0.0055 (10)
C260.0323 (13)0.0372 (14)0.0360 (14)0.0103 (11)0.0118 (11)0.0041 (11)
C30.0283 (12)0.0593 (18)0.0351 (14)0.0126 (12)0.0016 (11)0.0156 (13)
C20.0386 (14)0.0589 (17)0.0226 (12)0.0272 (13)0.0047 (10)0.0055 (12)
C200.0351 (13)0.0233 (12)0.0403 (14)0.0003 (10)0.0045 (11)0.0017 (11)
C170.0277 (12)0.0221 (12)0.0289 (12)0.0059 (9)0.0037 (10)0.0017 (9)
C40.0555 (17)0.0433 (16)0.0400 (15)0.0201 (13)0.0168 (13)0.0067 (12)
C60.0477 (15)0.0380 (15)0.0431 (15)0.0134 (12)0.0173 (13)0.0051 (12)
C50.0330 (13)0.0505 (16)0.0333 (13)0.0155 (12)0.0016 (11)0.0175 (12)
C70.0313 (13)0.0444 (15)0.0229 (12)0.0178 (11)0.0034 (10)0.0028 (11)
C210.0380 (14)0.0364 (14)0.0333 (14)0.0136 (11)0.0034 (11)0.0030 (11)
C220.0369 (14)0.0380 (14)0.0359 (14)0.0087 (11)0.0119 (11)0.0020 (11)
C32A0.044 (2)0.0231 (17)0.042 (2)0.0125 (15)0.0010 (16)0.0130 (15)
C25A0.050 (3)0.029 (2)0.044 (2)0.0176 (19)0.000 (2)0.0031 (18)
C27A0.036 (2)0.0156 (17)0.072 (3)0.0011 (16)0.0018 (19)0.0152 (18)
C32B0.049 (6)0.023 (5)0.045 (6)0.018 (4)0.016 (5)0.002 (4)
C25B0.054 (8)0.027 (6)0.067 (8)0.024 (6)0.030 (7)0.016 (5)
C27B0.056 (9)0.030 (7)0.107 (13)0.013 (6)0.020 (8)0.032 (8)
Geometric parameters (Å, º) top
Cl1—C21.750 (2)C6—H60.9300
O13—C111.352 (2)C5—C71.391 (3)
O13—H130.9827C5—H50.9300
N8—C91.280 (3)C21—H21A0.9600
N8—C71.420 (3)C21—H21B0.9600
N9—C281.384 (3)C21—H21C0.9600
N9—C33A1.448 (5)C22—H22A0.9700
N9—C261.453 (3)C22—H22B0.9700
N9—C33B1.470 (13)C31A—C32A1.517 (5)
C10—C301.390 (3)C31A—C25A1.535 (6)
C10—C111.422 (3)C31A—C27A1.545 (5)
C10—C91.446 (3)C32A—C33A1.550 (5)
C14—C111.396 (3)C32A—H32A0.9700
C14—C281.419 (3)C32A—H32B0.9700
C14—C171.540 (3)C33A—H33A0.9700
C28—C291.432 (3)C33A—H33B0.9700
C29—C301.372 (3)C25A—H25A0.9600
C29—C31A1.534 (4)C25A—H25B0.9600
C29—C31B1.576 (11)C25A—H25C0.9600
C30—H300.9300C27A—H27A0.9600
C9—H90.9300C27A—H27B0.9600
C26—C221.508 (3)C27A—H27C0.9600
C26—H26A0.9700C31B—C25B1.470 (15)
C26—H26B0.9700C31B—C32B1.561 (14)
C3—C21.368 (4)C31B—C27B1.561 (15)
C3—C51.393 (3)C32B—C33B1.581 (16)
C3—H30.9300C32B—H32C0.9700
C2—C41.389 (4)C32B—H32D0.9700
C20—C171.530 (3)C33B—H33C0.9700
C20—H20A0.9600C33B—H33D0.9700
C20—H20B0.9600C25B—H25D0.9600
C20—H20C0.9600C25B—H25E0.9600
C17—C221.527 (3)C25B—H25F0.9600
C17—C211.543 (3)C27B—H27D0.9600
C4—C61.379 (3)C27B—H27E0.9600
C4—H40.9300C27B—H27F0.9600
C6—C71.385 (3)
C11—O13—H13105.1H21A—C21—H21B109.5
C9—N8—C7121.8 (2)C17—C21—H21C109.5
C28—N9—C33A120.1 (2)H21A—C21—H21C109.5
C28—N9—C26118.91 (18)H21B—C21—H21C109.5
C33A—N9—C26114.7 (2)C26—C22—C17112.2 (2)
C28—N9—C33B117.4 (5)C26—C22—H22A109.2
C33A—N9—C33B12.9 (6)C17—C22—H22A109.2
C26—N9—C33B121.9 (5)C26—C22—H22B109.2
C30—C10—C11117.72 (19)C17—C22—H22B109.2
C30—C10—C9120.4 (2)H22A—C22—H22B107.9
C11—C10—C9121.9 (2)C32A—C31A—C29111.9 (3)
C11—C14—C28117.93 (19)C32A—C31A—C25A110.3 (3)
C11—C14—C17119.97 (19)C29—C31A—C25A107.6 (3)
C28—C14—C17122.10 (18)C32A—C31A—C27A107.8 (3)
N9—C28—C14120.20 (19)C29—C31A—C27A111.2 (3)
N9—C28—C29119.01 (19)C25A—C31A—C27A108.0 (3)
C14—C28—C29120.80 (19)C31A—C32A—C33A111.2 (3)
O13—C11—C14119.77 (19)C31A—C32A—H32A109.4
O13—C11—C10118.44 (18)C33A—C32A—H32A109.4
C14—C11—C10121.79 (19)C31A—C32A—H32B109.4
C30—C29—C28118.1 (2)C33A—C32A—H32B109.4
C30—C29—C31A120.8 (2)H32A—C32A—H32B108.0
C28—C29—C31A121.0 (2)N9—C33A—C32A106.4 (3)
C30—C29—C31B114.9 (4)N9—C33A—H33A110.4
C28—C29—C31B126.1 (4)C32A—C33A—H33A110.4
C31A—C29—C31B14.6 (4)N9—C33A—H33B110.4
C29—C30—C10123.4 (2)C32A—C33A—H33B110.4
C29—C30—H30118.3H33A—C33A—H33B108.6
C10—C30—H30118.3C31A—C25A—H25A109.5
N8—C9—C10122.1 (2)C31A—C25A—H25B109.5
N8—C9—H9118.9H25A—C25A—H25B109.5
C10—C9—H9118.9C31A—C25A—H25C109.5
N9—C26—C22109.41 (19)H25A—C25A—H25C109.5
N9—C26—H26A109.8H25B—C25A—H25C109.5
C22—C26—H26A109.8C31A—C27A—H27A109.5
N9—C26—H26B109.8C31A—C27A—H27B109.5
C22—C26—H26B109.8H27A—C27A—H27B109.5
H26A—C26—H26B108.2C31A—C27A—H27C109.5
C2—C3—C5119.2 (2)H27A—C27A—H27C109.5
C2—C3—H3120.4H27B—C27A—H27C109.5
C5—C3—H3120.4C25B—C31B—C32B109.6 (9)
C3—C2—C4121.5 (2)C25B—C31B—C27B112.2 (9)
C3—C2—Cl1119.7 (2)C32B—C31B—C27B105.4 (8)
C4—C2—Cl1118.8 (2)C25B—C31B—C29121.7 (8)
C17—C20—H20A109.5C32B—C31B—C29107.0 (7)
C17—C20—H20B109.5C27B—C31B—C2999.6 (8)
H20A—C20—H20B109.5C31B—C32B—C33B106.4 (9)
C17—C20—H20C109.5C31B—C32B—H32C110.4
H20A—C20—H20C109.5C33B—C32B—H32C110.4
H20B—C20—H20C109.5C31B—C32B—H32D110.4
C22—C17—C20110.06 (19)C33B—C32B—H32D110.4
C22—C17—C14109.37 (18)H32C—C32B—H32D108.6
C20—C17—C14110.74 (18)N9—C33B—C32B117.3 (9)
C22—C17—C21106.53 (19)N9—C33B—H33C108.0
C20—C17—C21109.19 (19)C32B—C33B—H33C108.0
C14—C17—C21110.87 (18)N9—C33B—H33D108.0
C6—C4—C2118.7 (3)C32B—C33B—H33D108.0
C6—C4—H4120.6H33C—C33B—H33D107.2
C2—C4—H4120.6C31B—C25B—H25D109.5
C4—C6—C7121.1 (2)C31B—C25B—H25E109.5
C4—C6—H6119.4H25D—C25B—H25E109.5
C7—C6—H6119.4C31B—C25B—H25F109.5
C7—C5—C3120.4 (2)H25D—C25B—H25F109.5
C7—C5—H5119.8H25E—C25B—H25F109.5
C3—C5—H5119.8C31B—C27B—H27D109.5
C6—C7—C5119.1 (2)C31B—C27B—H27E109.5
C6—C7—N8116.4 (2)H27D—C27B—H27E109.5
C5—C7—N8124.4 (2)C31B—C27B—H27F109.5
C17—C21—H21A109.5H27D—C27B—H27F109.5
C17—C21—H21B109.5H27E—C27B—H27F109.5
C33A—N9—C28—C14162.8 (3)C2—C4—C6—C70.2 (4)
C26—N9—C28—C1412.0 (3)C2—C3—C5—C71.6 (4)
C33B—N9—C28—C14177.2 (7)C4—C6—C7—C50.9 (4)
C33A—N9—C28—C2917.5 (4)C4—C6—C7—N8178.2 (2)
C26—N9—C28—C29168.3 (2)C3—C5—C7—C61.7 (4)
C33B—N9—C28—C293.1 (7)C3—C5—C7—N8178.7 (2)
C11—C14—C28—N9174.10 (19)C9—N8—C7—C6156.8 (2)
C17—C14—C28—N96.6 (3)C9—N8—C7—C526.1 (4)
C11—C14—C28—C296.2 (3)N9—C26—C22—C1761.8 (3)
C17—C14—C28—C29173.14 (19)C20—C17—C22—C2678.4 (3)
C28—C14—C11—O13174.30 (19)C14—C17—C22—C2643.4 (3)
C17—C14—C11—O136.4 (3)C21—C17—C22—C26163.3 (2)
C28—C14—C11—C105.8 (3)C30—C29—C31A—C32A169.0 (3)
C17—C14—C11—C10173.53 (19)C28—C29—C31A—C32A6.0 (4)
C30—C10—C11—O13177.8 (2)C31B—C29—C31A—C32A120.9 (19)
C9—C10—C11—O133.1 (3)C30—C29—C31A—C25A69.7 (4)
C30—C10—C11—C142.3 (3)C28—C29—C31A—C25A115.3 (3)
C9—C10—C11—C14176.8 (2)C31B—C29—C31A—C25A0.4 (17)
N9—C28—C29—C30177.2 (2)C30—C29—C31A—C27A48.4 (4)
C14—C28—C29—C303.1 (3)C28—C29—C31A—C27A126.6 (3)
N9—C28—C29—C31A7.7 (4)C31B—C29—C31A—C27A118.5 (19)
C14—C28—C29—C31A172.1 (3)C29—C31A—C32A—C33A40.8 (4)
N9—C28—C29—C31B8.8 (7)C25A—C31A—C32A—C33A78.8 (4)
C14—C28—C29—C31B171.5 (6)C27A—C31A—C32A—C33A163.4 (3)
C28—C29—C30—C100.6 (3)C28—N9—C33A—C32A51.5 (4)
C31A—C29—C30—C10175.8 (3)C26—N9—C33A—C32A156.5 (3)
C31B—C29—C30—C10169.1 (5)C33B—N9—C33A—C32A30 (3)
C11—C10—C30—C291.0 (3)C31A—C32A—C33A—N962.5 (4)
C9—C10—C30—C29179.8 (2)C30—C29—C31B—C25B21.9 (11)
C7—N8—C9—C10177.1 (2)C28—C29—C31B—C25B146.8 (7)
C30—C10—C9—N8178.4 (2)C31A—C29—C31B—C25B139 (2)
C11—C10—C9—N82.4 (3)C30—C29—C31B—C32B148.8 (6)
C28—N9—C26—C2245.4 (3)C28—C29—C31B—C32B20.0 (11)
C33A—N9—C26—C22162.3 (3)C31A—C29—C31B—C32B94 (2)
C33B—N9—C26—C22150.1 (7)C30—C29—C31B—C27B101.7 (6)
C5—C3—C2—C40.9 (4)C28—C29—C31B—C27B89.5 (7)
C5—C3—C2—Cl1177.92 (18)C31A—C29—C31B—C27B15.3 (14)
C11—C14—C17—C22169.2 (2)C25B—C31B—C32B—C33B178.3 (9)
C28—C14—C17—C2210.1 (3)C27B—C31B—C32B—C33B57.4 (11)
C11—C14—C17—C2069.3 (3)C29—C31B—C32B—C33B48.0 (11)
C28—C14—C17—C20111.4 (2)C28—N9—C33B—C32B32.1 (13)
C11—C14—C17—C2152.1 (3)C33A—N9—C33B—C32B73 (3)
C28—C14—C17—C21127.2 (2)C26—N9—C33B—C32B132.6 (8)
C3—C2—C4—C60.1 (4)C31B—C32B—C33B—N959.4 (13)
Cl1—C2—C4—C6178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N80.981.652.563 (2)155

Experimental details

Crystal data
Chemical formulaC23H27ClN2O
Mr382.92
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4716 (3), 9.8468 (6), 16.9206 (7)
α, β, γ (°)75.438 (4), 80.307 (4), 75.863 (4)
V3)1005.42 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerOxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.947, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5887, 3651, 2959
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.142, 1.08
No. of reflections3651
No. of parameters270
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N80.981.652.563 (2)155
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds