organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1-(4-methyl­phenyl­sulfinyl)naphtho­[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 January 2012; accepted 25 January 2012; online 31 January 2012)

In the title compound, C20H16O2S, the 4-methyl­phenyl ring makes a dihedral angle of 82.60 (4)° with the mean plane [r.m.s. deviation = 0.007 (1) Å] of the naphtho­furan fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, and by a slipped ππ inter­action between the central naphtho­furan benzene rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.671 (2) Å, inter­planar distance = 3.349 (2) Å and slippage = 1.503 (2)°].

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Goel & Dixit (2004[Goel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.]); Hagiwara et al. (1999[Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.]); Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]). For the crystal structures of related compounds, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731-o1732.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o727.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O2S

  • Mr = 320.39

  • Monoclinic, P 21 /c

  • a = 6.5052 (1) Å

  • b = 16.7418 (3) Å

  • c = 14.4935 (2) Å

  • β = 97.883 (1)°

  • V = 1563.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.28 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.677, Tmax = 0.746

  • 15390 measured reflections

  • 3896 independent reflections

  • 3271 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.03

  • 3896 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.48 3.3211 (19) 147
C10—H10⋯O1ii 0.95 2.59 3.4579 (19) 152
C13—H13C⋯O2iii 0.98 2.35 3.2538 (19) 153
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Naphthofuran analogues have drawn much attention owing to their valuable biological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). As a part of our continuing study of 2-methylnaphthofuran derivatives containing either 1-phenylsulfinyl (Choi et al., 2007) or 1-phenylsulfonyl (Choi et al., 2008) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle between the 4-methylphenyl ring and the mean plane of the naphthofuran fragment is 82.60 (4)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak slipped ππ interaction between adjacent central benzene rings of the naphthofuran moiety, with a Cg···Cgiv distance of 3.671 (2) Å, and an interplanar distance of 3.349 (2) Å, resulting in a slippage of 1.503 (2) Å, Cg is the centroid of the C2,C3,C8,C9,C10,C11 benzene ring and (iv) is the -x + 1, -y + 1, -z symmetry code.

Related literature top

For the pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004); Hagiwara et al. (1999); Piloto et al. (2005). For the crystal structures of related compounds, see: Choi et al. (2007, 2008).

Experimental top

77% 3-Chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 2-methyl-1-(4-methylphenylsulfanyl) naphtho[2,1-b]furan (334 mg, 1.1 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 433–448 K; Rf = 0.51 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C)for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) -x + 2, y + 1/2, -z + 1/2; (ii) -x, -y + 1, -z; (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z; (v) -x + 2, y - 1/2, -z + 1/2; (vi) x + 1, y, z.]
2-Methyl-1-(4-methylphenylsulfinyl)naphtho[2,1-b]furan top
Crystal data top
C20H16O2SF(000) = 672
Mr = 320.39Dx = 1.361 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5690 reflections
a = 6.5052 (1) Åθ = 2.8–28.1°
b = 16.7418 (3) ŵ = 0.21 mm1
c = 14.4935 (2) ÅT = 173 K
β = 97.883 (1)°Block, colourless
V = 1563.55 (4) Å30.28 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3896 independent reflections
Radiation source: rotating anode3271 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1922
Tmin = 0.677, Tmax = 0.746l = 1919
15390 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.534P]
where P = (Fo2 + 2Fc2)/3
3896 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H16O2SV = 1563.55 (4) Å3
Mr = 320.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5052 (1) ŵ = 0.21 mm1
b = 16.7418 (3) ÅT = 173 K
c = 14.4935 (2) Å0.28 × 0.28 × 0.26 mm
β = 97.883 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3896 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3271 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.746Rint = 0.028
15390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3896 reflectionsΔρmin = 0.39 e Å3
210 parameters
Special details top

Geometry. Cg···Cgiv distance = 3.671 (2) Å; (iv) -x + 1, -y + 1, -z

Cg is the centroid of the C2/C3/C8–C11 benzene ring.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54869 (6)0.29240 (2)0.22725 (3)0.02964 (11)
O10.18369 (15)0.42901 (7)0.06023 (7)0.0332 (2)
O20.77697 (17)0.28641 (6)0.22477 (8)0.0391 (3)
C10.4389 (2)0.37111 (8)0.15685 (9)0.0268 (3)
C20.4942 (2)0.45457 (8)0.14760 (9)0.0251 (3)
C30.6672 (2)0.50427 (8)0.17904 (9)0.0253 (3)
C40.8502 (2)0.47737 (9)0.23408 (10)0.0301 (3)
H40.86190.42300.25280.036*
C51.0110 (2)0.52903 (9)0.26072 (12)0.0368 (3)
H51.13370.51000.29720.044*
C60.9958 (2)0.60987 (9)0.23450 (12)0.0375 (4)
H61.10670.64550.25440.045*
C70.8224 (2)0.63704 (9)0.18063 (11)0.0339 (3)
H70.81460.69170.16290.041*
C80.6534 (2)0.58600 (8)0.15034 (10)0.0282 (3)
C90.4756 (2)0.61434 (9)0.09111 (10)0.0338 (3)
H90.46940.66910.07360.041*
C100.3145 (2)0.56566 (10)0.05886 (10)0.0346 (3)
H100.19740.58470.01850.042*
C110.3302 (2)0.48621 (9)0.08821 (10)0.0289 (3)
C120.2541 (2)0.35928 (9)0.10221 (10)0.0309 (3)
C130.1180 (3)0.28882 (10)0.08024 (12)0.0399 (4)
H13A0.18790.24090.10790.060*
H13B0.08870.28220.01250.060*
H13C0.01240.29670.10580.060*
C140.5188 (2)0.33407 (8)0.33886 (9)0.0254 (3)
C150.6874 (2)0.33510 (9)0.40837 (11)0.0330 (3)
H150.81970.31770.39580.040*
C160.6611 (2)0.36179 (10)0.49654 (11)0.0367 (3)
H160.77690.36260.54420.044*
C170.4692 (2)0.38742 (9)0.51671 (10)0.0318 (3)
C180.3013 (2)0.38436 (9)0.44579 (10)0.0316 (3)
H180.16850.40110.45850.038*
C190.3236 (2)0.35751 (8)0.35733 (10)0.0289 (3)
H190.20720.35510.31000.035*
C200.4422 (3)0.41837 (11)0.61182 (11)0.0416 (4)
H20A0.53940.39090.65900.062*
H20B0.29970.40840.62360.062*
H20C0.47000.47590.61470.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0360 (2)0.02007 (18)0.0343 (2)0.00179 (13)0.00981 (14)0.00098 (13)
O10.0290 (5)0.0398 (6)0.0299 (5)0.0007 (4)0.0012 (4)0.0028 (4)
O20.0378 (6)0.0329 (6)0.0494 (7)0.0121 (5)0.0161 (5)0.0032 (5)
C10.0293 (7)0.0260 (7)0.0259 (7)0.0002 (5)0.0068 (5)0.0021 (5)
C20.0282 (6)0.0246 (7)0.0232 (6)0.0036 (5)0.0066 (5)0.0009 (5)
C30.0295 (7)0.0231 (7)0.0245 (6)0.0023 (5)0.0079 (5)0.0015 (5)
C40.0299 (7)0.0235 (7)0.0372 (8)0.0009 (5)0.0058 (6)0.0014 (6)
C50.0304 (7)0.0335 (8)0.0458 (9)0.0007 (6)0.0027 (6)0.0006 (7)
C60.0354 (8)0.0310 (8)0.0475 (9)0.0082 (6)0.0110 (7)0.0053 (7)
C70.0440 (8)0.0223 (7)0.0384 (8)0.0018 (6)0.0158 (7)0.0008 (6)
C80.0362 (7)0.0237 (7)0.0265 (7)0.0023 (5)0.0114 (6)0.0009 (5)
C90.0449 (8)0.0266 (7)0.0312 (7)0.0101 (6)0.0101 (6)0.0046 (6)
C100.0372 (8)0.0365 (8)0.0295 (7)0.0117 (6)0.0023 (6)0.0039 (6)
C110.0285 (7)0.0326 (7)0.0259 (7)0.0027 (6)0.0049 (5)0.0023 (6)
C120.0322 (7)0.0336 (8)0.0281 (7)0.0011 (6)0.0086 (6)0.0044 (6)
C130.0371 (8)0.0427 (9)0.0402 (9)0.0106 (7)0.0061 (7)0.0088 (7)
C140.0293 (7)0.0188 (6)0.0285 (7)0.0001 (5)0.0054 (5)0.0029 (5)
C150.0266 (7)0.0340 (8)0.0383 (8)0.0012 (6)0.0041 (6)0.0032 (6)
C160.0325 (7)0.0423 (9)0.0338 (8)0.0025 (6)0.0016 (6)0.0031 (7)
C170.0374 (8)0.0288 (7)0.0299 (7)0.0075 (6)0.0070 (6)0.0017 (6)
C180.0291 (7)0.0315 (8)0.0354 (8)0.0003 (6)0.0090 (6)0.0010 (6)
C190.0267 (7)0.0285 (7)0.0311 (7)0.0007 (5)0.0029 (5)0.0020 (6)
C200.0502 (9)0.0444 (9)0.0318 (8)0.0107 (8)0.0111 (7)0.0035 (7)
Geometric parameters (Å, º) top
S1—O21.4938 (11)C9—H90.9500
S1—C11.7573 (15)C10—C111.396 (2)
S1—C141.7964 (14)C10—H100.9500
O1—C121.3662 (18)C12—C131.483 (2)
O1—C111.3727 (17)C13—H13A0.9800
C1—C121.360 (2)C13—H13B0.9800
C1—C21.4537 (19)C13—H13C0.9800
C2—C111.3813 (19)C14—C151.384 (2)
C2—C31.4232 (19)C14—C191.3901 (18)
C3—C41.413 (2)C15—C161.386 (2)
C3—C81.4293 (19)C15—H150.9500
C4—C51.371 (2)C16—C171.389 (2)
C4—H40.9500C16—H160.9500
C5—C61.406 (2)C17—C181.394 (2)
C5—H50.9500C17—C201.505 (2)
C6—C71.359 (2)C18—C191.385 (2)
C6—H60.9500C18—H180.9500
C7—C81.414 (2)C19—H190.9500
C7—H70.9500C20—H20A0.9800
C8—C91.424 (2)C20—H20B0.9800
C9—C101.359 (2)C20—H20C0.9800
O2—S1—C1111.27 (6)O1—C11—C10123.78 (13)
O2—S1—C14106.16 (7)C2—C11—C10124.97 (14)
C1—S1—C1498.40 (6)C1—C12—O1110.52 (13)
C12—O1—C11106.72 (11)C1—C12—C13134.00 (15)
C12—C1—C2107.26 (13)O1—C12—C13115.48 (13)
C12—C1—S1119.03 (11)C12—C13—H13A109.5
C2—C1—S1133.49 (11)C12—C13—H13B109.5
C11—C2—C3118.98 (13)H13A—C13—H13B109.5
C11—C2—C1104.24 (12)C12—C13—H13C109.5
C3—C2—C1136.67 (13)H13A—C13—H13C109.5
C4—C3—C2124.22 (13)H13B—C13—H13C109.5
C4—C3—C8118.95 (13)C15—C14—C19120.66 (13)
C2—C3—C8116.82 (13)C15—C14—S1119.20 (10)
C5—C4—C3120.60 (14)C19—C14—S1119.84 (11)
C5—C4—H4119.7C14—C15—C16119.32 (13)
C3—C4—H4119.7C14—C15—H15120.3
C4—C5—C6120.57 (15)C16—C15—H15120.3
C4—C5—H5119.7C15—C16—C17121.45 (14)
C6—C5—H5119.7C15—C16—H16119.3
C7—C6—C5119.97 (14)C17—C16—H16119.3
C7—C6—H6120.0C16—C17—C18117.99 (14)
C5—C6—H6120.0C16—C17—C20121.35 (14)
C6—C7—C8121.65 (14)C18—C17—C20120.66 (14)
C6—C7—H7119.2C19—C18—C17121.58 (13)
C8—C7—H7119.2C19—C18—H18119.2
C7—C8—C9121.24 (13)C17—C18—H18119.2
C7—C8—C3118.23 (13)C18—C19—C14118.97 (13)
C9—C8—C3120.51 (13)C18—C19—H19120.5
C10—C9—C8122.13 (14)C14—C19—H19120.5
C10—C9—H9118.9C17—C20—H20A109.5
C8—C9—H9118.9C17—C20—H20B109.5
C9—C10—C11116.49 (14)H20A—C20—H20B109.5
C9—C10—H10121.8C17—C20—H20C109.5
C11—C10—H10121.8H20A—C20—H20C109.5
O1—C11—C2111.24 (12)H20B—C20—H20C109.5
O2—S1—C1—C12137.65 (11)C12—O1—C11—C10179.24 (13)
C14—S1—C1—C12111.29 (12)C3—C2—C11—O1176.11 (11)
O2—S1—C1—C248.61 (15)C1—C2—C11—O10.85 (14)
C14—S1—C1—C262.45 (14)C3—C2—C11—C103.1 (2)
C12—C1—C2—C111.38 (14)C1—C2—C11—C10179.93 (13)
S1—C1—C2—C11172.89 (11)C9—C10—C11—O1178.33 (13)
C12—C1—C2—C3174.74 (15)C9—C10—C11—C20.8 (2)
S1—C1—C2—C311.0 (2)C2—C1—C12—O11.46 (15)
C11—C2—C3—C4175.09 (12)S1—C1—C12—O1173.79 (9)
C1—C2—C3—C40.6 (2)C2—C1—C12—C13179.00 (15)
C11—C2—C3—C83.32 (18)S1—C1—C12—C135.8 (2)
C1—C2—C3—C8179.02 (14)C11—O1—C12—C10.93 (15)
C2—C3—C4—C5179.31 (13)C11—O1—C12—C13179.43 (12)
C8—C3—C4—C50.9 (2)O2—S1—C14—C1515.36 (13)
C3—C4—C5—C60.6 (2)C1—S1—C14—C15130.48 (12)
C4—C5—C6—C71.4 (2)O2—S1—C14—C19170.95 (11)
C5—C6—C7—C80.6 (2)C1—S1—C14—C1955.83 (12)
C6—C7—C8—C9177.67 (14)C19—C14—C15—C161.7 (2)
C6—C7—C8—C31.0 (2)S1—C14—C15—C16175.29 (12)
C4—C3—C8—C71.69 (19)C14—C15—C16—C170.1 (2)
C2—C3—C8—C7179.81 (12)C15—C16—C17—C181.0 (2)
C4—C3—C8—C9176.95 (12)C15—C16—C17—C20178.40 (15)
C2—C3—C8—C91.56 (18)C16—C17—C18—C190.7 (2)
C7—C8—C9—C10177.87 (14)C20—C17—C18—C19178.78 (14)
C3—C8—C9—C100.7 (2)C17—C18—C19—C140.8 (2)
C8—C9—C10—C111.2 (2)C15—C14—C19—C182.0 (2)
C12—O1—C11—C20.01 (15)S1—C14—C19—C18175.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.483.3211 (19)147
C10—H10···O1ii0.952.593.4579 (19)152
C13—H13C···O2iii0.982.353.2538 (19)153
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H16O2S
Mr320.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.5052 (1), 16.7418 (3), 14.4935 (2)
β (°) 97.883 (1)
V3)1563.55 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.677, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15390, 3896, 3271
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.03
No. of reflections3896
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.483.3211 (19)147.1
C10—H10···O1ii0.952.593.4579 (19)151.5
C13—H13C···O2iii0.982.353.2538 (19)152.7
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Centre (grant No. RIC08-06-07) at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731–o1732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819–8821.  Web of Science CrossRef CAS Google Scholar
First citationHagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.  CrossRef CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds