research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 8| Part 4| July 2021| Pages 644-654
ISSN: 2052-2525

Charge density studies of multicentre two-electron bonding of an anion radical at non-ambient temperature and pressure

crossmark logo

aDepartment of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia, bInstitute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, Göttingen 37077, Germany, cFaculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, Krakow 30-387, Poland, dBoreskov Institute of Catalysis, SB RAS, Lavrentiev Avenue 5, Novosibirsk 630090, Russian Federation, eNovosibirsk State University, Pirogova Street 2, Novosibirsk 630090 Russian Federation, and fCRM2, CNRS, UMR 7036, Université de Lorraine, BP 70239 Nancy, France
*Correspondence e-mail: kmolcano@irb.hr

Edited by L. R. MacGillivray, University of Iowa, USA (Received 30 September 2020; accepted 18 May 2021; online 12 June 2021)

The variation of charge density of two-electron multicentre bonding (pancake bonding) between semi­quinone radicals with pressure and temperature was studied on a salt of 5,6-di­chloro-2,3-di­cyano­semi­quinone radical anion (DDQ) with 4-cyano-N-methyl­pyridinium cation (4-CN) using the Transferable Aspheric Atom Model (TAAM) refinement. The pancake-bonded radical dimers are stacked by non-bonding π-interactions. With rising pressure, the covalent character of interactions between radicals increases, and above 2.55 GPa, the electron density indicates multicentric covalent interactions throughout the stack. The experimental charge densities were verified and corroborated by periodic DFT computations. The TAAM approach has been tested and validated for atomic resolution data measured at ambient pressure; this work shows this approach can also be applied to diffraction data obtained at pressures up to several gigapascals.

1. Introduction

X-ray charge density analysis is considered to be the most powerful experimental method to study interatomic and intermolecular interactions (Koritsanszky & Coppens, 2001[Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583-1628.]; Lecomte et al., 2003[Lecomte, C., Souhassou, M. & Pillet, S. (2003). J. Mol. Struct. 647, 53-64.]; Munshi & Guru Row, 2005[Munshi, P. & Guru Row, T. N. (2005). Crystallogr. Rev. 11, 199-241.]; Stalke, 2011[Stalke, C. (2011). Chem. Eur. J. 17, 9264-9278.], 2015[Stalke, D. (2015). Charge Density and Chemical Bonding, pp. 199. Springer International Publishing.]; Macchi, 2013[Macchi, P. (2013). Crystallogr. Rev. 19, 58-101.], 2021[Macchi, P. (2021). Quantum Crystallography: Fundamentals and Applications, Bern: De Gruyter.]; Korlyukov & Nelyubina, 2019[Korlyukov, A. A. & Nelyubina, Y. V. (2019). Russ. Chem. Rev. 88, 677-716.]). Its results are directly comparable to those obtained by quantum chemical computations (Grabowsky et al., 2017[Grabowsky, S., Genoni, A. & Bürgi, H.-B. (2017). Chem. Sci. 8, 4159-4176.]; Genoni et al., 2017[Genoni, A., Dos Santos, L. H. R., Meyer, B. & Macchi, P. (2017). IUCrJ, 4, 136-146.], 2018a[Genoni, A., Franchini, D., Pieraccini, S. & Sironi, M. (2018a). Chem. Eur. J. 24, 15507-15511.],[Rigaku Oxford Diffraction (2018). CrysAlisPRO, version: 1.171.39.46, Rigaku Corporation, Oxford, UK.]b; Genoni & Macchi, 2020[Genoni, A. & Macchi, P. (2020). Crystals, 10, 473.]). The combination of experimental and theoretical charge densities using the atoms in molecules (AIM) approach is the basis of modern quantum crystallography (Macchi, 2013[Macchi, P. (2013). Crystallogr. Rev. 19, 58-101.], 2021[Macchi, P. (2021). Quantum Crystallography: Fundamentals and Applications, Bern: De Gruyter.]; Macchi et al., 2015[Macchi, P., Gillet, J.-M., Taulelle, F., Campo, J., Claiser, N. & Lecomte, C. (2015). IUCrJ, 2, 441-451.]; Grabowsky et al., 2017[Grabowsky, S., Genoni, A. & Bürgi, H.-B. (2017). Chem. Sci. 8, 4159-4176.]; Genoni et al., 2018a[Genoni, A., Franchini, D., Pieraccini, S. & Sironi, M. (2018a). Chem. Eur. J. 24, 15507-15511.],b[Genoni, A., Bučinský, L., Claiser, N., Contreras-García, J., Dittrich, B., Dominiak, P. M., Espinosa, E., Gatti, C., Giannozzi, P., Gillet, J.-M., Jayatilaka, D., Macchi, P., Madsen, A. Ø., Massa, L., Matta, C. F., Merz, K. M., Nakashima, P. N. H., Ott, H., Ryde, U., Schwarz, K., Sierka, M. & Grabowsky, S. (2018b). Chem. Eur. J. 24, 10881-10905.]; Korlyukov & Nelyubina, 2019[Korlyukov, A. A. & Nelyubina, Y. V. (2019). Russ. Chem. Rev. 88, 677-716.]; Genoni & Macchi, 2020[Genoni, A. & Macchi, P. (2020). Crystals, 10, 473.]). However, obtaining good high-resolution diffraction data still remains an experimental challenge, and is generally limited to high-quality crystals, low temperatures (typically 30–100 K) and ambient pressure. This unfortunately leaves many interesting chemical phenomena out of reach of experimental charge density studies. Up to date experimental charge densities under high pressure were recently obtained using synchrotron radiation for only two compounds, syn-1,6:8,13-bis­carbonyl­[14]annulene (Casati et al., 2017a[Casati, N., Kleppe, A., Jephcoat, A. P. & Macchi, P. (2017a). Nat. Commun. 7, 10901.],b[Casati, N., Genoni, A., Meyer, B., Krawczuk, A. & Macchi, P. (2017b). Acta Cryst. B73, 584-597.]) and grossular Ca3Al2(SiO4)3 (Gajda et al., 2020[Gajda, R., Stachowicz, M., Makal, A., Sutuła, S., Parafiniuk, J., Fertey, P. & Woźniak, K. (2020). IUCrJ, 7, 383-392.]).

To circumvent the problem of obtaining charge densities from moderate-quality diffraction data, the Transferrable Aspherical Atom Model (TAAM) was proposed and first applied almost three decades ago (Brock et al., 1991[Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47, 789-797.]). It is based on the chemical reasoning that the same atoms or atom groups behave analogously regardless of the rest of the molecule (termed residue) (Brock et al., 1991[Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47, 789-797.]; Korlyukov & Nelyubina, 2019[Korlyukov, A. A. & Nelyubina, Y. V. (2019). Russ. Chem. Rev. 88, 677-716.]). Thus, the electron density of atoms with similar environments (e.g. carbonyl or hydroxyl groups) could be modelled using very similar multipolar parameters. A validated (Bąk et al., 2011[Bąk, J. M., Domagała, S., Hübschle, C., Jelsch, C., Dittrich, B. & Dominiak, P. M. (2011). Acta Cryst. A67, 141-153.]) approximation is to use averaged multipoles and kappa parameters stored in a database (Pichon-Pesme et al., 1995[Pichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem. 99, 6242-6250.]) that can be applied to crystal structures for which diffraction data are not sufficient to allow a proper multipolar refinement (Zarychta et al., 2007[Zarychta, B., Pichon-Pesme, V., Guillot, B., Lecomte, C. & Jelsch, C. (2007). Acta Cryst. A63, 108-125.]; Bąk et al., 2011[Bąk, J. M., Domagała, S., Hübschle, C., Jelsch, C., Dittrich, B. & Dominiak, P. M. (2011). Acta Cryst. A67, 141-153.]; Domagała et al., 2012[Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]; Gajda et al., 2014[Gajda, K., Daszkiewicz, Z., Kozubek, E., Ejsmont, K. & Zarychta, B. (2014). Cryst. Growth Des. 14, 5737-5748.]; Nassour et al., 2017[Nassour, A., Domagala, S., Guillot, B., Leduc, T., Lecomte, C. & Jelsch, C. (2017). Acta Cryst. B73, 610-625.]). Since the first compilation of data by Lecomte and coworkers (Pichon-Pesme et al., 1995[Pichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem. 99, 6242-6250.]), several databases of such multipoles have been established; two are derived from quantum computations (Koritsanszky et al., 2002[Koritsanszky, T., Volkov, A. & Coppens, P. (2002). Acta Cryst. A58, 464-472.]; Dittrich et al., 2004[Dittrich, B., Koritsánszky, T. & Luger, P. (2004). Angew. Chem. Int. Ed. 43, 2718-2721.], 2013[Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91-104.]; Jarzembska & Dominiak, 2012[Jarzembska, K. N. & Dominiak, P. M. (2012). Acta Cryst. A68, 139-147.]), and one by averaging numerous experimental datasets (Zarychta et al., 2007[Zarychta, B., Pichon-Pesme, V., Guillot, B., Lecomte, C. & Jelsch, C. (2007). Acta Cryst. A63, 108-125.]; Domagała et al., 2012[Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]). These databases were at first limited to peptides, but were later expanded to include a broader variety of organic compounds; however, structures with heavy atoms and transition metals still remain out of reach of TAAM. Also, to date no structures containing organic radicals have been studied by TAAM.

Since TAAM refinement has seldom been used, it remains an open question, what amount of data can be extracted from these charge densities, and what is the minimum resolution and data quality that would justify use of TAAM, as opposed to a regular spherical atom refinement (Bąk et al., 2011[Bąk, J. M., Domagała, S., Hübschle, C., Jelsch, C., Dittrich, B. & Dominiak, P. M. (2011). Acta Cryst. A67, 141-153.]). In principle, TAAM refinement using multipolar parameters obtained from high-resolution diffraction experiments conducted at optimal conditions (T ≤ 100 K, ambient pressure) may be justified for structures under pressures up to 10 GPa. In this pressure range, molecular arrangement and intermolecular interactions are affected, whereas the molecular structure (and electron density) can only be considerably impacted at pressures exceeding 10 GPa (Tse, 2020[Tse, J. S. (2020). Natl. Sci. Rev. 7, 146-169.]; Yoo, 2020[Yoo, C.-S. (2020). Matter Radiat. Extremes, 5, 018202.]). Therefore, we can expect that TAAM refinement with multipolar parameters obtained at ambient pressure should be justified for a limited range of pressures below 10 GPa.

A possible solution for these problems would require a systematic study on a large number of similar diffraction datasets of different resolution and quality. Our recent variable-temperature (VT) and variable-pressure study of a salt of 5,6-di­chloro-2,3-di­cyano­semi­quinone radical anion (DDQ) with 4-cyano-N-methyl­pyridinium cation (4-CN) (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]), combined with a high-resolution charge density study (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]), offers a promising material, and deals with a chemically interesting type of interaction.

The title compound 4-CN·DDQ (Scheme 1) comprises stacks of radicals which involve two-electron multicentre covalent bonding (2e/mc; i.e. pancake bonding) (Molčanov et al., 2018a[Molčanov, K., Stalke, D., Šantić, A., Demeshko, S., Stilinović, V., Mou, Z., Kertesz, M. & Kojić-Prodić, B. (2018a). CrystEngComm, 20, 1862-1873.]; Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) in dimers of closely bound radicals. Such bonding has caught the attention of researchers over the last decade (Novoa & Miller, 2007[Novoa, J. J. & Miller, J. S. (2007). Acc. Chem. Res. 40, 189-196.]; Preuss, 2014[Preuss, K. E. (2014). Polyhedron, 79, 1-15.]; Kertesz, 2019[Kertesz, M. (2019). Chem. Eur. J. 25, 400-416.]; Molčanov & Kojić-Prodić, 2019[Molčanov, K. & Kojić-Prodić, B. (2019). IUCrJ, 6, 156-166.]; Molčanov et al., 2019a[Molčanov, K., Milašinović, V. & Kojić-Prodić, B. (2019a). Cryst. Growth Des. 19, 5967-5980.]) describing a non-localized electron pair of two closely interacting radicals occupying the same orbital (i.e. paired spins). Crystals comprising 2e/mc bonded radicals are therefore diamagnetic and distances between the molecular mean planes are much shorter than the sum of van der Waals radii (usually <3.1 Å). This interesting novel interaction therefore borders inter- and intramolecular and its energy typically exceeds −15 kcal mol−1 (Kertesz, 2019[Kertesz, M. (2019). Chem. Eur. J. 25, 400-416.]; Molčanov & Kojić-Prodić, 2019[Molčanov, K. & Kojić-Prodić, B. (2019). IUCrJ, 6, 156-166.]). Crystal packing of 4-CN·DDQ comprises stacks of pancake-bonded radical anions with alternating short (pancake bond; in the text referred to as contact A; symmetry operationx, −y+1, −z) and long (non-bonding stacking contact; in the text referred to as contact B; symmetry operationx+1, −y+1, –z) interplanar separations (Fig. 1[link]).[link]

[Scheme 1]
[Figure 1]
Figure 1
(a) Crystal packing of 4-CN·DDQ viewed in the direction [100]. (b) Stack of DDQ radical anions in 4-CN·DDQ. Short intra-dimer and long inter-dimer contacts are marked as A (2.92 Å at room temperature and ambient pressure) and B (3.49 Å at room temperature and ambient pressure), respectively. The symmetry operator for contact A is −x, −y+1, −z and for B it is −x+1, −y+1, −z.

Currently only a few X-ray charge density studies of 2e/mc bonded radicals have been published, dealing with di­aza­dtihiazolyls (Domagała et al., 2014[Domagała, S., Kosc, K., Robinson, S. W., Haynes, D. A. & Woźniak, K. (2014). Cryst. Growth Des. 14, 4834-4848.]; Domagała & Haynes, 2016[Domagała, S. & Haynes, D. A. (2016). CrystEngComm, 18, 7116-7125.]) and semi­quinones (Molčanov et al., 2018[Rigaku Oxford Diffraction (2018). CrysAlisPRO, version: 1.171.39.46, Rigaku Corporation, Oxford, UK.], 2019b[Molčanov, K., Jelsch, C., Landeros, B., Hernández-Trujillo, J., Wenger, E., Stilinović, V., Kojić-Prodić, B. & Escudero-Adán, E. (2019b). Cryst. Growth Des. 19, 391-402.]; Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). Due to the fact that the crystals with organic radicals are usually unstable, only the selected stable ones may be used, severely limiting the applicability of the experimental charge density.

In order to gain more information on the behaviour of novel 2e/mc interactions, crystals of pancake-bonded radicals should be studied under a broader range of conditions (temperatures and pressures), which poses additional experimental challenges. Thus data obtained are normally limited to resolutions of 0.8 Å or lower and are thus unsuitable for multipolar refinement and study of charge density. Recently, a combined VT (at ambient pressure) and high-pressure (HP; at room temperature) X-ray diffraction study of 2e/mc bonded radicals was carried out. The first work was performed using 4-CN·DDQ (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]). In addition, this compound was studied by ultra-high resolution X-ray crystallography (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). A large number of diffraction datasets was measured with varying quality. VT data were of high quality with resolutions of about 0.8 Å, whereas the HP data were generally poor, incomplete and lower resolution. The availability of experimentally determined multipolar charge density parameters makes this compound ideally suited to test the applicability of transferable multipoles. The study of charge density is crucial for understanding the nature of 2e/mc bonding, especially under conditions far from ideal for high-resolution data collection.

One problem here is that 2e/mc bonding involves a non-localized electron pair, meaning that its electron density is low (maximum electron density at the bonding critical points between the radicals is <0.1 e Å−3) (Molčanov & Kojić-Prodić, 2019[Molčanov, K. & Kojić-Prodić, B. (2019). IUCrJ, 6, 156-166.]; Molčanov et al., 2019a[Molčanov, K., Milašinović, V. & Kojić-Prodić, B. (2019a). Cryst. Growth Des. 19, 5967-5980.]; Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). Therefore, its study is less reliable than that of intramolecular covalent bonding which is stronger. To test the reliability of our TAAM models, we propose the following criteria: (i) overall reduction of disagreement R factors and residual density of TAAM refinement compared with regular spherical refinement; (ii) electron densities should follow a clearly defined trend; (iii) experimentally obtained electron densities should be in good agreement with theoretical ones.

Concerning the crystallographic criterion (i), the crystallographic refinement statistics will improve the most on application of TAAM when thermal displacement parameters are moderate and the resolution limit is high (Zarychta et al., 2007[Zarychta, B., Pichon-Pesme, V., Guillot, B., Lecomte, C. & Jelsch, C. (2007). Acta Cryst. A63, 108-125.]). However, it is known that reduction of R values does not necessarily mean an improvement of the model; there are cases where an incorrect model yields a lower R value (Molčanov et al., 2011[Molčanov, K., Stolić, I., Kovačević, G., Kojić-Prodić, B. & Bajić, M. (2011). J. Mol. Struct. 987, 174-179.]; Stilinović & Kaitner, 2010[Stilinović, V. & Kaitner, B. (2010). Acta Cryst. A66, 441-445.]). Therefore, other tests, such as plots of Fcalc versus Fobs, Icalc versus Iobs, fractal dimension plots (Meindl & Henn, 2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]) etc. should also be taken into consideration. A possible pitfall is also overrefinement, addition of spurious parameters which typically yields a lower R, while not improving the model (Zarychta et al., 2011[Zarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250-262.], Krause et al., 2017[Krause, L., Niepötter, B., Schürmann, C. J., Stalke, D. & Herbst-Irmer, R. (2017). IUCrJ, 4, 420-430.]). However, in the case of TAAM refinement, no additional parameters are added (since transferred multipolar populations are not refined). Therefore reduction of R values upon a transfer of multipoles can be considered a genuine improvement of the model, rather than overrefinement.

Criterion (ii) determines whether the obtained charge densities make chemical sense and whether they can be interpreted. However, it may also be argued that a trend of intermolecular charge densities may be only an artefact: if the same multipoles are used and the distance between rings increases (as with increasing temperature, Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]), it is expected that the electron density between the rings should decrease. Therefore, the charge densities should be corroborated by quantum chemical computations (iii). Only if there is a good match between experimental and theoretical charge densities, we may claim that the transferred multipole model yielded meaningful results.

2. Experimental

2.1. Preparation and X-ray diffraction

Single crystals of 4-CN·DDQ were prepared as described previously (Molčanov et al., 2018b[Molčanov, K., Mou, Z., Kertesz, M., Kojić-Prodić, B., Stalke, D., Demeshko, S., Šantić, A. & Stilinović, V. (2018b). Chem. Eur. J. 24, 8292-8297.]; Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]). HP diffraction data and VT diffraction data in the range 120–310 K were taken from our previous work (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]). The measurements were performed on an Oxford Diffraction Gemini Ultra R CCD diffractometer with Mo radiation equipped with an Oxford Instruments CryoJet liquid nitro­gen cooling device. The program package CrysAlisPRO (Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlisPRO, version: 1.171.39.46, Rigaku Corporation, Oxford, UK.]) was used for data reduction. HP measurements were performed using an Almax Boehler diamond anvil cell (DAC) (Boehler, 2006[Boehler, R. (2006). Rev. Sci. Instrum. 77, 2004-2007.]). A stainless-steel gasket with an initial thickness of 200 µm was pre-indented to 100 µm. The ruby fluorescence method was used for pressure calibration (Forman et al., 1972[Forman, R. A., Piermarini, G. J., Barnett, J. D. & Block, S. (1972). Science, 176, 284-285.]; Piermarini et al., 1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]). A pentane–iso­pentane mixture (1:1) was used as a hydro­static pressure-transmitting medium (Piermarini et al., 1973[Piermarini, G. J., Block, S. & Barnett, J. D. (1973). J. Appl. Phys. 44, 5377-5382.]; Zakharov & Achkasov, 2013[Zakharov, B. A. & Achkasov, A. F. (2013). J. Appl. Cryst. 46, 267-269.]). The most disagreeable reflections overlapping with diamond and gasket reflections were excluded from the hkl file manually. Absorption corrections were performed using the ABSORB-7 (Angel & Gonzalez-Platas, 2013[Angel, R. & Gonzalez-Platas, J. (2013). J. Appl. Cryst. 46, 252-254.]) software. The multiple integrated reflections were averaged for the space group P21/c using SORTAV (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.]) adapted to the area detector data.

Single-crystal diffraction experiments for 90, 340 and 370 K were carried out on an Enraf-Nonius CAD4 diffractometer equipped with an Oxford Cryosystems Cryostream Series 700 liquid nitro­gen cooling device. The WinGX standard procedure was applied for data reduction (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.], 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Three standard reflections were measured every 120 min as an intensity control. Since the compound contains only light atoms, no absorption correction was used.

2.2. Building the transferrable multipole model

The electronic structure of the semi­quinone radical anion differs significantly from similar closed-shell molecules such as neutral quinones and hydro­quinones (Molčanov et al., 2019b[Molčanov, K., Jelsch, C., Landeros, B., Hernández-Trujillo, J., Wenger, E., Stilinović, V., Kojić-Prodić, B. & Escudero-Adán, E. (2019b). Cryst. Growth Des. 19, 391-402.]). Therefore, existing databases of transferrable multipoles such as ELMAM2 (Domagała et al., 2012[Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]) could not be used; they are all based on closed-shell molecules. Instead, we used multipoles from our recent high-resolution X-ray charge density study of 4-CN·DDQ (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). The original multipolar model, refined with a minimum of loose restraints (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) was simplified with a reduced number of transferred parameters. Therefore, the charge density was refined using a new set of constraints considering molecular (local) symmetry and chemical equivalence. As can be seen from Scheme 1, the 4-CN cation, which is planar within experimental error, has an approximate symmetry D2h when the non-disordered methyl group is disregarded. The DDQ anion is not perfectly planar, but slightly bent by 3.9° (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]), so its molecular symmetry should be Cs. Multipolar populations of the original high-resolution study (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) were symmetrical with respect to the molecular mean plane within one e.s.d., emphasizing the planarity of the electronic structure. Distribution of valence electrons was also planar in our charge density studies of salts of tetra­chloro­semi­quinone radical anion (Molčanov et al., 2018[Molčanov, K., Mou, Z., Kertesz, M., Kojić-Prodić, B., Stalke, D., Demeshko, S., Šantić, A. & Stilinović, V. (2018b). Chem. Eur. J. 24, 8292-8297.]b, 2019b[Molčanov, K., Jelsch, C., Landeros, B., Hernández-Trujillo, J., Wenger, E., Stilinović, V., Kojić-Prodić, B. & Escudero-Adán, E. (2019b). Cryst. Growth Des. 19, 391-402.]).

Thus, sets of atoms equivalent by local symmetry were generated (e.g. Cl1 and Cl2, O1 and O2, C9 and C13, etc. see Table S4 of the supporting information), whose multipoles and kappas were constrained to be equal. In addition, the local environment of the majority of all atoms, with the exception of the methyl carbon, is planar. Therefore, their multipoles were additionally constrained to planarity (in the case of cyano groups, they were constrained to be cylindrical, see Table S4). Molecular and local symmetries are displayed graphically in Fig. 2[link].

[Figure 2]
Figure 2
Molecular and local symmetry used to generate constraints for refinement of transferrable multipoles. Molecular symmetry (multipoles and kappas of equivalent atoms constrained to be equal) are shown as thick lines and local symmetries of atomic environments (multipoles constrained to local mirror symmetry) are shown as thin lines.

Applying these constraints in the charge density refinement using high-resolution data (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) resulted in insignificant worsening of disagreement factors and residual densities compared with the original multipolar refinement (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) (see Figs. S3 and S4 of the supporting information; Table S3), so the model could be considered valid. The obtained multipolar parameters (Table S5) were exported in the format of ELMAM2 (Domagała et al., 2012[Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]) transferrable parameters, and were subsequently used in refinements of VT and HP structures (see below).

2.3. Refinement

Previously published atomic coordinates and atomic displacement parameters (ADPs) (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]) were used as a starting point for TAAM refinement, which was performed using the MoPro (Jelsch et al., 2005[Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38-54.]) software package. The C—H distances were constrained to the standard bond length derived from neutron diffraction studies (Allen & Bruno, 2010[Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380-386.]). An initial Independent Atom Model (IAM) spherical refinement (scaling factors, atomic coordinates and ADPs) was carried out until convergence, and these structures were later used as references. Multipoles were then transferred on the spherical models and refinement (scaling factors, atomic coordinates and ADPs) was repeated until convergence. For refinement of HP structures, a polynomial scaling factor was used (Wenger, 2015[Wenger, E. (2015). PhD thesis, Université de Lorraine, Nancy, France.]). For VT structures, anisotropic parameters for hydrogen atoms were calculated by the SHADE3 server (Madsen, 2006[Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757-758.]) and imported into the multipolar model; another round of refinement (scaling factors, atomic coordinates and ADPs) was then performed, keeping hydrogen ADPs constrained. The methyl group of the 4-CN cation in structures at 150 and 210 K showed disorder and could be modelled as two positions. The weighting scheme used for VT data was the same for IAM and TAAM refinements and was Whkl = 1/σ(Ihkl).

Geometry and charge-density calculations were performed with VMoPro (Jelsch et al., 2005[Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38-54.]); molecular graphics were prepared using MoProViewer (Guillot, 2012[Guillot, B. (2012). Acta Cryst. A68, s204.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Crystallographic and refinement data are shown in Tables S1 and S2.

2.4. Quantum chemical modelling

To probe the effects of pressure on molecular orbitals of short intra-dimer contact A (i.e. pancake bond) and long inter-dimer contact B, a series of calculations were performed. The GAUSSIAN16 program package (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, M., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision C. 01, Gaussian, Inc., Wallingford, CT, USA.]) was used, at the hybrid exchange–correlation functional CAM-B3LYP level (Yanai et al., 2004[Yanai, T., Tew, D. P. & Handy, N. C. (2004). Chem. Phys. Lett. 393, 51-57.]) with aug-cc-pvtz basis set. Single-point DFT calculations were carried out to assess the energetic separation of the bonding and antibonding combinations of the two singly occupied molecular orbitals (SOMOs) of the discussed dimers A and B formed between DDQ radicals. The molecular geometries extracted from the pressure-dependent solid-state X-ray diffraction experiments (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]) were used. Such an approach ensured that all subtle pressure-induced contraction in the covalent bonds as well as the more substantial compression of the intra- and inter-dimer contacts were taken into account. As recommended by Kertesz (2019[Kertesz, M. (2019). Chem. Eur. J. 25, 400-416.]), dispersion correction was also used, we applied the D3 correction by Grimme et al. (2010[Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104-19.]) in conjunction with the Becke–Johnson damping function.

The nature of intra- and intermolecular interactions by means of deformation density was studied via periodic density functional theory (DFT) calculations performed with CRYSTAL17 software (Dovesi et al., 2018[Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.]). Atomic coordinates were taken either from final experimental multipolar refinement (if available) or from IAM refinement, with no further geometry optimization. The compounds at all given temperatures and under all given pressures were modelled on the PBE0-D3/POB-DZVP theory level (Vilela-Oliveria et al., 2019[Vilela Oliveira, D., Laun, J., Peintinger, M. F. & Bredow, T. (2019). J. Comput. Chem. 40, 2364-2376.]). Obtained wavefunctions were further used to carry out the topological analysis of the periodic electron densities, adopting the QTAIM approach (Bader, 1990[Bader, R. F. W. (1990). Atoms in Molecules: a Quantum Theory. Oxford University Press.]) using the TOPOND14 program (Gatti & Casassa, 2017[Gatti, C. & Casassa, S. (2017). TOPOND14 User Manual. CNR-ISTM of Milan, Milan, Spain.]), integrated with CRYSTAL17.

3. Results and discussion

3.1. Evaluation of the transferred-multipole model

The first and the most important step in testing charge densities obtained by transfer of multipoles is to evaluate whether the models are physically meaningful. For this purpose, the three criteria outlined in the Introduction[link] are elaborated here. Since we have two series of datasets with different data qualities, we will analyse them separately. The VT data are of high quality and spherical refinements revealed maxima of residual densities located at midpoints of chemical bonds (see S4), which can be interpreted as bonding valence electron density. However, the HP data were significantly inferior, so their residual densities after spherical refinements contained few, if any, interpretable maxima (see Section S5 of the supporting information).

3.1.1. Variable-temperature data

As can be seen from Table S1, TAAM refinement resulted in considerable improvement of all VT datasets (Fig. 3[link]). On average, R(F) values improved by 0.016 and wR(F2) by 0.023. In addition, the distributions of calculated and expected intensities (Figs. S16 and S17) show no significant deviations, further corroborating that the refined models are correct. Fractal dimension plots of residual density (Meindl & Henn, 2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]; Fig. S18) indicate good quality of the refined models. Noticeable deviation from the parabolic shape for datasets collected at 90, 310 and 340 K can be attributed to increased noise and reflect inferior quality of measured data.

[Figure 3]
Figure 3
Disagreement factors of VT datasets as a function of temperature, for spherical (dark colour) and TAAM refinements (light colour). R(F) values are shown in blue (dark: spherical, light: multipolar), wR(F2) in red (dark: spherical, light: multipolar). Difference R(F)sphericR(F)TAAM is shown in black and wR(F2)sphericwR(F2)TAAM in grey.

Residual electron densities were also considerably improved (Table S1 and Fig. 4[link]); average reductions of Δρmax, Δρmin and Δρr.m.s. are 0.172, 0.081 and 0.008 e Å−3, respectively. Residual density maps in mean planes of radical anions and cations are shown in Figs. S5–S15; three selected examples are shown in Fig. 5[link]. It is therefore obvious that VT data satisfy criterion (i).

[Figure 4]
Figure 4
Maximum (blue), minimum (red) and root-mean-square (black/grey) residual densities of VT datasets as functions of temperature, for spherical and TAAM refinements. The dark-coloured bar represents spherical refinement, the light-coloured bar represents TAAM refinement, and the lightest-coloured bar with a dark border represents the difference between spherical and TAAM refinements.
[Figure 5]
Figure 5
Residual densities for three selected temperatures (top: 120 K, middle: 293 K, bottom: 370 K) in mean planes of the DDQ radical anion for spherical (left) and TAAM refinements (right). Positive density is shown in blue and negative in red; yellow dotted lines represent zero density. Contours are drawn for 0.05 e Å−1.

To check criterion (ii) an AIM analysis of critical points (CPs) had to be performed. Bond lengths are essentially temperature-invariant, so intramolecular CPs did not show any meaningful trend. Electron densities in CPs showed small variance. The standard deviations of electron density in bonding CPs ranges between 0.006 and 0.027 e Å−3 for the anion, and between 0.008 and 0.017 e Å−3 for the cation. The respective average ρCP e.s.d.s are 0.011 e Å−3 for the anion and 0.015 e Å−3 for the cation (see Section S8). The intermolecular CPs are interesting and more sensitive to crystal structure changes with temperature (see Section S9). Here, we limit the analysis only to the zone between the stacked DDQ radicals. Fig. 6[link] shows that the electron density between the rings decreases with the temperature increase. This is valid for both inter- and intra-dimer electron density (contacts A and B, respectively).

[Figure 6]
Figure 6
Electron density at (3,−1) CPs between DDQ radicals for VT datasets as a function of temperature. Intra-dimer (contact A) CPs are shown as full symbols (experimental data) and open symbols (theoretical data), and inter-dimer CPs (contact B) as crosses (only experimental data, for clarity). Electron density in the intra-dimer (3,+3) cage CP is displayed as yellow circles. Trend lines drawn for intra-dimer CPs are intended as guides to the eye only (full lines: experimental, dashed lines: theoretical). Data from the high-resolution study (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) at 100 K are shown as larger symbols.

Experimentally determined intra- and intermolecular CPs were successfully reproduced by periodic DFT computations; all bonding (3,−1) CPs were found and their electron densities appear to match well with the experimental values (see Sections S8 and S9). This shows that criterion (iii) has also been satisfied; therefore, we conclude that the TAAM model is valid for crystal structures obtained from good-quality VT data. In addition, there is a good match between electron densities obtained by TAAM and those from a true multipolar refinement (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]; Fig. 6[link]).

3.1.2. High-pressure data

TAAM refinements showed improvement over IAM refinements for datasets up to 3.95 GPa. At higher pressures (corresponding to the HP phase) the quality of data was not sufficient to see a significant lowering of the R(F) factor. However, the weighted wR2(F) factor did show an improvement with TAAM refinement. The dataset at 2.55 GPa, which is near the phase transition point, could not be properly refined.

Table S2 shows that the improvement of the disagreement factors upon introduction of transferred multipoles is much more modest than for VT data (Fig. 7[link]). Nevertheless, there is a measurable improvement: average R(F) values improved by 0.007 and wR(F2) by 0.030. Distribution of calculated and expected intensities (Figs. S26 and S27) are within acceptable limits, with the exception of the highest-angle reflections. Fractal dimension plots of residual density (Meindl & Henn, 2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]; Fig. S28) are much broader than for VT data due to a higher residual density, but they still retain parabolic shape. Slight `shoulders' can be attributed to noise. This corroborates validity of TAAM refinement for HP data. There was also a modest improvement of residual densities (Table S2, Fig. 8[link]); average reductions of Δρmax, Δρmin and Δρr.m.s. are 0.045, 0.020 and 0.004 e Å−3, respectively.

[Figure 7]
Figure 7
Disagreement factors of HP datasets as a function of pressure, for spherical (dark colour) and TAAM refinements (light colour), R(F) values are shown in blue (dark: spherical, light: multipolar), and wR(F2) in red (dark: spherical, light: multipolar). Differences of R(F)sphericR(F)TAAM are shown in black and of wR(F2)spheric − wR(F2)TAAM in grey.
[Figure 8]
Figure 8
Maximum (blue), minimum (red) and root-mean-square (black/grey) residual densities of HP datasets as functions of pressure, for spherical and TAAM refinements. Dark-coloured bar represents spherical refinement, light-coloured bar represents TAAM refinement, and the lightest-coloured bar with a dark border represents the difference between spherical and multipolar refinements.

Residual density maps in mean planes of radical anions and cations are shown in Figs. S19–S25; three selected examples are shown in Fig. 9[link]. We can therefore conclude that the HP data also satisfy criterion (i).

[Figure 9]
Figure 9
Residual densities for three selected pressures (top: 0.25 GPa, middle: 1.42 GPa, bottom: 3.95 GPa) in mean planes of the DDQ radical anion for spherical (left) and TAAM refinements (right). Positive density is shown in blue and negative in red; yellow dotted lines represent zero density. Contours are drawn for 0.05 e Å−1.

Similarly to VT data, molecular geometries are essentially unchanged, so intramolecular CPs did not show a meaningful trend. Maximum electron densities in CPs show a small variance, albeit somewhat larger than for VT data (see Section S10). Standard deviations for chemical bonds in the anion range between 0.018 and 0.053 e Å−3 (average 0.036 e Å−3) and in the cation range between 0.015 and 0.054 e Å−3 (average 0.026 e Å−3).

Analysis of intermolecular CPs (see Section S11) was more complex due to the phase transition at about 2.5 GPa (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]). However, note that electron density in dimers (contact A) and between them (contact B) increases monotonically with pressure up to 1.85 GPa. For pressures above the phase transition, there are only two datasets, but they also show an increase of intermolecular electron density (Fig. 10[link]). Thus, criterion (ii) is satisfied.

[Figure 10]
Figure 10
Electron density (e Å−3) at experimental (3,−1) CPs between DDQ radicals for HP datasets as a function of pressure (GPa). CPs of contact A are shown (symmetry operation −x, −y+1, −z) as full symbols and those of contact B (symmetry operation −x+1, −y+1, −z) as open symbols. Electron density in the intra-dimer (3,+3) cage CP is displayed as black triangles. Trend lines drawn for some CPs are intended as guides to the eye only.

Agreement between experimental and theoretical charge densities is good both for intra- (see Section S10) and intermolecular contacts (see Section S11): all experimental (3,−1) CPs were also found in theoretical data. In fact, despite the lower quality of diffraction data, agreement of electron densities at CPs is as good as for VT structures, indicating that criterion (iii) has also been satisfied.

3.2. Nature of 2e/mc bonding between DDQ radical anions

3.2.1. Evolution of charge density with temperature

The topology of electron density between the anion rings shows essentially no major geometrical difference in the range 90–370 K; all bond paths and positions of CPs are conserved (Fig. 11[link] and Section S9) and can also be found in our previous high-resolution study (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). Electron density on the CPs between the rings decreases with temperature, as is commonly observed for the intermolecular interactions. The crystal unit cell usually expands and interactions become weaker with rising temperature (Chang, 2000[Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences, 3rd ed. Sausalito: University Science Books.]; Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]). Fig. 6[link] indicates this nicely: the CP with the highest electron density in the short intra-dimer contact A (i.e. pancake bond) has ρCP falling from 0.085 e Å−3 at 90 K to 0.071 e Å−3 at 370 K, which is a reduction of about 15%. Data obtained from our previous high-resolution study at 100 K (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]) fit into this trend nicely (in Fig. 6[link] they are shown as larger symbols). Other CPs have a reduction of 5.5–16%, including also the cage minimum.

[Figure 11]
Figure 11
CPs in a stack of DDQ radical anions at three selected temperatures: (a) 120 K, (b) 293 K and (c) 370 K. Weaker inter-dimer contact B is above and intra-dimer contact A (2e/mc bond) is below. (3,−1) CPs are shown as red spheres, (3,+1) as blue spheres and (3,+3) cage CPs as purple spheres; intermolecular bond paths are shown as red lines.

Electron density of the weak inter-dimer contact B CPs is also reduced to a similar extent (in relative value), and the reduction is within a 10–21% range.

3.2.2. Evolution of charge density with pressure

The HP data reveal two phases with different arrangements of long and short contacts between the radicals (Fig. 12[link]). At 2.55 GPa, near the phase transition point, the radicals are almost equidistant (i.e. contacts A and B are almost equal).

[Figure 12]
Figure 12
Crystal packing at (a) ambient pressure and (b) 6.00 GPa. Contacts A and B are marked, whereas shorter and longer interplanar separations are indicated by green and red arrows, respectively.

From ambient pressure to 1.85 GPa, the stacks remain the same, with alternating short (pancake bonding) and long (non-bonding) contacts, despite compression. Therefore, monotonic increase of electron density between the rings (Figs. 10[link] and 13[link]) is a result of shorter intermolecular distances, which are, in turn, a result of increasing pressure. The maximum electron density in the pancake bond (contact A) increases from 0.078 e Å−3 at ambient pressure to 0.095 e Å−3 at 1.85 GPa, which is an increase of 21%. Other CPs follow a similar trend. The positions of the CPs change very little, as can be seen from Fig. 14[link] (and also Section S11). The weak inter-dimer contact B, which is a non-bonding contact, does not display any cage CP which would be associated with the existence of pancake bonding (Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). The absence of a cage CP may arise from the large antiparallel displacement; the C6 ring is so offset that the projection of its centroid on the other ring plane falls out of the ring perimeter [Fig. 1[link](b)].

[Figure 13]
Figure 13
Electron density at (3,−1) CPs between DDQ radicals for theoretical HP data as a function of pressure: CPs of contact A (symmetry operation −x, −y+1, −z) are shown as full symbols and those of contact B (symmetry operation −x+1, −y+1, −z) as open symbols. Trend lines drawn for a number of CPs (full lines for contact A and dashed lines for contact B) are intended as guides to the eye only.
[Figure 14]
Figure 14
CPs in a stack of DDQ radical anions at three selected pressures: (a) 0.25 GPa, (b) 1.42 GPa and (c) 3.95 GPa. Contact B is above and contact A is below. (3,−1) CPs are shown as red spheres, (3,+1) as blue spheres and (3,+3) as purple spheres; intermolecular bond paths are shown as red lines.

The increase with pressure of the electron density in weak contact B is, however, much more pronounced and exceeds 50% before the phase transition. This is consistent with a sharper decrease of intermolecular distances and also with increasing covalent (i.e. 2e/mc bonding) character of the interaction. A slight re-arrangement of the CPs can be noted (Fig. 14[link], Section S11). However the highest electron density at the CP is 0.050 e Å−3 indicating that this still remains a non-bonding contact.

Near the phase transition point (2.55 GPa), the diffraction data were rather poor and TAAM refinement yielded no improvement; however, theoretical data are available and can fill this gap. Electron densities in (3,−1) CPs at 2.55 GPa are similar for both contacts and are in the range 0.05–0.07 e Å−3. An exception is the contact Cl1⋯N1 which rises to 0.105 e Å−3.

The situation becomes more complex and interesting at pressures above the phase transition. The long and short contacts are interchanged (Fig. 12[link] and Section S14). Contact B (symmetry operation −x+1, −y+1, −z), which was previously the long contact, becomes shorter, while A (the previously short one, symmetry operationx, −y+1, −z) is elongated. Upon phase transition (p = 1.85 to 3.95 GPa), there is a marked jump in the ρCP electron density of the B contact C8⋯C1 from 0.050 to 0.102 e Å−3; in contact A, the highest ρCP (C1⋯C2) falls from 0.095 to 0.070 e Å−3. Theoretical electron densities at 6.00 GPa rise to 0.113 e Å−3 and 0.094 e Å−3 for contacts B and A, respectively. However, electron densities in both of these contacts are consistent with existence of 2e/mc bonding, and (3,+3) CPs can be observed in both contacts (Fig. 14[link], Section S11). We conclude that the HP phase comprises two 2e/mc bonds, one of which is stronger. This confirms our previous tentative conclusion that the stacks of DDQ radicals may here be regarded as pancake-bonded polymers (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]).

Calculated highest-occupied molecular orbitals (HOMOs) (Fig. 15[link] and Section S12; calculated for a pair of rings in singlet configuration) in contact A extend between two rings, similar to those in dimers of tetra­chloro­semi­quinone radical anions (Molčanov et al., 2019a[Molčanov, K., Milašinović, V. & Kojić-Prodić, B. (2019a). Cryst. Growth Des. 19, 5967-5980.]). However, HOMOs in contact B at pressures of 2.55 GPa and higher also span between two rings (Fig. 15[link], Section S12), further supporting the existence of pancake-bonded polymers. The HOMO–LUMO (lowest-unoccupied molecular orbital) energy gap (Fig. 16[link]) is reduced as pressure increases, but falls more rapidly for contact B than for contact A, especially at pressures above 2.55 GPa. This is partly due to the shortened distance between the rings in contact B (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]), but also the increased covalent character of the interaction.

[Figure 15]
Figure 15
HOMO orbitals calculated for a pair of radicals at selected pressures: left is contact A and right is contact B.
[Figure 16]
Figure 16
HOMO–LUMO gap between DDQ radicals presented as a function of pressure.

4. Conclusions

For the first time, we have described charge density in 2e/mc bonds (pancake bonds) at high temperatures (up to 370 K) and high pressures (up to 3.95 GPa). At 3.09 GPa, all contacts between DDQ radicals involve electron densities exceeding 0.050 e Å−3 and (3,+3) cage CPs are present in both contacts A and B. We have previously defined these features as indicative of the presence of 2e/mc bonding (Molčanov & Kojić-Prodić, 2019[Molčanov, K. & Kojić-Prodić, B. (2019). IUCrJ, 6, 156-166.]; Molčanov et al., 2019a[Molčanov, K., Milašinović, V. & Kojić-Prodić, B. (2019a). Cryst. Growth Des. 19, 5967-5980.]; Milašinović et al., 2020[Milašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435-5443.]). Therefore, we may conclude that, at pressures of 3.09 GPa and above, the topology of electron density indicates the presence of 2e/mc bonding throughout the stack of DDQ radical anions. This conclusion is corroborated with periodic DFT computations. Thus, we have proved our previous speculation (based on geometrical data, only) on the existence of pancake-bonded polymer-like structures at high pressures (Bogdanov et al., 2020[Bogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285-291.]).

We have applied electron density transferability to model charge densities from X-ray diffraction data measured at VT and/or HP, which are not sufficient to allow multipolar refinement. Overall reduction of disagreement R factors and residual density were achieved compared with regular spherical IAM refinement.

Transferred multipoles from a previously determined charge density at cryogenic temperature were employed to analyse the topology (critical point analysis) of electron density and it led to clear trends with increasing temperature. The electron density values at the CPs of the two stacking interactions show congruent trends with the theoretical results. Our data show that, even weak intermolecular interactions, very sensitive to data quality, can be studied by this method.

We believe that this approach may be applied to study the nature of different types of chemical bonding and intermolecular interactions.

The present results indicate that an increased electric conductivity at pressures above 2.55 GPa should be expected, as well as a change of magnetic properties from diamagnetism to antiferromagnetism. Therefore measurements of magnetism and electric conductivity under HP are planned.

Supporting information


Computing details top

For all structures, program(s) used to refine structure: MoPro (J. Appl. Cryst. 2005, 38, 38-54).

(90K) top
Crystal data top
C15H7Cl2N4O2β = 94.781 (1)°
Mr = 346.13V = 1386.1 (4) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.7493 (1) ÅDx = 1.659 Mg m3
b = 10.0720 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.462 (6) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 87
2297 independent reflectionsk = 011
2297 reflections with > 2.0σ(I)l = 024
θmax = 25.0°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.044Secondary atom site location: difference Fourier map
wR(F2) = 0.087Hydrogen site location: difference Fourier map
S = 1.14Only H-atom coordinates refined
2297 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20891 (12)0.11200 (7)0.00695 (3)0.01286 (10)
Cl20.11882 (12)0.28112 (7)0.11770 (3)0.01319 (11)
O10.1362 (3)0.5677 (2)0.09455 (9)0.0130 (3)
O20.2896 (3)0.2774 (2)0.11883 (9)0.0148 (3)
N10.2955 (4)0.8152 (3)0.00673 (12)0.0151 (4)
N20.4163 (4)0.5993 (3)0.16909 (12)0.0163 (4)
C10.1806 (5)0.5002 (3)0.04675 (14)0.0117 (4)
C20.2467 (4)0.5608 (3)0.01212 (14)0.0116 (4)
C30.2885 (5)0.4869 (3)0.06646 (14)0.0114 (4)
C40.2645 (4)0.3443 (3)0.06947 (14)0.0112 (4)
C50.2141 (5)0.2819 (3)0.00761 (13)0.0099 (4)
C60.1759 (4)0.3549 (3)0.04585 (14)0.0101 (4)
C70.2736 (5)0.7012 (3)0.00969 (14)0.0119 (4)
C80.3580 (5)0.5496 (3)0.12300 (14)0.0136 (4)
N30.3174 (4)0.9537 (2)0.18280 (11)0.0144 (4)
N40.9980 (4)1.2054 (3)0.24931 (12)0.0198 (5)
C90.3488 (5)0.9999 (3)0.24445 (14)0.0138 (4)
H90.239 (4)0.982 (4)0.279 (11)0.01653
C100.5212 (5)1.0698 (3)0.26371 (14)0.0147 (5)
H100.547 (6)1.107 (4)0.313 (11)0.01761
C110.6602 (5)1.0907 (3)0.21779 (14)0.0134 (4)
C120.6241 (5)1.0438 (3)0.15428 (14)0.0157 (5)
H120.729 (5)1.062 (4)0.118 (11)0.01882
C130.4502 (5)0.9733 (3)0.13763 (14)0.0167 (5)
H130.421 (6)0.934 (4)0.089 (11)0.02006
C140.1367 (5)0.8761 (4)0.16339 (17)0.0218 (5)
H14A0.048 (6)0.867 (5)0.205 (11)0.03269
H14B0.178 (7)0.779 (11)0.147 (2)0.03269
H14C0.051 (6)0.926 (4)0.124 (11)0.03269
C150.8436 (5)1.1569 (3)0.23624 (14)0.0143 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0130 (4)0.0113 (4)0.0145 (3)0.0005 (3)0.0025 (3)0.0004 (3)
Cl20.0128 (4)0.0148 (4)0.0123 (3)0.0008 (3)0.0028 (3)0.0018 (3)
O10.0121 (11)0.0146 (10)0.0124 (9)0.0002 (10)0.0021 (9)0.0012 (9)
O20.0160 (12)0.0150 (11)0.0139 (9)0.0023 (10)0.0034 (9)0.0009 (9)
N10.0142 (14)0.0096 (13)0.0214 (13)0.0012 (12)0.0017 (11)0.0010 (11)
N20.0177 (15)0.0195 (14)0.0124 (11)0.0029 (12)0.0048 (11)0.0047 (11)
C10.0071 (15)0.0138 (15)0.0142 (14)0.0003 (13)0.0001 (12)0.0002 (13)
C20.0072 (16)0.0119 (15)0.0155 (14)0.0001 (13)0.0003 (12)0.0000 (13)
C30.0070 (15)0.0138 (15)0.0135 (14)0.0005 (13)0.0027 (12)0.0006 (12)
C40.0071 (15)0.0138 (15)0.0129 (13)0.0011 (13)0.0025 (12)0.0005 (12)
C50.0061 (15)0.0103 (14)0.0135 (14)0.0012 (13)0.0013 (12)0.0012 (12)
C60.0060 (15)0.0139 (15)0.0108 (13)0.0010 (12)0.0029 (12)0.0024 (12)
C70.0091 (16)0.0114 (16)0.0153 (13)0.0003 (13)0.0008 (12)0.0001 (12)
C80.0122 (16)0.0154 (15)0.0131 (13)0.0009 (13)0.0001 (13)0.0007 (13)
N30.0083 (14)0.0176 (13)0.0171 (13)0.0006 (12)0.0006 (11)0.0010 (11)
N40.0162 (17)0.0269 (15)0.0169 (12)0.0067 (13)0.0042 (12)0.0017 (12)
C90.0098 (16)0.0189 (15)0.0127 (13)0.0019 (14)0.0014 (13)0.0020 (12)
H90.011710.022710.015260.002260.001640.00238
C100.0115 (17)0.0200 (15)0.0124 (14)0.0022 (14)0.0003 (13)0.0016 (13)
H100.013840.024010.014850.002700.000420.00188
C110.0079 (16)0.0170 (15)0.0153 (14)0.0020 (13)0.0013 (13)0.0020 (12)
C120.0114 (17)0.0218 (16)0.0142 (15)0.0006 (14)0.0029 (13)0.0006 (13)
H120.013720.026110.017000.000740.003480.00070
C130.0150 (18)0.0190 (15)0.0157 (15)0.0001 (15)0.0014 (14)0.0024 (13)
H130.017990.022760.018880.000100.001670.00284
C140.0132 (19)0.0240 (18)0.0273 (17)0.0041 (16)0.0033 (15)0.0032 (16)
H14A0.019850.036000.040950.006180.004990.00480
H14B0.019850.036000.040950.006180.004990.00480
H14C0.019850.036000.040950.006180.004990.00480
C150.0100 (18)0.0189 (16)0.0142 (13)0.0030 (15)0.0026 (13)0.0004 (12)
Geometric parameters (Å, º) top
Cl1—C51.712 (3)N3—C131.354 (4)
Cl2—C61.719 (3)N3—C141.475 (4)
O1—C11.248 (3)N4—C151.162 (4)
O2—C41.238 (3)C9—C101.388 (4)
N1—C71.159 (4)C9—H91.08 (17)
N2—C81.164 (4)C10—C111.398 (4)
C1—C61.464 (4)C10—H101.1 (2)
C1—C21.453 (4)C11—C151.429 (4)
C2—C71.426 (4)C11—C121.385 (4)
C2—C31.386 (4)C12—C131.390 (5)
C3—C41.446 (4)C12—H121.08 (17)
C3—C81.431 (4)C13—H131.1 (2)
C4—C51.478 (4)C14—H14C1.08 (16)
C5—C61.360 (4)C14—H14A1.08 (19)
N3—C91.345 (4)C14—H14B1.08 (10)
O1—C1—C6123.2 (2)N3—C9—C10120.3 (2)
O1—C1—C2122.1 (2)N3—C9—H9120 (11)
C6—C1—C2114.7 (2)C10—C9—H9120 (3)
C1—C2—C7115.8 (2)C9—C10—C11118.6 (3)
C1—C2—C3122.4 (2)C9—C10—H10121 (3)
C7—C2—C3121.8 (2)C11—C10—H10121 (9)
C4—C3—C8116.5 (2)C15—C11—C12119.2 (2)
C4—C3—C2122.5 (2)C15—C11—C10120.5 (3)
C8—C3—C2120.9 (2)C12—C11—C10120.2 (3)
O2—C4—C5121.6 (2)C13—C12—C11118.9 (3)
O2—C4—C3123.6 (2)C13—C12—H12120 (3)
C5—C4—C3114.8 (2)C11—C12—H12121 (11)
Cl1—C5—C6121.9 (2)N3—C13—C12120.0 (3)
Cl1—C5—C4115.99 (19)N3—C13—H13120 (9)
C6—C5—C4122.1 (2)C12—C13—H13120 (3)
Cl2—C6—C5121.67 (19)N3—C14—H14C109 (3)
Cl2—C6—C1115.32 (19)N3—C14—H14A110 (3)
C5—C6—C1123.0 (2)N3—C14—H14B109 (4)
N1—C7—C2179.00 (2)H14C—C14—H14A109 (13)
N2—C8—C3179.13 (2)H14C—C14—H14B109 (6)
C9—N3—C13121.9 (2)H14A—C14—H14B109 (5)
C9—N3—C14119.9 (2)N4—C15—C11176.19 (8)
C13—N3—C14118.2 (2)
Cl1—C5—C6—Cl20.2 (3)N3—C13—C12—H12179 (4)
Cl1—C5—C6—C1179.6 (3)C9—N3—C13—C120.5 (4)
Cl1—C5—C4—O24.1 (3)C9—N3—C13—H13179 (4)
Cl1—C5—C4—C3173.8 (3)C9—N3—C14—H14C120 (4)
Cl2—C6—C5—C4179.6 (3)C9—N3—C14—H14A0 (4)
Cl2—C6—C1—O13.8 (3)C9—N3—C14—H14B120 (6)
Cl2—C6—C1—C2174.6 (3)C9—C10—C11—C15177.2 (4)
O1—C1—C6—C5176.4 (4)C9—C10—C11—C120.8 (4)
O1—C1—C2—C75.0 (4)H9—C9—N3—C13180 (5)
O1—C1—C2—C3177.3 (4)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.4 (4)H9—C9—C10—C11180 (5)
O2—C4—C3—C84.3 (4)H9—C9—C10—H100 (7)
O2—C4—C3—C2175.6 (4)C10—C9—N3—C130.2 (4)
C1—C6—C5—C40.2 (4)C10—C9—N3—C14178.1 (4)
C1—C2—C3—C41.7 (4)C10—C11—C12—C131.4 (4)
C1—C2—C3—C8178.4 (4)C10—C11—C12—H12179 (4)
C2—C1—C6—C55.2 (4)H10—C10—C11—C153 (6)
C2—C3—C4—C56.6 (4)H10—C10—C11—C12179 (6)
C3—C4—C5—C65.7 (4)C11—C12—C13—H13178 (4)
C3—C2—C1—C64.3 (4)C12—C13—N3—C14178.8 (4)
C4—C3—C2—C7179.2 (4)H12—C12—C13—H132 (7)
C5—C4—C3—C8173.5 (4)H12—C12—C11—C153 (5)
C6—C1—C2—C7173.4 (4)C13—N3—C14—H14C62 (4)
C7—C2—C3—C80.9 (4)C13—N3—C14—H14A178 (4)
N3—C9—C10—C110.0 (4)C13—N3—C14—H14B58 (6)
N3—C9—C10—H10180 (4)C13—C12—C11—C15176.6 (4)
N3—C13—C12—C111.3 (4)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (2)2.38 (18)3.440 (4)165 (2)
C14—H14B···O11.08 (10)2.39 (10)3.411 (4)157 (2)
C10—H10···O1i1.1 (2)2.37 (19)3.171 (4)129 (11)
C13—H13···Cl1ii1.1 (2)2.94 (15)3.543 (3)116 (9)
C12—H12···N1iii1.08 (17)2.6 (2)3.420 (4)133 (11)
C10—H10···O2iv1.1 (2)2.36 (13)3.271 (4)141 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z+1/2.
(120K) top
Crystal data top
C15H7Cl2N4O2c = 20.4697 (2) Å
Mr = 346.13β = 94.7900°
Monoclinic, V = 1389.55 (1) Å3
Hall symbol: P ?Z = 4
a = 6.7637 ÅF(000) = 700
b = 10.0716 ÅDx = 1.655 Mg m3
Data collection top
2815 independent reflectionsh = 88
2815 reflections with > 2.0σ(I)k = 012
θmax = 74.7°, θmin = 4.3°l = 025
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.028Secondary atom site location: difference Fourier map
wR(F2) = 0.039Hydrogen site location: difference Fourier map
S = 1.08Only H-atom coordinates refined
2815 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20798 (5)0.11228 (3)0.006949 (15)0.01641 (5)
Cl20.11841 (5)0.28117 (3)0.117536 (14)0.01671 (5)
O10.13553 (12)0.56748 (8)0.09459 (4)0.01524 (14)
O20.29037 (13)0.27749 (8)0.11881 (4)0.01719 (15)
N10.29679 (16)0.81512 (11)0.00681 (5)0.01878 (18)
N20.41734 (16)0.59867 (11)0.16871 (5)0.01901 (18)
C10.18111 (18)0.50032 (13)0.04672 (6)0.01142 (19)
C20.24711 (17)0.56064 (12)0.01182 (6)0.01090 (18)
C30.28878 (18)0.48706 (12)0.06641 (6)0.01109 (18)
C40.26413 (18)0.34347 (12)0.06905 (6)0.01174 (19)
C50.21405 (18)0.28228 (12)0.00763 (6)0.01102 (18)
C60.17512 (18)0.35465 (12)0.04588 (6)0.01121 (19)
C70.27474 (18)0.70109 (13)0.00960 (6)0.01341 (19)
C80.35904 (18)0.54951 (12)0.12268 (6)0.01315 (19)
N30.31823 (15)0.95357 (10)0.18265 (5)0.01648 (17)
N40.99663 (17)1.20494 (12)0.24908 (5)0.02250 (19)
C90.3502 (2)0.99980 (13)0.24439 (6)0.0158 (2)
H90.2409 (17)0.9824 (15)0.279 (11)0.01899
C100.52129 (19)1.06912 (13)0.26360 (6)0.0145 (2)
H100.548 (2)1.1063 (15)0.313 (11)0.01741
C110.65838 (19)1.09001 (12)0.21776 (6)0.0143 (2)
C120.6230 (2)1.04290 (13)0.15409 (6)0.0178 (2)
H120.7282 (18)1.0604 (16)0.118 (11)0.02139
C130.4502 (2)0.97326 (13)0.13783 (6)0.0179 (2)
H130.421 (2)0.9342 (15)0.089 (11)0.02147
C140.1370 (2)0.87615 (15)0.16304 (8)0.0261 (2)
H14A0.181 (3)0.778 (11)0.1496 (9)0.03921
H14B0.067 (2)0.9274 (16)0.121 (11)0.03921
H14C0.049 (2)0.8674 (18)0.204 (11)0.03921
C150.8433 (2)1.15630 (13)0.23603 (6)0.0171 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02237 (18)0.01003 (17)0.01698 (17)0.00042 (14)0.00249 (13)0.00031 (12)
Cl20.02141 (18)0.01617 (18)0.01289 (16)0.00096 (14)0.00337 (13)0.00237 (12)
O10.0199 (5)0.0142 (5)0.0120 (5)0.0003 (4)0.0036 (4)0.0032 (4)
O20.0271 (5)0.0122 (5)0.0128 (5)0.0029 (4)0.0048 (4)0.0019 (4)
N10.0231 (6)0.0103 (7)0.0230 (6)0.0023 (5)0.0022 (5)0.0013 (5)
N20.0236 (6)0.0200 (7)0.0139 (6)0.0029 (5)0.0047 (5)0.0033 (5)
C10.0144 (7)0.0099 (7)0.0102 (7)0.0004 (5)0.0027 (5)0.0003 (5)
C20.0133 (7)0.0083 (7)0.0112 (7)0.0004 (5)0.0019 (5)0.0006 (5)
C30.0133 (7)0.0100 (7)0.0102 (6)0.0001 (5)0.0026 (5)0.0004 (5)
C40.0159 (7)0.0093 (7)0.0101 (7)0.0015 (5)0.0017 (5)0.0002 (5)
C50.0150 (7)0.0075 (7)0.0106 (7)0.0005 (5)0.0018 (5)0.0004 (5)
C60.0143 (7)0.0100 (7)0.0097 (7)0.0004 (5)0.0023 (5)0.0004 (5)
C70.0160 (7)0.0097 (8)0.0146 (7)0.0008 (6)0.0019 (5)0.0005 (5)
C80.0153 (7)0.0130 (7)0.0114 (7)0.0001 (6)0.0026 (5)0.0003 (5)
N30.0192 (6)0.0135 (6)0.0161 (6)0.0002 (5)0.0019 (5)0.0016 (5)
N40.0231 (7)0.0254 (7)0.0193 (6)0.0069 (6)0.0030 (5)0.0017 (5)
C90.0167 (8)0.0173 (7)0.0136 (7)0.0002 (6)0.0017 (6)0.0006 (5)
H90.020020.020710.016340.000280.002030.00069
C100.0165 (7)0.0163 (7)0.0107 (7)0.0000 (6)0.0012 (6)0.0013 (5)
H100.019770.019590.012880.000010.001390.00157
C110.0169 (7)0.0120 (7)0.0140 (7)0.0008 (6)0.0014 (6)0.0010 (5)
C120.0217 (8)0.0197 (8)0.0124 (7)0.0011 (6)0.0034 (6)0.0011 (6)
H120.025990.023650.014920.001270.004070.00137
C130.0232 (8)0.0173 (8)0.0127 (7)0.0016 (6)0.0010 (6)0.0023 (6)
H130.027860.020740.015290.001890.001250.00273
C140.0232 (9)0.0226 (9)0.0313 (9)0.0049 (7)0.0057 (7)0.0038 (7)
H14A0.034770.033960.046880.007330.008620.00563
H14B0.034770.033960.046880.007330.008620.00563
H14C0.034770.033960.046880.007330.008620.00563
C150.0177 (8)0.0175 (8)0.0165 (7)0.0037 (6)0.0029 (6)0.0018 (5)
Geometric parameters (Å, º) top
Cl1—C51.7128 (13)N3—C91.3473 (16)
Cl2—C61.7147 (12)N3—C141.4794 (17)
O1—C11.2502 (14)N4—C151.1579 (16)
O2—C41.2412 (14)C9—C101.3803 (18)
N1—C71.1589 (16)C9—H91.08 (16)
N2—C81.1621 (15)C10—C111.3891 (17)
C1—C61.4678 (17)C10—H101.1 (2)
C1—C21.4469 (16)C11—C151.4393 (18)
C2—C71.4271 (17)C11—C121.3890 (17)
C2—C31.3892 (16)C12—C131.3797 (18)
C3—C41.4563 (17)C12—H121.08 (16)
C3—C81.4282 (17)C13—H131.1 (2)
C4—C51.4651 (16)C14—H14A1.08 (10)
C5—C61.3595 (16)C14—H14C1.08 (19)
N3—C131.3469 (16)C14—H14B1.08 (17)
O1—C1—C6122.79 (10)N3—C9—C10120.47 (11)
O1—C1—C2122.36 (10)N3—C9—H9120 (11)
C6—C1—C2114.84 (10)C10—C9—H9120 (3)
C1—C2—C7116.00 (10)C9—C10—C11118.38 (11)
C1—C2—C3122.65 (10)C9—C10—H10121 (3)
C7—C2—C3121.30 (10)C11—C10—H10121 (9)
C4—C3—C8116.89 (10)C15—C11—C12118.70 (11)
C4—C3—C2121.96 (10)C15—C11—C10120.62 (10)
C8—C3—C2121.15 (10)C12—C11—C10120.64 (11)
O2—C4—C5122.56 (10)C13—C12—C11118.44 (11)
O2—C4—C3122.57 (10)C13—C12—H12121 (2)
C5—C4—C3114.82 (10)C11—C12—H12121 (11)
Cl1—C5—C6121.54 (9)N3—C13—C12120.44 (11)
Cl1—C5—C4115.78 (8)N3—C13—H13120 (9)
C6—C5—C4122.69 (10)C12—C13—H13120 (2)
Cl2—C6—C5122.00 (8)N3—C14—H14A108 (3)
Cl2—C6—C1115.42 (8)N3—C14—H14C109 (3)
C5—C6—C1122.57 (10)N3—C14—H14B105 (3)
N1—C7—C2178.983 (10)H14A—C14—H14C108 (4)
N2—C8—C3179.054 (9)H14A—C14—H14B111 (4)
C13—N3—C9121.63 (10)H14C—C14—H14B115 (13)
C13—N3—C14118.28 (10)N4—C15—C11176.67 (3)
C9—N3—C14120.07 (10)
Cl1—C5—C6—Cl20.26 (11)N3—C9—C10—H10180 (4)
Cl1—C5—C6—C1179.44 (13)C9—N3—C13—C120.43 (16)
Cl1—C5—C4—O23.70 (14)C9—N3—C13—H13180 (4)
Cl1—C5—C4—C3173.88 (13)C9—N3—C14—H14A117 (6)
Cl2—C6—C5—C4179.55 (13)C9—N3—C14—H14C0 (3)
Cl2—C6—C1—O14.55 (14)C9—N3—C14—H14B125 (3)
Cl2—C6—C1—C2174.48 (12)C9—C10—C11—C15177.12 (17)
O1—C1—C6—C5176.22 (16)C9—C10—C11—C120.42 (17)
O1—C1—C2—C75.51 (14)H9—C9—N3—C13180 (5)
O1—C1—C2—C3176.80 (15)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.49 (16)H9—C9—C10—C11180 (5)
O2—C4—C3—C84.33 (15)H9—C9—C10—H100 (6)
O2—C4—C3—C2175.95 (15)C10—C9—N3—C130.16 (17)
C1—C6—C5—C40.36 (16)C10—C9—N3—C14178.29 (16)
C1—C2—C3—C41.51 (16)C10—C11—C12—C130.99 (17)
C1—C2—C3—C8178.20 (16)C10—C11—C12—H12179 (4)
C2—C1—C6—C54.75 (17)H10—C10—C11—C153 (5)
C2—C3—C4—C56.47 (15)H10—C10—C11—C12180 (5)
C3—C4—C5—C65.93 (17)C11—C12—C13—H13179 (3)
C3—C2—C1—C64.16 (15)C12—C13—N3—C14178.91 (17)
C4—C3—C2—C7179.08 (16)H12—C12—C13—H131 (6)
C5—C4—C3—C8173.25 (16)H12—C12—C11—C153 (4)
C6—C1—C2—C7173.53 (16)C13—N3—C14—H14A61 (5)
C7—C2—C3—C80.63 (16)C13—N3—C14—H14C179 (4)
N3—C13—C12—C110.99 (16)C13—N3—C14—H14B57 (3)
N3—C13—C12—H12179 (4)C13—C12—C11—C15176.60 (17)
N3—C9—C10—C110.16 (16)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (2)2.39 (18)3.4448 (17)166 (2)
C14—H14A···O11.08 (10)2.41 (10)3.4097 (17)154 (1)
C10—H10···O1i1.1 (2)2.38 (19)3.1727 (15)129 (11)
C13—H13···Cl1ii1.1 (2)2.94 (14)3.5519 (13)116 (8)
C12—H12···N1iii1.08 (16)2.59 (19)3.4207 (17)133 (11)
C10—H10···O2iv1.1 (2)2.37 (12)3.2804 (15)141 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z+1/2.
(150K) top
Crystal data top
C15H7Cl2N4O2c = 20.4867 (2) Å
Mr = 346.13β = 94.7540°
Monoclinic, V = 1395.66 (1) Å3
Hall symbol: P ?Z = 4
a = 6.7832 ÅF(000) = 700
b = 10.0779 ÅDx = 1.648 Mg m3
Data collection top
2828 independent reflectionsh = 88
2828 reflections with > 2.0σ(I)k = 012
θmax = 28.0°, θmin = 2.0°l = 025
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.030Secondary atom site location: difference Fourier map
wR(F2) = 0.039Hydrogen site location: difference Fourier map
S = 0.98Only H-atom coordinates refined
2828 reflections w = 1/[1.4*σ2(Fo2)]
238 parameters(Δ/σ)max = 0.031
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.20740 (5)0.11242 (3)0.006999 (16)0.01981 (6)
Cl20.11799 (5)0.28117 (3)0.117395 (16)0.02003 (6)
O10.13536 (13)0.56722 (9)0.09458 (4)0.01819 (15)
O20.29035 (14)0.27766 (9)0.11857 (4)0.02091 (17)
N10.29743 (17)0.81472 (12)0.00677 (6)0.0227 (2)
N20.41730 (17)0.59859 (12)0.16832 (6)0.0229 (2)
C10.18099 (19)0.50044 (14)0.04671 (6)0.0130 (2)
C20.24708 (18)0.56025 (13)0.01173 (6)0.0130 (2)
C30.28863 (19)0.48682 (13)0.06629 (6)0.0132 (2)
C40.26424 (19)0.34372 (13)0.06891 (7)0.0138 (2)
C50.21382 (19)0.28244 (13)0.00766 (6)0.0131 (2)
C60.17480 (19)0.35468 (13)0.04595 (6)0.0135 (2)
C70.27468 (19)0.70067 (14)0.00949 (6)0.0155 (2)
C80.35899 (19)0.54936 (14)0.12234 (7)0.0153 (2)
N30.31854 (17)0.95341 (11)0.18273 (6)0.01945 (19)
N40.99504 (19)1.20447 (13)0.24898 (6)0.0270 (2)
C90.3508 (2)0.99936 (14)0.24439 (7)0.0191 (2)
H90.2370 (14)0.9822 (19)0.2775 (5)0.04227
C100.5217 (2)1.06876 (14)0.26356 (7)0.0173 (2)
H100.5535 (11)1.1004 (14)0.3139 (2)0.03752
C110.6585 (2)1.08973 (13)0.21775 (7)0.0170 (2)
C120.6222 (2)1.04251 (15)0.15417 (7)0.0216 (2)
H120.7299 (11)1.0578 (13)0.1187 (2)0.04430
C130.4499 (2)0.97299 (14)0.13783 (7)0.0216 (2)
H130.413 (3)0.9300 (15)0.0899 (4)0.04666
C140.1378 (3)0.87598 (17)0.16340 (8)0.0319 (3)
H14Aa0.0486 (8)0.9289 (6)0.1260 (2)0.053490.52
H14Ba0.1785 (10)0.7809 (3)0.1447 (3)0.058340.52
H14Ca0.0546 (8)0.8618 (7)0.2054 (2)0.054550.52
H14Ab0.052 (6)0.926 (4)0.121 (2)0.058160.48
H14Bb0.178 (6)0.779 (4)0.149 (2)0.054750.48
H14Cb0.050 (6)0.870 (5)0.203 (2)0.053430.48
C150.8422 (2)1.15598 (14)0.23592 (7)0.0206 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0273 (2)0.01207 (18)0.0202 (2)0.00032 (16)0.00308 (15)0.00043 (14)
Cl20.0261 (2)0.0194 (2)0.01496 (18)0.00140 (16)0.00391 (15)0.00279 (14)
O10.0250 (6)0.0159 (6)0.0144 (5)0.0008 (4)0.0053 (4)0.0034 (4)
O20.0338 (6)0.0148 (6)0.0149 (5)0.0037 (5)0.0066 (5)0.0020 (4)
N10.0282 (7)0.0115 (7)0.0284 (8)0.0029 (6)0.0026 (6)0.0017 (5)
N20.0288 (7)0.0239 (8)0.0167 (7)0.0040 (6)0.0067 (6)0.0034 (5)
C10.0168 (7)0.0107 (8)0.0118 (7)0.0002 (6)0.0033 (6)0.0006 (6)
C20.0160 (7)0.0097 (8)0.0135 (8)0.0002 (6)0.0023 (6)0.0008 (6)
C30.0152 (7)0.0127 (8)0.0121 (7)0.0006 (6)0.0034 (6)0.0008 (6)
C40.0188 (8)0.0112 (8)0.0116 (8)0.0016 (6)0.0020 (6)0.0008 (6)
C50.0181 (7)0.0092 (7)0.0122 (7)0.0002 (6)0.0018 (6)0.0002 (6)
C60.0168 (8)0.0134 (8)0.0107 (7)0.0009 (6)0.0034 (6)0.0001 (6)
C70.0183 (8)0.0118 (8)0.0165 (8)0.0005 (6)0.0022 (6)0.0006 (6)
C80.0188 (8)0.0148 (8)0.0127 (8)0.0001 (6)0.0042 (6)0.0020 (6)
N30.0226 (7)0.0154 (7)0.0196 (7)0.0013 (5)0.0026 (6)0.0012 (5)
N40.0277 (8)0.0306 (8)0.0230 (7)0.0088 (7)0.0038 (6)0.0022 (6)
C90.0195 (8)0.0205 (8)0.0171 (8)0.0005 (7)0.0002 (7)0.0003 (6)
H90.031390.062480.033980.010040.008870.00054
C100.0188 (8)0.0194 (8)0.0138 (8)0.0002 (7)0.0018 (6)0.0009 (6)
H100.036790.054780.021200.006840.003540.00911
C110.0206 (8)0.0151 (8)0.0155 (8)0.0012 (6)0.0018 (6)0.0015 (6)
C120.0265 (9)0.0233 (9)0.0152 (8)0.0007 (7)0.0038 (7)0.0010 (6)
H120.044790.064330.025420.006870.012680.00249
C130.0274 (9)0.0209 (9)0.0160 (8)0.0038 (7)0.0012 (7)0.0039 (6)
H130.052180.058690.028280.003770.001730.01819
C140.0290 (10)0.0284 (10)0.0366 (11)0.0064 (8)0.0068 (8)0.0043 (8)
H14Aa0.049980.057920.048680.005100.019150.00412
H14Ba0.055020.033500.084140.004080.008360.01562
H14Ca0.043360.069570.050890.016840.004960.00442
H14Ab0.054880.035520.081960.003950.007000.01874
H14Bb0.045240.069140.049870.018600.003880.00157
H14Cb0.048140.056260.051930.003290.019660.00461
C150.0217 (9)0.0211 (9)0.0191 (8)0.0035 (7)0.0031 (7)0.0021 (6)
Geometric parameters (Å, º) top
Cl1—C51.7142 (14)N3—C131.3470 (17)
Cl2—C61.7127 (13)N3—C141.4794 (19)
O1—C11.2493 (15)N4—C151.1575 (17)
O2—C41.2408 (15)C9—C101.3831 (19)
N1—C71.1605 (17)C9—H91.083 (2)
N2—C81.1627 (16)C10—C111.3895 (18)
C1—C61.4695 (19)C10—H101.083 (2)
C1—C21.4446 (18)C11—C151.435 (2)
C2—C71.4277 (19)C11—C121.3895 (19)
C2—C31.3887 (18)C12—C131.380 (2)
C3—C41.4520 (19)C12—H121.083 (2)
C3—C81.4264 (18)C13—H131.083 (2)
C4—C51.4641 (18)C14—H14Ba1.0770 (14)
C5—C61.3618 (18)C14—H14Aa1.0770 (14)
N3—C91.3461 (17)C14—H14Ca1.0770 (14)
O1—C1—C6122.56 (11)N3—C9—C10120.50 (12)
O1—C1—C2122.67 (11)N3—C9—H9117.6 (7)
C6—C1—C2114.76 (11)C10—C9—H9121.8 (7)
C1—C2—C7115.84 (11)C9—C10—C11118.44 (12)
C1—C2—C3122.84 (11)C9—C10—H10121.00 (16)
C7—C2—C3121.29 (11)C11—C10—H10120.43 (16)
C4—C3—C8116.99 (11)C15—C11—C10120.63 (11)
C4—C3—C2121.94 (11)C15—C11—C12119.01 (12)
C8—C3—C2121.08 (11)C10—C11—C12120.32 (12)
O2—C4—C5122.39 (11)C13—C12—C11118.81 (12)
O2—C4—C3122.66 (11)C13—C12—H12120.97 (16)
C5—C4—C3114.91 (11)C11—C12—H12120.20 (16)
Cl1—C5—C6121.41 (10)N3—C13—C12120.24 (12)
Cl1—C5—C4115.87 (9)N3—C13—H13116.4 (8)
C6—C5—C4122.72 (11)C12—C13—H13123.4 (8)
Cl2—C6—C5122.04 (9)N3—C14—H14Ba109.5 (3)
Cl2—C6—C1115.57 (9)N3—C14—H14Aa109.5 (3)
C5—C6—C1122.39 (11)N3—C14—H14Ca109.5 (3)
N1—C7—C2179.087 (9)H14Ba—C14—H14Aa109.5 (4)
N2—C8—C3179.021 (11)H14Ba—C14—H14Ca109.5 (4)
C9—N3—C13121.69 (11)H14Aa—C14—H14Ca109.5 (4)
C9—N3—C14119.95 (11)N4—C15—C11176.58 (3)
C13—N3—C14118.34 (11)
Cl1—C5—C6—Cl20.28 (14)N3—C13—C12—H12179 (1)
Cl1—C5—C6—C1179.49 (16)C9—N3—C13—C120.50 (19)
Cl1—C5—C4—O23.78 (16)C9—N3—C13—H13178 (1)
Cl1—C5—C4—C3174.00 (15)C9—N3—C14—H14Ba123.2 (4)
Cl2—C6—C5—C4179.47 (16)C9—N3—C14—H14Aa116.8 (3)
Cl2—C6—C1—O14.54 (16)C9—N3—C14—H14Ca3.2 (5)
Cl2—C6—C1—C2174.47 (15)C9—C10—C11—C15177.2 (2)
O1—C1—C6—C5176.20 (18)C9—C10—C11—C120.5 (2)
O1—C1—C2—C75.46 (17)H9—C9—N3—C13178 (2)
O1—C1—C2—C3176.75 (18)H9—C9—N3—C143 (2)
O2—C4—C5—C6176.46 (19)H9—C9—C10—C11178 (2)
O2—C4—C3—C84.49 (17)H9—C9—C10—H106 (2)
O2—C4—C3—C2175.95 (18)C10—C9—N3—C130.0 (2)
C1—C6—C5—C40.26 (19)C10—C9—N3—C14178.2 (2)
C1—C2—C3—C41.35 (19)C10—C11—C12—C131.0 (2)
C1—C2—C3—C8178.19 (19)C10—C11—C12—H12179 (1)
C2—C1—C6—C54.8 (2)H10—C10—C11—C151 (1)
C2—C3—C4—C56.28 (18)H10—C10—C11—C12176 (1)
C3—C4—C5—C65.8 (2)C11—C12—C13—H13178 (1)
C3—C2—C1—C64.24 (18)C12—C13—N3—C14178.8 (2)
C4—C3—C2—C7179.02 (19)H12—C12—C13—H130 (2)
C5—C4—C3—C8173.28 (19)H12—C12—C11—C151 (1)
C6—C1—C2—C7173.55 (18)C13—N3—C14—H14Ba55.1 (4)
C7—C2—C3—C80.51 (19)C13—N3—C14—H14Aa64.9 (3)
N3—C9—C10—C110.03 (19)C13—N3—C14—H14Ca175.1 (5)
N3—C9—C10—H10176 (1)C13—C12—C11—C15176.8 (2)
N3—C13—C12—C110.98 (19)H13—C13—N3—C140 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.08 (1)2.37 (1)3.4469 (18)171 (1)
C14—H14Ba···O11.08 (1)2.39 (1)3.4156 (19)158 (1)
C14—H14Bb···O11.06 (4)2.42 (4)3.4156 (19)156 (2)
C10—H10···O1i1.08 (1)2.38 (1)3.1773 (16)129 (1)
C13—H13···Cl1ii1.08 (1)2.97 (2)3.5600 (15)115 (1)
C12—H12···N1iii1.08 (1)2.62 (1)3.4290 (19)131 (1)
C10—H10···O2iv1.08 (1)2.38 (1)3.2889 (17)141 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z+1/2.
(180K) top
Crystal data top
C15H7Cl2N4O2c = 20.4949 (2) Å
Mr = 346.13β = 94.7440°
Monoclinic, V = 1399.45 (1) Å3
Hall symbol: P ?Z = 4
a = 6.7983 ÅF(000) = 700
b = 10.0786 ÅDx = 1.643 Mg m3
Data collection top
2822 independent reflectionsh = 88
2822 reflections with > 2.0σ(I)k = 012
θmax = 74.3°, θmin = 4.3°l = 025
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.031Secondary atom site location: difference Fourier map
wR(F2) = 0.039Hydrogen site location: difference Fourier map
S = 1.27Only H-atom coordinates refined
2822 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20664 (6)0.11267 (4)0.007053 (18)0.02331 (6)
Cl20.11771 (6)0.28117 (4)0.117273 (18)0.02340 (6)
O10.13521 (14)0.56705 (10)0.09451 (5)0.02159 (17)
O20.29019 (15)0.27790 (10)0.11840 (5)0.02454 (19)
N10.29770 (19)0.81416 (13)0.00669 (6)0.0265 (2)
N20.41733 (19)0.59836 (13)0.16800 (6)0.0265 (2)
C10.1810 (2)0.50004 (15)0.04672 (7)0.0156 (2)
C20.2472 (2)0.56007 (14)0.01167 (7)0.0151 (2)
C30.2884 (2)0.48663 (15)0.06614 (7)0.0155 (2)
C40.2640 (2)0.34370 (15)0.06882 (7)0.0165 (2)
C50.2133 (2)0.28257 (14)0.00758 (7)0.0157 (2)
C60.1746 (2)0.35457 (15)0.04588 (7)0.0156 (2)
C70.2750 (2)0.70020 (16)0.00931 (7)0.0182 (2)
C80.3588 (2)0.54917 (15)0.12219 (7)0.0181 (2)
N30.31894 (19)0.95328 (12)0.18279 (6)0.0230 (2)
N40.9934 (2)1.20406 (14)0.24875 (7)0.0322 (3)
C90.3512 (2)0.99950 (16)0.24435 (8)0.0229 (3)
H90.243 (2)0.9823 (18)0.279 (13)0.02748
C100.5219 (2)1.06854 (15)0.26349 (7)0.0206 (3)
H100.549 (3)1.1055 (17)0.313 (13)0.02470
C110.6578 (2)1.08918 (15)0.21775 (7)0.0195 (3)
C120.6213 (2)1.04229 (17)0.15429 (8)0.0260 (3)
H120.726 (2)1.0598 (19)0.118 (13)0.03120
C130.4495 (3)0.97286 (16)0.13796 (8)0.0254 (3)
H130.420 (3)0.9337 (17)0.089 (13)0.03049
C140.1392 (3)0.8762 (2)0.16361 (10)0.0378 (3)
H14A0.050 (3)0.870 (2)0.205 (13)0.05667
H14B0.056 (3)0.925 (2)0.123 (13)0.05667
H14C0.179 (3)0.778 (13)0.1488 (11)0.05667
C150.8406 (3)1.15536 (16)0.23576 (8)0.0239 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0324 (2)0.0138 (2)0.0239 (2)0.00065 (18)0.00387 (17)0.00042 (16)
Cl20.0308 (2)0.0223 (2)0.0175 (2)0.00162 (18)0.00463 (17)0.00321 (16)
O10.0294 (6)0.0183 (6)0.0177 (6)0.0002 (5)0.0056 (5)0.0044 (5)
O20.0390 (7)0.0168 (6)0.0187 (6)0.0041 (5)0.0074 (5)0.0025 (5)
N10.0340 (8)0.0128 (8)0.0327 (9)0.0030 (7)0.0023 (7)0.0018 (6)
N20.0337 (8)0.0274 (9)0.0195 (8)0.0039 (7)0.0082 (7)0.0055 (6)
C10.0188 (8)0.0142 (9)0.0142 (8)0.0011 (7)0.0031 (7)0.0019 (6)
C20.0187 (8)0.0114 (9)0.0156 (8)0.0007 (7)0.0025 (7)0.0006 (6)
C30.0187 (8)0.0143 (9)0.0139 (8)0.0003 (7)0.0041 (6)0.0007 (6)
C40.0225 (9)0.0131 (9)0.0143 (8)0.0021 (7)0.0033 (7)0.0008 (6)
C50.0209 (8)0.0117 (8)0.0148 (8)0.0011 (7)0.0029 (6)0.0003 (6)
C60.0191 (8)0.0147 (9)0.0133 (8)0.0006 (7)0.0029 (7)0.0011 (6)
C70.0214 (9)0.0137 (10)0.0194 (9)0.0008 (7)0.0021 (7)0.0008 (7)
C80.0221 (9)0.0172 (9)0.0157 (9)0.0004 (7)0.0047 (7)0.0009 (7)
N30.0266 (8)0.0185 (8)0.0231 (8)0.0020 (6)0.0033 (6)0.0013 (6)
N40.0344 (9)0.0358 (9)0.0269 (8)0.0097 (8)0.0056 (7)0.0032 (6)
C90.0245 (10)0.0249 (10)0.0193 (10)0.0009 (8)0.0014 (7)0.0008 (7)
H90.029390.029820.023140.001130.001670.00101
C100.0239 (9)0.0222 (9)0.0156 (9)0.0005 (8)0.0013 (7)0.0016 (7)
H100.028640.026630.018770.000650.001610.00196
C110.0248 (9)0.0164 (9)0.0174 (9)0.0012 (7)0.0021 (7)0.0010 (6)
C120.0324 (11)0.0287 (10)0.0175 (10)0.0011 (8)0.0055 (8)0.0004 (7)
H120.038870.034490.020940.001330.006650.00052
C130.0320 (11)0.0255 (10)0.0180 (9)0.0027 (8)0.0018 (8)0.0044 (7)
H130.038400.030630.021660.003280.002120.00528
C140.0337 (12)0.0333 (12)0.0445 (14)0.0075 (10)0.0081 (9)0.0065 (10)
H14A0.050500.049940.066720.011280.012200.00972
H14B0.050500.049940.066720.011280.012200.00972
H14C0.050500.049940.066720.011280.012200.00972
C150.0252 (10)0.0245 (10)0.0223 (9)0.0044 (8)0.0040 (8)0.0024 (7)
Geometric parameters (Å, º) top
Cl1—C51.7130 (15)N3—C91.3457 (19)
Cl2—C61.7121 (14)N3—C141.474 (2)
O1—C11.2502 (16)N4—C151.1598 (19)
O2—C41.2384 (17)C9—C101.382 (2)
N1—C71.1595 (18)C9—H91.08 (19)
N2—C81.1609 (18)C10—C111.385 (2)
C1—C61.467 (2)C10—H101.1 (2)
C1—C21.4456 (19)C11—C151.432 (2)
C2—C71.425 (2)C11—C121.387 (2)
C2—C31.3871 (19)C12—C131.379 (2)
C3—C41.451 (2)C12—H121.08 (19)
C3—C81.427 (2)C13—H131.1 (2)
C4—C51.465 (2)C14—H14B1.08 (19)
C5—C61.3581 (19)C14—H14C1.08 (12)
N3—C131.344 (2)C14—H14A1.1 (2)
O1—C1—C6122.68 (12)N3—C9—C10120.57 (13)
O1—C1—C2122.50 (12)N3—C9—H9120 (13)
C6—C1—C2114.81 (12)C10—C9—H9120 (3)
C1—C2—C7115.86 (12)C9—C10—C11118.35 (13)
C1—C2—C3122.70 (12)C9—C10—H10121 (3)
C7—C2—C3121.40 (12)C11—C10—H10121 (10)
C4—C3—C8116.93 (12)C15—C11—C10120.58 (13)
C4—C3—C2122.03 (12)C15—C11—C12118.99 (13)
C8—C3—C2121.04 (12)C10—C11—C12120.40 (13)
O2—C4—C5122.53 (12)C13—C12—C11118.87 (14)
O2—C4—C3122.62 (12)C13—C12—H12120 (3)
C5—C4—C3114.80 (12)C11—C12—H12121 (13)
Cl1—C5—C6121.47 (11)N3—C13—C12120.17 (13)
Cl1—C5—C4115.73 (10)N3—C13—H13120 (10)
C6—C5—C4122.80 (12)C12—C13—H13120 (3)
Cl2—C6—C5122.08 (10)N3—C14—H14B109 (3)
Cl2—C6—C1115.50 (10)N3—C14—H14C110 (4)
C5—C6—C1122.41 (12)N3—C14—H14A109 (3)
N1—C7—C2179.298 (8)H14B—C14—H14C109 (5)
N2—C8—C3179.019 (12)H14B—C14—H14A109 (15)
C13—N3—C9121.63 (12)H14C—C14—H14A109 (5)
C13—N3—C14118.36 (13)N4—C15—C11176.61 (4)
C9—N3—C14119.99 (13)
Cl1—C5—C6—Cl20.26 (11)N3—C9—C10—H10180 (4)
Cl1—C5—C6—C1179.50 (13)C9—N3—C13—C120.31 (17)
Cl1—C5—C4—O23.73 (14)C9—N3—C13—H13179 (4)
Cl1—C5—C4—C3174.04 (13)C9—N3—C14—H14B121 (3)
Cl2—C6—C5—C4179.42 (13)C9—N3—C14—H14C118 (6)
Cl2—C6—C1—O14.68 (13)C9—N3—C14—H14A2 (3)
Cl2—C6—C1—C2174.45 (12)C9—C10—C11—C15177.44 (17)
O1—C1—C6—C5176.04 (15)C9—C10—C11—C120.53 (18)
O1—C1—C2—C75.62 (14)H9—C9—N3—C13180 (5)
O1—C1—C2—C3176.57 (15)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.57 (16)H9—C9—C10—C11180 (5)
O2—C4—C3—C84.42 (15)H9—C9—C10—H100 (6)
O2—C4—C3—C2176.07 (15)C10—C9—N3—C130.35 (17)
C1—C6—C5—C40.19 (16)C10—C9—N3—C14178.07 (17)
C1—C2—C3—C41.25 (16)C10—C11—C12—C131.17 (17)
C1—C2—C3—C8178.24 (16)C10—C11—C12—H12179 (4)
C2—C1—C6—C54.83 (17)H10—C10—C11—C153 (5)
C2—C3—C4—C56.16 (15)H10—C10—C11—C12179 (5)
C3—C4—C5—C65.66 (17)C11—C12—C13—H13179 (3)
C3—C2—C1—C64.30 (15)C12—C13—N3—C14178.76 (18)
C4—C3—C2—C7178.95 (16)H12—C12—C13—H131 (6)
C5—C4—C3—C8173.35 (16)H12—C12—C11—C153 (4)
C6—C1—C2—C7173.51 (16)C13—N3—C14—H14B60 (3)
C7—C2—C3—C80.54 (16)C13—N3—C14—H14C60 (5)
N3—C13—C12—C111.06 (17)C13—N3—C14—H14A180 (4)
N3—C13—C12—H12179 (4)C13—C12—C11—C15176.83 (18)
N3—C9—C10—C110.24 (16)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (2)2.4 (2)3.450 (2)166 (2)
C14—H14C···O11.08 (12)2.41 (11)3.421 (2)157 (1)
C10—H10···O1i1.1 (2)2.4 (2)3.1819 (18)129 (13)
C13—H13···Cl1ii1.1 (2)2.96 (16)3.5683 (16)116 (10)
C12—H12···N1iii1.08 (19)2.6 (2)3.438 (2)133 (13)
C10—H10···O2iv1.1 (2)2.38 (14)3.2940 (19)141 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z+1/2.
(210K) top
Crystal data top
C15H7Cl2N4O2β = 94.7400°
Mr = 346.13V = 1405.74 Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.8159 ÅDx = 1.636 Mg m3
b = 10.0882 ÅMo Kα radiation, λ = 0.71073 Å
c = 20.5143 Å
Data collection top
Radiation source: fine-focus sealed tubeh = 99
3147 independent reflectionsk = 013
3147 reflections with > 2.0σ(I)l = 026
θmax = 28.2°, θmin = 2.0°
Refinement top
Refinement on F219 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038Secondary atom site location: difference Fourier map
wR(F2) = 0.037Hydrogen site location: difference Fourier map
S = 0.94Only H-atom coordinates refined
3147 reflections w = 1/[1.3*σ2(Fo2)]
238 parameters(Δ/σ)max = 0.033
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.20600 (5)0.11284 (3)0.007091 (17)0.02544 (6)
Cl20.11732 (5)0.28113 (3)0.117193 (16)0.02557 (6)
O10.13533 (13)0.56691 (9)0.09446 (4)0.02469 (16)
O20.29004 (14)0.27801 (9)0.11823 (4)0.02832 (18)
N10.29787 (18)0.81400 (12)0.00665 (6)0.0315 (2)
N20.41777 (18)0.59850 (12)0.16769 (6)0.0311 (2)
C10.18084 (19)0.50001 (14)0.04667 (6)0.0184 (2)
C20.24722 (18)0.56004 (13)0.01152 (6)0.0176 (2)
C30.28858 (19)0.48683 (13)0.06604 (6)0.0180 (2)
C40.2637 (2)0.34362 (13)0.06874 (7)0.0192 (2)
C50.21315 (19)0.28241 (13)0.00758 (6)0.0188 (2)
C60.17471 (19)0.35477 (13)0.04595 (6)0.0189 (2)
C70.27532 (19)0.70004 (14)0.00926 (6)0.0208 (2)
C80.35898 (19)0.54926 (14)0.12195 (7)0.0217 (2)
N30.31909 (17)0.95339 (11)0.18293 (6)0.0271 (2)
N40.99182 (19)1.20333 (13)0.24852 (6)0.0377 (2)
C90.3515 (2)0.99951 (15)0.24446 (7)0.0264 (2)
H90.2369 (14)0.9805 (19)0.2768 (5)0.05417
C100.5220 (2)1.06812 (14)0.26341 (7)0.0245 (2)
H100.5518 (11)1.1025 (13)0.3133 (2)0.04694
C110.6574 (2)1.08877 (13)0.21770 (7)0.0235 (2)
C120.6208 (2)1.04218 (15)0.15428 (7)0.0295 (3)
H120.7300 (10)1.0547 (13)0.1193 (3)0.05669
C130.4496 (2)0.97302 (15)0.13815 (7)0.0307 (3)
H130.412 (3)0.9360 (16)0.0892 (3)0.06023
C140.1395 (3)0.87628 (17)0.16393 (9)0.0441 (3)
H14Aa0.0605 (9)0.9221 (6)0.1222 (2)0.068200.49
H14Ba0.1796 (10)0.7767 (3)0.1516 (3)0.073580.49
H14Ca0.0474 (7)0.8738 (7)0.2041 (2)0.069200.49
H14Ab0.174 (6)0.795 (4)0.146 (2)0.071770.51
H14Bb0.060 (6)0.859 (4)0.206 (2)0.069720.51
H14Cb0.045 (6)0.933 (4)0.127 (2)0.067980.51
C150.8398 (2)1.15505 (15)0.23560 (7)0.0285 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0360 (2)0.01478 (18)0.0258 (2)0.00074 (16)0.00445 (16)0.00050 (14)
Cl20.0340 (2)0.0247 (2)0.01852 (18)0.00190 (17)0.00538 (16)0.00390 (14)
O10.0348 (6)0.0211 (6)0.0189 (5)0.0006 (5)0.0070 (5)0.0049 (4)
O20.0459 (7)0.0198 (6)0.0204 (6)0.0048 (5)0.0093 (5)0.0030 (4)
N10.0403 (8)0.0155 (8)0.0386 (8)0.0033 (6)0.0033 (6)0.0021 (6)
N20.0398 (8)0.0320 (8)0.0226 (7)0.0045 (6)0.0096 (6)0.0061 (6)
C10.0231 (8)0.0169 (8)0.0156 (8)0.0012 (6)0.0034 (6)0.0010 (6)
C20.0215 (8)0.0137 (8)0.0179 (8)0.0002 (6)0.0022 (6)0.0005 (6)
C30.0216 (7)0.0171 (8)0.0159 (7)0.0001 (6)0.0043 (6)0.0008 (6)
C40.0264 (8)0.0152 (8)0.0165 (8)0.0021 (6)0.0042 (6)0.0015 (6)
C50.0251 (8)0.0142 (7)0.0173 (7)0.0013 (6)0.0026 (6)0.0001 (6)
C60.0240 (8)0.0174 (8)0.0157 (8)0.0005 (6)0.0043 (6)0.0003 (6)
C70.0244 (8)0.0156 (8)0.0225 (8)0.0009 (6)0.0024 (6)0.0017 (6)
C80.0253 (8)0.0211 (8)0.0192 (8)0.0003 (6)0.0055 (6)0.0016 (6)
N30.0306 (7)0.0228 (7)0.0270 (8)0.0020 (6)0.0042 (6)0.0020 (5)
N40.0395 (9)0.0425 (9)0.0317 (8)0.0121 (7)0.0057 (7)0.0043 (6)
C90.0280 (9)0.0280 (9)0.0230 (9)0.0004 (7)0.0009 (7)0.0003 (6)
H90.040900.078240.044720.013190.011670.00008
C100.0279 (9)0.0265 (9)0.0192 (8)0.0003 (7)0.0035 (7)0.0015 (6)
H100.047870.067470.025970.008550.006080.01176
C110.0297 (9)0.0204 (8)0.0203 (8)0.0006 (7)0.0018 (7)0.0009 (6)
C120.0372 (10)0.0327 (9)0.0192 (8)0.0001 (8)0.0057 (7)0.0022 (7)
H120.059310.082070.030860.008410.016790.00562
C130.0402 (10)0.0292 (9)0.0220 (9)0.0048 (8)0.0014 (8)0.0055 (7)
H130.069760.075200.034440.004980.003340.02233
C140.0384 (12)0.0381 (12)0.0537 (13)0.0078 (9)0.0097 (9)0.0064 (9)
H14Aa0.063410.071920.064160.006960.025370.00255
H14Ba0.069740.042680.104780.007100.014020.01711
H14Ca0.052630.084620.070050.019830.003300.00418
H14Ab0.068350.048090.095960.006710.010610.02363
H14Bb0.057100.082950.068350.023890.000570.00252
H14Cb0.058650.068280.071810.002850.025800.00365
C150.0304 (10)0.0295 (9)0.0258 (9)0.0050 (8)0.0039 (7)0.0021 (6)
Geometric parameters (Å, º) top
Cl1—C51.7114 (13)N3—C91.3463 (17)
Cl2—C61.7134 (13)N3—C141.475 (2)
O1—C11.2502 (15)N4—C151.1555 (18)
O2—C41.2374 (15)C9—C101.3806 (19)
N1—C71.1606 (16)C9—H91.083 (2)
N2—C81.1618 (16)C10—C111.3847 (18)
C1—C61.4659 (18)C10—H101.083 (2)
C1—C21.4443 (18)C11—C151.433 (2)
C2—C71.4255 (19)C11—C121.3863 (19)
C2—C31.3884 (17)C12—C131.376 (2)
C3—C41.4552 (18)C12—H121.082 (2)
C3—C81.4260 (18)C13—H131.083 (2)
C4—C51.4647 (18)C14—H14Ca1.0770 (14)
C5—C61.3619 (18)C14—H14Aa1.0770 (14)
N3—C131.3453 (18)C14—H14Ba1.0770 (14)
O1—C1—C6122.61 (11)N3—C9—C10120.42 (12)
O1—C1—C2122.46 (11)N3—C9—H9116.3 (7)
C6—C1—C2114.92 (11)C10—C9—H9123.3 (7)
C1—C2—C7116.04 (11)C9—C10—C11118.51 (12)
C1—C2—C3122.76 (11)C9—C10—H10120.93 (16)
C7—C2—C3121.17 (11)C11—C10—H10120.53 (16)
C4—C3—C8116.98 (11)C15—C11—C10120.63 (12)
C4—C3—C2121.87 (11)C15—C11—C12118.92 (12)
C8—C3—C2121.14 (11)C10—C11—C12120.42 (12)
O2—C4—C5122.52 (11)C13—C12—C11118.73 (12)
O2—C4—C3122.54 (11)C13—C12—H12121.01 (17)
C5—C4—C3114.89 (11)C11—C12—H12120.13 (17)
Cl1—C5—C6121.57 (9)N3—C13—C12120.38 (12)
Cl1—C5—C4115.80 (9)N3—C13—H13117.7 (9)
C6—C5—C4122.63 (11)C12—C13—H13121.8 (8)
Cl2—C6—C5121.88 (9)N3—C14—H14Ca109.5 (3)
Cl2—C6—C1115.66 (9)N3—C14—H14Aa109.5 (4)
C5—C6—C1122.46 (11)N3—C14—H14Ba109.5 (4)
N1—C7—C2179.201 (9)H14Ca—C14—H14Aa109.5 (4)
N2—C8—C3179.035 (10)H14Ca—C14—H14Ba109.5 (5)
C13—N3—C9121.53 (11)H14Aa—C14—H14Ba109.5 (4)
C13—N3—C14118.57 (12)N4—C15—C11176.52 (4)
C9—N3—C14119.88 (12)
Cl1—C5—C6—Cl20.14 (14)N3—C9—C10—H10178 (1)
Cl1—C5—C6—C1179.73 (16)C9—N3—C13—C120.4 (2)
Cl1—C5—C4—O23.52 (16)C9—N3—C13—H13178 (1)
Cl1—C5—C4—C3174.03 (15)C9—N3—C14—H14Ca4.5 (5)
Cl2—C6—C5—C4179.60 (16)C9—N3—C14—H14Aa124.5 (4)
Cl2—C6—C1—O14.35 (16)C9—N3—C14—H14Ba115.5 (4)
Cl2—C6—C1—C2174.48 (15)C9—C10—C11—C15177.7 (2)
O1—C1—C6—C5176.04 (18)C9—C10—C11—C120.5 (2)
O1—C1—C2—C75.49 (17)H9—C9—N3—C13179 (2)
O1—C1—C2—C3176.70 (18)H9—C9—N3—C143 (2)
O2—C4—C5—C6176.73 (19)H9—C9—C10—C11179 (2)
O2—C4—C3—C84.29 (18)H9—C9—C10—H103 (2)
O2—C4—C3—C2176.11 (18)C10—C9—N3—C130.4 (2)
C1—C6—C5—C40.00 (19)C10—C9—N3—C14177.9 (2)
C1—C2—C3—C41.31 (19)C10—C11—C12—C131.3 (2)
C1—C2—C3—C8178.28 (19)C10—C11—C12—H12177 (1)
C2—C1—C6—C55.1 (2)H10—C10—C11—C150 (1)
C2—C3—C4—C56.35 (18)H10—C10—C11—C12179 (1)
C3—C4—C5—C65.7 (2)C11—C12—C13—H13179 (1)
C3—C2—C1—C64.47 (18)C12—C13—N3—C14178.7 (2)
C4—C3—C2—C7179.01 (19)H12—C12—C13—H135 (2)
C5—C4—C3—C8173.26 (19)H12—C12—C11—C151 (1)
C6—C1—C2—C7173.34 (18)C13—N3—C14—H14Ca177.1 (5)
C7—C2—C3—C80.57 (19)C13—N3—C14—H14Aa57.1 (4)
N3—C13—C12—C111.21 (19)C13—N3—C14—H14Ba62.9 (4)
N3—C13—C12—H12177 (1)C13—C12—C11—C15176.9 (2)
N3—C9—C10—C110.35 (19)H13—C13—N3—C144 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.08 (1)2.39 (1)3.4582 (19)167 (1)
C14—H14Ba···O11.08 (1)2.43 (1)3.4301 (19)155 (1)
C14—H14Ab···O10.94 (4)2.54 (4)3.4301 (19)159 (1)
C13—H13···Cl1i1.08 (1)2.93 (2)3.5786 (15)119 (1)
C12—H12···N1ii1.08 (1)2.66 (1)3.4440 (19)129 (1)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
(240K) top
Crystal data top
C15H7Cl2N4O2β = 94.7350°
Mr = 346.13V = 1414.64 (3) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.8491 ÅDx = 1.626 Mg m3
b = 10.0960 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.5281 (3) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 99
3168 independent reflectionsk = 013
3168 reflections with > 2.0σ(I)l = 026
θmax = 28.2°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.041Secondary atom site location: difference Fourier map
wR(F2) = 0.038Hydrogen site location: difference Fourier map
S = 1.11Only H-atom coordinates refined
3168 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20536 (6)0.11306 (3)0.007128 (18)0.02951 (6)
Cl20.11695 (6)0.28112 (4)0.117060 (17)0.02941 (6)
O10.13547 (14)0.56682 (10)0.09448 (4)0.02827 (17)
O20.29004 (15)0.27806 (10)0.11802 (5)0.03258 (19)
N10.29839 (19)0.81374 (13)0.00659 (6)0.0361 (2)
N20.41726 (19)0.59843 (13)0.16724 (6)0.0362 (2)
C10.1806 (2)0.50005 (14)0.04671 (7)0.0211 (2)
C20.24710 (19)0.55997 (14)0.01147 (7)0.0207 (2)
C30.2884 (2)0.48647 (14)0.06586 (7)0.0207 (2)
C40.2639 (2)0.34367 (14)0.06853 (7)0.0222 (2)
C50.21273 (19)0.28251 (13)0.00751 (7)0.0204 (2)
C60.1741 (2)0.35440 (14)0.04586 (7)0.0211 (2)
C70.2750 (2)0.69990 (15)0.00920 (6)0.0242 (2)
C80.3587 (2)0.54911 (14)0.12169 (7)0.0247 (2)
N30.31984 (18)0.95328 (12)0.18292 (6)0.0309 (2)
N40.9901 (2)1.20323 (14)0.24824 (6)0.0433 (3)
C90.3518 (2)0.99941 (16)0.24428 (7)0.0301 (3)
H90.2444 (19)0.9822 (17)0.279 (11)0.03612
C100.5215 (2)1.06808 (15)0.26319 (7)0.0278 (3)
H100.548 (2)1.1051 (16)0.313 (11)0.03339
C110.6568 (2)1.08866 (14)0.21758 (7)0.0265 (2)
C120.6207 (2)1.04176 (17)0.15439 (7)0.0342 (3)
H120.724 (2)1.0590 (18)0.118 (11)0.04107
C130.4494 (3)0.97270 (16)0.13816 (7)0.0344 (3)
H130.420 (3)0.9336 (17)0.089 (11)0.04128
C140.1406 (3)0.8763 (2)0.16403 (10)0.0505 (4)
H14A0.053 (3)0.870 (2)0.205 (11)0.07571
H14B0.058 (3)0.925 (2)0.124 (11)0.07571
H14C0.180 (3)0.778 (11)0.1494 (11)0.07571
C150.8384 (2)1.15455 (16)0.23542 (7)0.0329 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0420 (2)0.0166 (2)0.0304 (2)0.00088 (18)0.00521 (18)0.00056 (15)
Cl20.0396 (2)0.0284 (2)0.0209 (2)0.00232 (18)0.00619 (17)0.00441 (15)
O10.0396 (6)0.0238 (6)0.0222 (6)0.0003 (5)0.0074 (5)0.0059 (4)
O20.0532 (7)0.0230 (6)0.0227 (6)0.0053 (5)0.0102 (5)0.0038 (4)
N10.0469 (9)0.0166 (8)0.0451 (9)0.0047 (7)0.0045 (7)0.0022 (6)
N20.0457 (9)0.0372 (9)0.0269 (8)0.0067 (7)0.0107 (7)0.0069 (6)
C10.0267 (8)0.0190 (8)0.0179 (8)0.0007 (7)0.0038 (6)0.0015 (6)
C20.0256 (8)0.0167 (8)0.0200 (8)0.0002 (6)0.0032 (6)0.0011 (6)
C30.0258 (8)0.0185 (8)0.0183 (8)0.0012 (7)0.0048 (6)0.0007 (6)
C40.0305 (9)0.0181 (8)0.0184 (8)0.0026 (7)0.0050 (7)0.0016 (6)
C50.0271 (8)0.0155 (8)0.0190 (8)0.0017 (6)0.0041 (6)0.0001 (6)
C60.0262 (8)0.0199 (9)0.0174 (8)0.0010 (7)0.0031 (6)0.0009 (6)
C70.0287 (9)0.0190 (9)0.0251 (8)0.0010 (7)0.0026 (6)0.0012 (6)
C80.0289 (9)0.0233 (9)0.0224 (8)0.0006 (7)0.0047 (7)0.0029 (6)
N30.0355 (8)0.0262 (8)0.0300 (8)0.0032 (6)0.0038 (6)0.0023 (6)
N40.0468 (10)0.0473 (10)0.0365 (8)0.0137 (8)0.0072 (7)0.0050 (7)
C90.0312 (10)0.0330 (10)0.0261 (9)0.0002 (8)0.0024 (7)0.0009 (7)
H90.037390.039620.031360.000240.002870.00110
C100.0320 (9)0.0324 (9)0.0190 (9)0.0013 (8)0.0018 (7)0.0013 (7)
H100.038460.038910.022760.001590.002210.00160
C110.0329 (9)0.0228 (9)0.0240 (9)0.0005 (7)0.0032 (7)0.0015 (6)
C120.0441 (11)0.0376 (10)0.0219 (9)0.0004 (9)0.0077 (8)0.0017 (7)
H120.052860.045120.026230.000430.009280.00202
C130.0449 (11)0.0347 (10)0.0226 (9)0.0042 (8)0.0032 (8)0.0068 (7)
H130.053850.041670.027140.005070.003820.00818
C140.0462 (13)0.0449 (13)0.0579 (14)0.0093 (11)0.0105 (10)0.0082 (11)
H14A0.069300.067360.086780.014010.015680.01225
H14B0.069300.067360.086780.014010.015680.01225
H14C0.069300.067360.086780.014010.015680.01225
C150.0346 (10)0.0336 (10)0.0310 (9)0.0063 (8)0.0051 (8)0.0031 (7)
Geometric parameters (Å, º) top
Cl1—C51.7115 (14)N3—C91.3438 (18)
Cl2—C61.7121 (14)N3—C141.477 (2)
O1—C11.2496 (15)N4—C151.1599 (18)
O2—C41.2381 (15)C9—C101.382 (2)
N1—C71.1610 (17)C9—H91.08 (17)
N2—C81.1597 (17)C10—C111.3859 (19)
C1—C61.4712 (19)C10—H101.1 (2)
C1—C21.4456 (18)C11—C151.432 (2)
C2—C71.426 (2)C11—C121.384 (2)
C2—C31.3890 (18)C12—C131.382 (2)
C3—C41.4519 (19)C12—H121.08 (17)
C3—C81.4270 (19)C13—H131.1 (2)
C4—C51.4649 (18)C14—H14B1.08 (17)
C5—C61.3584 (18)C14—H14C1.08 (11)
N3—C131.3432 (19)C14—H14A1.08 (19)
O1—C1—C6122.63 (11)N3—C9—C10120.36 (13)
O1—C1—C2122.54 (11)N3—C9—H9120 (11)
C6—C1—C2114.83 (11)C10—C9—H9120 (3)
C1—C2—C7115.99 (12)C9—C10—C11118.64 (13)
C1—C2—C3122.65 (11)C9—C10—H10121 (3)
C7—C2—C3121.33 (12)C11—C10—H10121 (9)
C4—C3—C8117.08 (12)C15—C11—C12118.87 (13)
C4—C3—C2122.03 (12)C15—C11—C10120.80 (12)
C8—C3—C2120.89 (11)C12—C11—C10120.30 (12)
O2—C4—C5122.49 (11)C13—C12—C11118.75 (13)
O2—C4—C3122.56 (11)C13—C12—H12120 (2)
C5—C4—C3114.92 (11)C11—C12—H12121 (11)
Cl1—C5—C6121.51 (10)N3—C13—C12120.29 (13)
Cl1—C5—C4115.75 (9)N3—C13—H13120 (9)
C6—C5—C4122.74 (11)C12—C13—H13120 (2)
Cl2—C6—C5122.08 (9)N3—C14—H14B109 (3)
Cl2—C6—C1115.51 (9)N3—C14—H14C109 (3)
C5—C6—C1122.40 (12)N3—C14—H14A110 (3)
N1—C7—C2179.217 (8)H14B—C14—H14C109 (5)
N2—C8—C3179.038 (11)H14B—C14—H14A109 (14)
C13—N3—C9121.67 (12)H14C—C14—H14A109 (4)
C13—N3—C14118.60 (13)N4—C15—C11176.68 (4)
C9—N3—C14119.71 (13)
Cl1—C5—C6—Cl20.38 (12)N3—C9—C10—H10180 (4)
Cl1—C5—C6—C1179.67 (14)C9—N3—C13—C120.12 (18)
Cl1—C5—C4—O23.76 (15)C9—N3—C13—H13180 (4)
Cl1—C5—C4—C3174.18 (13)C9—N3—C14—H14B122 (3)
Cl2—C6—C5—C4179.31 (14)C9—N3—C14—H14C118 (6)
Cl2—C6—C1—O14.42 (14)C9—N3—C14—H14A2 (3)
Cl2—C6—C1—C2174.38 (13)C9—C10—C11—C15177.48 (19)
O1—C1—C6—C5176.24 (17)C9—C10—C11—C120.40 (19)
O1—C1—C2—C75.30 (15)H9—C9—N3—C13180 (5)
O1—C1—C2—C3176.85 (16)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.53 (17)H9—C9—C10—C11180 (5)
O2—C4—C3—C84.46 (16)H9—C9—C10—H100 (6)
O2—C4—C3—C2175.96 (16)C10—C9—N3—C130.44 (19)
C1—C6—C5—C40.03 (17)C10—C9—N3—C14178.05 (19)
C1—C2—C3—C41.21 (17)C10—C11—C12—C130.95 (19)
C1—C2—C3—C8178.35 (17)C10—C11—C12—H12179 (4)
C2—C1—C6—C54.97 (18)H10—C10—C11—C153 (5)
C2—C3—C4—C56.10 (16)H10—C10—C11—C12180 (5)
C3—C4—C5—C65.53 (18)C11—C12—C13—H13179 (3)
C3—C2—C1—C64.36 (16)C12—C13—N3—C14178.6 (2)
C4—C3—C2—C7178.95 (17)H12—C12—C13—H131 (6)
C5—C4—C3—C8173.48 (17)H12—C12—C11—C153 (4)
C6—C1—C2—C7173.49 (17)C13—N3—C14—H14B60 (3)
C7—C2—C3—C80.61 (17)C13—N3—C14—H14C60 (5)
N3—C13—C12—C110.82 (18)C13—N3—C14—H14A180 (4)
N3—C13—C12—H12179 (4)C13—C12—C11—C15177.0 (2)
N3—C9—C10—C110.30 (18)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (2)2.40 (19)3.459 (2)166 (2)
C14—H14C···O11.08 (11)2.42 (10)3.435 (2)156 (1)
C13—H13···Cl1i1.1 (2)2.98 (15)3.5880 (16)116 (9)
C12—H12···N1ii1.08 (17)2.6 (2)3.452 (2)133 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
(270K) top
Crystal data top
C15H7Cl2N4O2β = 94.6900°
Mr = 346.13V = 1416.85 (1) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.8550 ÅDx = 1.623 Mg m3
b = 10.0998 ÅMo Kα radiation, λ = 0.71073 Å
c = 20.5333 (2) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 99
3149 independent reflectionsk = 013
3149 reflections with > 2.0σ(I)l = 026
θmax = 28.2°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.043Secondary atom site location: difference Fourier map
wR(F2) = 0.036Hydrogen site location: difference Fourier map
S = 1.05Only H-atom coordinates refined
3149 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20479 (6)0.11332 (3)0.007132 (17)0.03366 (6)
Cl20.11667 (5)0.28122 (4)0.116933 (17)0.03349 (6)
O10.13558 (13)0.56661 (9)0.09452 (4)0.03215 (17)
O20.29000 (14)0.27806 (9)0.11777 (4)0.03720 (19)
N10.29854 (18)0.81314 (12)0.00656 (6)0.0406 (2)
N20.41707 (18)0.59836 (13)0.16698 (6)0.0404 (2)
C10.18055 (19)0.49977 (14)0.04678 (7)0.0237 (2)
C20.24714 (18)0.55977 (13)0.01129 (6)0.0228 (2)
C30.28849 (19)0.48636 (13)0.06566 (6)0.0228 (2)
C40.2638 (2)0.34374 (14)0.06847 (7)0.0250 (2)
C50.21251 (19)0.28255 (13)0.00748 (6)0.0236 (2)
C60.17400 (19)0.35423 (13)0.04588 (6)0.0238 (2)
C70.2753 (2)0.69956 (15)0.00909 (6)0.0274 (2)
C80.3585 (2)0.54920 (14)0.12143 (7)0.0277 (2)
N30.32005 (18)0.95321 (12)0.18311 (6)0.0352 (2)
N40.9889 (2)1.20274 (14)0.24804 (6)0.0489 (3)
C90.3531 (2)0.99968 (16)0.24440 (7)0.0347 (3)
H90.2460 (18)0.9824 (17)0.279 (11)0.04159
C100.5218 (2)1.06801 (15)0.26318 (7)0.0314 (3)
H100.548 (2)1.1053 (16)0.313 (11)0.03770
C110.6560 (2)1.08813 (14)0.21760 (7)0.0302 (3)
C120.6201 (2)1.04142 (16)0.15450 (7)0.0391 (3)
H120.723 (2)1.0588 (18)0.118 (11)0.04687
C130.4497 (3)0.97258 (16)0.13832 (7)0.0392 (3)
H130.420 (2)0.9334 (16)0.089 (11)0.04708
C140.1414 (3)0.8760 (2)0.16425 (11)0.0581 (4)
H14A0.053 (3)0.870 (2)0.205 (11)0.08717
H14B0.059 (3)0.924 (2)0.124 (11)0.08717
H14C0.181 (3)0.778 (11)0.1497 (11)0.08717
C150.8374 (2)1.15441 (16)0.23528 (7)0.0374 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0478 (2)0.0191 (2)0.0345 (2)0.00080 (18)0.00630 (18)0.00057 (16)
Cl20.0446 (2)0.0323 (2)0.0242 (2)0.00270 (18)0.00695 (17)0.00527 (15)
O10.0442 (6)0.0284 (6)0.0248 (6)0.0007 (5)0.0083 (5)0.0063 (4)
O20.0599 (7)0.0268 (6)0.0263 (6)0.0055 (5)0.0118 (5)0.0051 (5)
N10.0507 (9)0.0205 (8)0.0504 (9)0.0048 (7)0.0037 (7)0.0023 (6)
N20.0501 (9)0.0422 (9)0.0302 (8)0.0063 (7)0.0122 (7)0.0075 (6)
C10.0291 (8)0.0223 (8)0.0203 (8)0.0021 (7)0.0047 (6)0.0022 (6)
C20.0271 (8)0.0190 (8)0.0224 (8)0.0005 (6)0.0024 (6)0.0018 (6)
C30.0268 (8)0.0215 (8)0.0205 (8)0.0007 (6)0.0050 (6)0.0005 (6)
C40.0330 (8)0.0208 (8)0.0216 (8)0.0044 (7)0.0046 (6)0.0015 (6)
C50.0309 (8)0.0191 (8)0.0210 (8)0.0024 (7)0.0029 (6)0.0003 (6)
C60.0297 (8)0.0226 (9)0.0195 (8)0.0016 (6)0.0042 (6)0.0010 (6)
C70.0322 (9)0.0207 (9)0.0292 (8)0.0012 (7)0.0024 (6)0.0010 (6)
C80.0330 (9)0.0270 (9)0.0236 (8)0.0002 (7)0.0061 (7)0.0026 (6)
N30.0404 (8)0.0291 (8)0.0348 (8)0.0029 (6)0.0045 (7)0.0011 (6)
N40.0501 (10)0.0561 (10)0.0411 (9)0.0157 (8)0.0083 (7)0.0059 (7)
C90.0370 (10)0.0388 (10)0.0281 (9)0.0009 (8)0.0026 (7)0.0014 (7)
H90.044460.046530.033760.001040.003070.00168
C100.0357 (9)0.0357 (9)0.0228 (9)0.0006 (8)0.0025 (7)0.0026 (7)
H100.042840.042890.027400.000740.002960.00308
C110.0380 (10)0.0272 (9)0.0254 (9)0.0010 (7)0.0031 (7)0.0006 (6)
C120.0499 (11)0.0434 (11)0.0247 (9)0.0002 (9)0.0082 (8)0.0017 (7)
H120.059930.052110.029590.000290.009870.00201
C130.0518 (11)0.0390 (10)0.0261 (9)0.0061 (9)0.0019 (9)0.0068 (7)
H130.062180.046800.031270.007270.002280.00820
C140.0516 (14)0.0505 (13)0.0694 (16)0.0108 (11)0.0121 (10)0.0064 (11)
H14A0.077450.075790.104050.016180.018140.00963
H14B0.077450.075790.104050.016180.018140.00963
H14C0.077450.075790.104050.016180.018140.00963
C150.0388 (11)0.0398 (10)0.0340 (9)0.0061 (9)0.0061 (8)0.0031 (7)
Geometric parameters (Å, º) top
Cl1—C51.7101 (14)N3—C91.3448 (18)
Cl2—C61.7090 (13)N3—C141.476 (2)
O1—C11.2495 (15)N4—C151.1577 (18)
O2—C41.2357 (15)C9—C101.375 (2)
N1—C71.1587 (17)C9—H91.08 (16)
N2—C81.1594 (16)C10—C111.3800 (19)
C1—C61.4707 (18)C10—H101.1 (2)
C1—C21.4444 (18)C11—C151.433 (2)
C2—C71.4252 (19)C11—C121.382 (2)
C2—C31.3886 (17)C12—C131.377 (2)
C3—C41.4509 (18)C12—H121.08 (17)
C3—C81.4262 (18)C13—H131.1 (2)
C4—C51.4648 (18)C14—H14C1.08 (10)
C5—C61.3569 (17)C14—H14B1.08 (16)
N3—C131.3444 (19)C14—H14A1.08 (19)
O1—C1—C6122.73 (11)N3—C9—C10120.74 (13)
O1—C1—C2122.41 (11)N3—C9—H9120 (11)
C6—C1—C2114.85 (11)C10—C9—H9120 (3)
C1—C2—C7116.14 (11)C9—C10—C11118.42 (13)
C1—C2—C3122.60 (11)C9—C10—H10121 (3)
C7—C2—C3121.22 (11)C11—C10—H10121 (9)
C4—C3—C8117.11 (11)C15—C11—C10120.66 (12)
C4—C3—C2122.08 (11)C15—C11—C12118.78 (13)
C8—C3—C2120.81 (11)C10—C11—C12120.54 (12)
O2—C4—C5122.35 (11)C13—C12—C11118.76 (13)
O2—C4—C3122.76 (11)C13—C12—H12120 (2)
C5—C4—C3114.85 (11)C11—C12—H12121 (11)
Cl1—C5—C6121.45 (10)N3—C13—C12120.25 (13)
Cl1—C5—C4115.78 (9)N3—C13—H13120 (9)
C6—C5—C4122.77 (11)C12—C13—H13120 (2)
Cl2—C6—C5122.18 (9)N3—C14—H14C110 (3)
Cl2—C6—C1115.43 (9)N3—C14—H14B109 (3)
C5—C6—C1122.39 (11)N3—C14—H14A109 (3)
N1—C7—C2179.248 (8)H14C—C14—H14B109 (5)
N2—C8—C3178.851 (13)H14C—C14—H14A109 (4)
C13—N3—C9121.28 (12)H14B—C14—H14A109 (13)
C13—N3—C14118.54 (13)N4—C15—C11176.49 (4)
C9—N3—C14120.16 (13)
Cl1—C5—C6—Cl20.35 (12)N3—C9—C10—H10180 (4)
Cl1—C5—C6—C1179.75 (14)C9—N3—C13—C120.21 (18)
Cl1—C5—C4—O23.60 (15)C9—N3—C13—H13179 (4)
Cl1—C5—C4—C3174.17 (13)C9—N3—C14—H14C118 (6)
Cl2—C6—C5—C4179.37 (14)C9—N3—C14—H14B122 (3)
Cl2—C6—C1—O14.32 (15)C9—N3—C14—H14A2 (3)
Cl2—C6—C1—C2174.39 (13)C9—C10—C11—C15177.67 (19)
O1—C1—C6—C5176.24 (17)C9—C10—C11—C120.5 (2)
O1—C1—C2—C75.28 (15)H9—C9—N3—C13180 (5)
O1—C1—C2—C3176.90 (16)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.67 (17)H9—C9—C10—C11180 (4)
O2—C4—C3—C84.19 (16)H9—C9—C10—H100 (6)
O2—C4—C3—C2176.05 (17)C10—C9—N3—C130.38 (19)
C1—C6—C5—C40.02 (17)C10—C9—N3—C14177.88 (19)
C1—C2—C3—C41.28 (17)C10—C11—C12—C131.09 (19)
C1—C2—C3—C8178.47 (17)C10—C11—C12—H12179 (4)
C2—C1—C6—C55.04 (18)H10—C10—C11—C152 (5)
C2—C3—C4—C56.20 (16)H10—C10—C11—C12179 (5)
C3—C4—C5—C65.57 (18)C11—C12—C13—H13179 (3)
C3—C2—C1—C64.38 (16)C12—C13—N3—C14178.5 (2)
C4—C3—C2—C7179.00 (17)H12—C12—C13—H132 (6)
C5—C4—C3—C8173.57 (17)H12—C12—C11—C153 (4)
C6—C1—C2—C7173.44 (17)C13—N3—C14—H14C60 (5)
C7—C2—C3—C80.76 (17)C13—N3—C14—H14B60 (4)
N3—C13—C12—C110.93 (18)C13—N3—C14—H14A180 (4)
N3—C13—C12—H12179 (4)C13—C12—C11—C15177.1 (2)
N3—C9—C10—C110.22 (18)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (2)2.41 (18)3.466 (2)166 (2)
C14—H14C···O11.08 (10)2.42 (10)3.436 (2)156 (1)
C13—H13···Cl1i1.1 (2)2.99 (14)3.5971 (16)116 (8)
C12—H12···N1ii1.08 (17)2.6 (2)3.460 (2)133 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
(293K) top
Crystal data top
C15H7Cl2N4O2β = 94.688 (1)°
Mr = 346.13V = 1422.27 (3) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.8717 (1) ÅDx = 1.617 Mg m3
b = 10.1050 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.5512 (2) ÅT = 293 K
Data collection top
Radiation source: fine-focus sealed tubeh = 99
3131 independent reflectionsk = 013
3131 reflections with > 2.0σ(I)l = 026
θmax = 28.2°, θmin = 2.0°
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.046Only H-atom coordinates refined
S = 0.83Weighting scheme based on measured s.u.'s
3131 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
CL10.20438 (6)0.11347 (4)0.007162 (18)0.03712 (7)
CL20.11640 (6)0.28125 (4)0.116894 (17)0.03696 (7)
O10.13590 (16)0.56661 (10)0.09452 (5)0.03485 (19)
O20.29004 (17)0.27833 (10)0.11765 (5)0.0408 (2)
N10.2986 (2)0.81254 (13)0.00651 (7)0.0444 (3)
N20.4168 (2)0.59811 (14)0.16663 (6)0.0441 (3)
C10.1811 (2)0.49974 (14)0.04686 (7)0.0261 (2)
C20.2471 (2)0.55993 (14)0.01115 (7)0.0253 (2)
C30.2883 (2)0.48666 (14)0.06547 (7)0.0254 (2)
C40.2637 (2)0.34399 (14)0.06824 (7)0.0273 (2)
C50.2124 (2)0.28276 (14)0.00742 (7)0.0260 (2)
C60.1735 (2)0.35426 (14)0.04592 (7)0.0260 (2)
C70.2757 (2)0.69932 (16)0.00899 (7)0.0298 (3)
C80.3585 (2)0.54894 (15)0.12119 (7)0.0307 (3)
N30.3205 (2)0.95293 (12)0.18313 (6)0.0385 (2)
N40.9878 (2)1.20226 (16)0.24791 (7)0.0537 (3)
C90.3531 (3)0.99921 (17)0.24434 (8)0.0380 (3)
H90.246 (2)0.9820 (18)0.279 (9)0.04563
C100.5215 (3)1.06783 (16)0.26307 (7)0.0341 (3)
H100.548 (3)1.1049 (17)0.312 (9)0.04091
C110.6560 (2)1.08817 (15)0.21751 (7)0.0335 (3)
C120.6203 (3)1.04153 (17)0.15455 (8)0.0426 (3)
H120.723 (2)1.0584 (19)0.118 (9)0.05107
C130.4495 (3)0.97212 (17)0.13852 (8)0.0439 (3)
H130.420 (3)0.9329 (18)0.090 (9)0.05269
C140.1424 (4)0.8761 (2)0.16435 (11)0.0641 (4)
H14A0.054 (3)0.870 (3)0.205 (9)0.09608
H14B0.060 (3)0.924 (2)0.124 (9)0.09608
H14C0.182 (4)0.778 (9)0.1499 (13)0.09608
C150.8375 (3)1.15399 (17)0.23525 (8)0.0413 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
CL10.0529 (3)0.0210 (2)0.0380 (2)0.0012 (2)0.00674 (19)0.00083 (16)
CL20.0496 (3)0.0354 (2)0.0266 (2)0.0030 (2)0.00780 (18)0.00574 (16)
O10.0477 (7)0.0316 (6)0.0261 (6)0.0004 (5)0.0087 (5)0.0069 (5)
O20.0657 (9)0.0279 (6)0.0303 (6)0.0059 (6)0.0128 (6)0.0047 (5)
N10.0548 (10)0.0223 (8)0.0560 (9)0.0055 (7)0.0043 (7)0.0025 (6)
N20.0546 (10)0.0463 (9)0.0328 (8)0.0075 (8)0.0125 (7)0.0080 (6)
C10.0315 (9)0.0247 (8)0.0226 (8)0.0013 (7)0.0049 (6)0.0023 (6)
C20.0306 (9)0.0209 (8)0.0245 (8)0.0008 (7)0.0035 (7)0.0026 (6)
C30.0299 (9)0.0233 (8)0.0234 (7)0.0025 (7)0.0045 (6)0.0009 (6)
C40.0374 (9)0.0219 (8)0.0232 (8)0.0034 (7)0.0057 (7)0.0010 (6)
C50.0324 (9)0.0207 (8)0.0250 (8)0.0024 (7)0.0039 (6)0.0001 (6)
C60.0325 (9)0.0241 (8)0.0218 (8)0.0010 (7)0.0048 (6)0.0009 (6)
C70.0347 (10)0.0212 (9)0.0334 (8)0.0013 (7)0.0023 (7)0.0018 (6)
C80.0370 (10)0.0298 (9)0.0258 (8)0.0004 (7)0.0068 (7)0.0034 (7)
N30.0451 (9)0.0317 (8)0.0376 (8)0.0026 (7)0.0050 (7)0.0023 (6)
N40.0537 (11)0.0614 (11)0.0468 (9)0.0179 (9)0.0078 (8)0.0057 (8)
C90.0403 (11)0.0423 (10)0.0314 (9)0.0002 (9)0.0027 (8)0.0010 (7)
H90.048340.050770.037720.000260.003230.00117
C100.0385 (11)0.0386 (9)0.0253 (9)0.0004 (8)0.0034 (8)0.0032 (7)
H100.046220.046290.030370.000520.004090.00384
C110.0424 (11)0.0295 (9)0.0288 (9)0.0016 (8)0.0039 (8)0.0016 (6)
C120.0552 (13)0.0468 (11)0.0265 (9)0.0016 (10)0.0084 (8)0.0022 (8)
H120.066260.056130.031820.001910.010070.00266
C130.0589 (13)0.0423 (11)0.0297 (9)0.0065 (10)0.0020 (9)0.0091 (8)
H130.070640.050700.035620.007760.002460.01091
C140.0560 (16)0.0584 (15)0.0745 (17)0.0118 (13)0.0146 (12)0.0089 (12)
H14A0.083930.087580.111820.017700.021850.01331
H14B0.083930.087580.111820.017700.021850.01331
H14C0.083930.087580.111820.017700.021850.01331
C150.0439 (12)0.0438 (11)0.0370 (10)0.0074 (10)0.0070 (9)0.0045 (7)
Geometric parameters (Å, º) top
CL1—C51.7115 (14)N3—C91.3435 (19)
CL2—C61.7087 (14)N3—C141.474 (3)
O1—C11.2497 (15)N4—C151.152 (2)
O2—C41.2386 (16)C9—C101.377 (2)
N1—C71.1554 (18)C9—H91.08 (13)
N2—C81.1577 (17)C10—C111.384 (2)
C1—C61.471 (2)C10—H101.08 (17)
C1—C21.4440 (18)C11—C151.434 (2)
C2—C71.422 (2)C11—C121.380 (2)
C2—C31.3880 (18)C12—C131.384 (2)
C3—C41.452 (2)C12—H121.08 (14)
C3—C81.4250 (19)C13—H131.08 (17)
C4—C51.4633 (19)C14—H14B1.08 (13)
C5—C61.3576 (18)C14—H14C1.08 (8)
N3—C131.340 (2)C14—H14A1.08 (15)
O1—C1—C6122.68 (11)N3—C9—C10120.60 (13)
O1—C1—C2122.28 (11)N3—C9—H9120 (9)
C6—C1—C2115.03 (11)C10—C9—H9120 (2)
C1—C2—C7116.32 (12)C9—C10—C11118.58 (14)
C1—C2—C3122.54 (11)C9—C10—H10120 (2)
C7—C2—C3121.09 (12)C11—C10—H10121 (7)
C4—C3—C8116.93 (12)C15—C11—C12118.76 (14)
C4—C3—C2122.03 (12)C15—C11—C10120.81 (13)
C8—C3—C2121.04 (11)C12—C11—C10120.40 (13)
O2—C4—C5122.36 (11)C13—C12—C11118.59 (14)
O2—C4—C3122.66 (12)C13—C12—H12120 (2)
C5—C4—C3114.94 (11)C11—C12—H12121 (9)
CL1—C5—C6121.39 (10)N3—C13—C12120.40 (15)
CL1—C5—C4115.81 (9)N3—C13—H13120 (7)
C6—C5—C4122.80 (11)C12—C13—H13120 (2)
CL2—C6—C5122.25 (10)N3—C14—H14B109 (2)
CL2—C6—C1115.50 (9)N3—C14—H14C109 (3)
C5—C6—C1122.24 (12)N3—C14—H14A110 (2)
N1—C7—C2179.240 (9)H14B—C14—H14C109 (4)
N2—C8—C3179.146 (10)H14B—C14—H14A109 (11)
C13—N3—C9121.42 (12)H14C—C14—H14A109 (4)
C13—N3—C14118.58 (15)N4—C15—C11176.72 (4)
C9—N3—C14119.98 (14)
CL1—C5—C6—CL20.64 (17)N3—C9—C10—H10180 (4)
CL1—C5—C6—C1179.53 (19)C9—N3—C13—C120.4 (3)
CL1—C5—C4—O23.6 (2)C9—N3—C13—H13179 (4)
CL1—C5—C4—C3174.29 (19)C9—N3—C14—H14B122 (3)
CL2—C6—C5—C4179.3 (2)C9—N3—C14—H14C118 (6)
CL2—C6—C1—O14.8 (2)C9—N3—C14—H14A2 (4)
CL2—C6—C1—C2174.50 (19)C9—C10—C11—C15177.3 (3)
O1—C1—C6—C5176.3 (2)C9—C10—C11—C120.7 (3)
O1—C1—C2—C75.7 (2)H9—C9—N3—C13180 (5)
O1—C1—C2—C3176.8 (2)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.5 (2)H9—C9—C10—C11180 (5)
O2—C4—C3—C84.4 (2)H9—C9—C10—H100 (6)
O2—C4—C3—C2176.0 (2)C10—C9—N3—C130.2 (3)
C1—C6—C5—C40.4 (2)C10—C9—N3—C14178.1 (3)
C1—C2—C3—C41.4 (2)C10—C11—C12—C131.2 (3)
C1—C2—C3—C8178.2 (2)C10—C11—C12—H12179 (4)
C2—C1—C6—C54.5 (3)H10—C10—C11—C153 (5)
C2—C3—C4—C56.1 (2)H10—C10—C11—C12179 (5)
C3—C4—C5—C65.6 (3)C11—C12—C13—H13179 (4)
C3—C2—C1—C63.9 (2)C12—C13—N3—C14178.8 (3)
C4—C3—C2—C7178.8 (2)H12—C12—C13—H131 (6)
C5—C4—C3—C8173.5 (2)H12—C12—C11—C153 (5)
C6—C1—C2—C7173.6 (2)C13—N3—C14—H14B60 (4)
C7—C2—C3—C80.8 (2)C13—N3—C14—H14C60 (6)
N3—C13—C12—C111.1 (3)C13—N3—C14—H14A180 (4)
N3—C13—C12—H12179 (4)C13—C12—C11—C15176.7 (3)
N3—C9—C10—C110.1 (2)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.08 (17)2.41 (15)3.472 (2)166 (2)
C14—H14C···O11.08 (8)2.43 (8)3.440 (2)156 (1)
C10—H10···O1i1.08 (17)2.41 (15)3.2020 (18)129 (9)
C10—H10···O2ii1.08 (17)2.42 (10)3.3305 (19)141 (7)
C12—H12···N1iii1.08 (14)2.63 (16)3.467 (2)133 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+2, z.
(310K) top
Crystal data top
C15H7Cl2N4O2β = 94.709 (2)°
Mr = 346.13V = 1421.47 (4) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.8752 ÅDx = 1.618 Mg m3
b = 10.1004 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.5391 (4) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 99
2812 independent reflectionsk = 013
2812 reflections with > 2.0σ(I)l = 020
θmax = 28.2°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.043Secondary atom site location: difference Fourier map
wR(F2) = 0.043Hydrogen site location: difference Fourier map
S = 0.84Only H-atom coordinates refined
2812 reflectionsWeighting scheme based on measured s.u.'s
224 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20411 (6)0.11365 (4)0.00714 (2)0.03948 (7)
N40.9866 (2)1.20211 (16)0.24776 (7)0.0578 (3)
Cl20.11633 (6)0.28129 (4)0.116826 (19)0.03928 (7)
C150.8369 (3)1.15355 (18)0.23512 (8)0.0442 (3)
O10.13630 (16)0.56639 (10)0.09452 (5)0.03713 (19)
O20.28997 (17)0.27846 (10)0.11754 (5)0.0433 (2)
N10.2990 (2)0.81236 (14)0.00661 (7)0.0471 (3)
N20.4169 (2)0.59810 (14)0.16645 (7)0.0471 (3)
C10.1807 (2)0.49984 (15)0.04685 (7)0.0281 (2)
C20.2473 (2)0.55981 (14)0.01117 (7)0.0272 (2)
C30.2886 (2)0.48655 (14)0.06548 (7)0.0271 (2)
C40.2640 (2)0.34411 (15)0.06814 (8)0.0291 (3)
C50.2122 (2)0.28284 (14)0.00737 (7)0.0276 (4)*
C60.1737 (2)0.35438 (14)0.04605 (7)0.0275 (2)
C70.2758 (2)0.69931 (16)0.00880 (7)0.0320 (3)
C80.3584 (2)0.54888 (15)0.12101 (8)0.0319 (3)
N30.3210 (2)0.95314 (13)0.18330 (7)0.0407 (3)
C90.3532 (3)0.99930 (17)0.24424 (8)0.0404 (3)
H90.246 (2)0.9824 (19)0.279 (9)0.04850
C100.5218 (3)1.06787 (16)0.26303 (8)0.0367 (3)
H100.548 (3)1.1049 (18)0.312 (9)0.04400
C110.6556 (2)1.08800 (15)0.21746 (8)0.0358 (3)
C120.6196 (3)1.04140 (18)0.15442 (9)0.0459 (3)
H120.722 (2)1.058 (2)0.118 (9)0.05505
C130.4493 (3)0.97188 (18)0.13858 (8)0.0456 (4)
H130.420 (3)0.9327 (18)0.090 (9)0.05473
C140.1427 (4)0.8762 (2)0.16434 (12)0.0673 (4)
H14A0.055 (3)0.870 (3)0.205 (9)0.10102
H14B0.061 (4)0.925 (2)0.124 (9)0.10102
H14C0.182 (4)0.778 (9)0.1497 (13)0.10102
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0561 (3)0.0223 (2)0.0406 (3)0.0012 (2)0.0072 (2)0.00051 (17)
N40.0601 (12)0.0654 (11)0.0486 (10)0.0206 (10)0.0081 (9)0.0057 (8)
Cl20.0523 (3)0.0379 (2)0.0285 (2)0.0030 (2)0.00845 (19)0.00595 (17)
C150.0479 (12)0.0457 (11)0.0395 (11)0.0093 (10)0.0074 (10)0.0050 (8)
O10.0501 (7)0.0338 (6)0.0285 (7)0.0005 (6)0.0090 (5)0.0082 (5)
O20.0688 (9)0.0309 (7)0.0318 (7)0.0072 (6)0.0140 (6)0.0048 (5)
N10.0579 (10)0.0231 (8)0.0602 (10)0.0060 (8)0.0047 (8)0.0028 (7)
N20.0569 (10)0.0493 (9)0.0365 (10)0.0089 (8)0.0124 (8)0.0094 (7)
C10.0348 (9)0.0252 (9)0.0247 (10)0.0017 (7)0.0047 (7)0.0021 (7)
C20.0330 (9)0.0217 (8)0.0273 (10)0.0001 (7)0.0045 (7)0.0015 (6)
C30.0326 (9)0.0247 (9)0.0244 (9)0.0018 (7)0.0053 (7)0.0007 (6)
C40.0398 (10)0.0245 (9)0.0238 (10)0.0049 (7)0.0066 (7)0.0006 (7)
C60.0343 (9)0.0257 (9)0.0230 (9)0.0016 (7)0.0049 (7)0.0010 (6)
C70.0374 (10)0.0239 (9)0.0348 (10)0.0015 (8)0.0028 (7)0.0008 (7)
C80.0371 (10)0.0314 (9)0.0280 (11)0.0006 (8)0.0076 (8)0.0041 (7)
N30.0482 (10)0.0337 (8)0.0387 (10)0.0026 (7)0.0056 (7)0.0015 (6)
C90.0423 (12)0.0457 (11)0.0333 (12)0.0002 (9)0.0036 (8)0.0013 (8)
H90.050750.054860.040000.000210.004340.00151
C100.0411 (11)0.0429 (10)0.0259 (11)0.0016 (9)0.0024 (8)0.0035 (8)
H100.049370.051480.031080.001960.002850.00417
C110.0466 (11)0.0315 (9)0.0295 (11)0.0023 (8)0.0049 (8)0.0004 (7)
C120.0562 (13)0.0513 (12)0.0311 (12)0.0011 (10)0.0095 (9)0.0018 (9)
H120.067400.061600.037350.001360.011450.00218
C130.0607 (14)0.0461 (11)0.0290 (11)0.0055 (10)0.0022 (10)0.0090 (8)
H130.072850.055380.034820.006640.002610.01084
C140.0623 (17)0.0563 (14)0.0798 (19)0.0122 (13)0.0164 (12)0.0067 (13)
H14A0.093410.084490.119650.018340.024570.01006
H14B0.093410.084490.119650.018340.024570.01006
H14C0.093410.084490.119650.018340.024570.01006
Geometric parameters (Å, º) top
Cl1—C51.7098 (15)C5—C61.3578 (19)
N4—C151.151 (2)N3—C91.337 (2)
Cl2—C61.7052 (14)N3—C131.338 (2)
C15—C111.431 (2)N3—C141.476 (3)
O1—C11.2460 (16)C9—C101.378 (2)
O2—C41.2373 (17)C9—H91.08 (13)
N1—C71.1533 (19)C10—C111.380 (2)
N2—C81.1583 (18)C10—H101.08 (17)
C1—C61.470 (2)C11—C121.381 (2)
C1—C21.444 (2)C12—C131.381 (3)
C2—C71.423 (2)C12—H121.08 (14)
C2—C31.3871 (19)C13—H131.08 (17)
C3—C41.449 (2)C14—H14C1.08 (8)
C3—C81.421 (2)C14—H14B1.08 (13)
C4—C51.463 (2)C14—H14A1.08 (15)
N4—C15—C11176.98 (4)C13—N3—C14118.25 (16)
O1—C1—C6122.54 (12)N3—C9—C10120.57 (14)
O1—C1—C2122.46 (12)N3—C9—H9120 (9)
C6—C1—C2114.98 (12)C10—C9—H9120 (2)
C1—C2—C7116.06 (12)C9—C10—C11118.45 (14)
C1—C2—C3122.64 (12)C9—C10—H10121 (2)
C7—C2—C3121.26 (12)C11—C10—H10121 (7)
C4—C3—C8117.12 (12)C15—C11—C10120.75 (14)
C4—C3—C2121.93 (12)C15—C11—C12118.75 (15)
C8—C3—C2120.95 (12)C10—C11—C12120.46 (14)
O2—C4—C5122.32 (12)C13—C12—C11118.54 (15)
O2—C4—C3122.59 (12)C13—C12—H12120 (2)
C5—C4—C3115.06 (12)C11—C12—H12121 (9)
Cl1—C5—C6121.41 (10)N3—C13—C12120.28 (15)
Cl1—C5—C4115.81 (10)N3—C13—H13120 (7)
C6—C5—C4122.78 (12)C12—C13—H13120 (2)
Cl2—C6—C5122.18 (10)N3—C14—H14C110 (3)
Cl2—C6—C1115.65 (10)N3—C14—H14B109 (2)
C5—C6—C1122.17 (12)N3—C14—H14A109 (2)
N1—C7—C2179.724 (3)H14C—C14—H14B109 (4)
N2—C8—C3179.010 (12)H14C—C14—H14A109 (4)
C9—N3—C13121.67 (13)H14B—C14—H14A109 (11)
C9—N3—C14120.05 (15)
Cl1—C5—C6—Cl20.40 (17)C7—C2—C3—C80.9 (2)
Cl1—C5—C6—C1179.73 (19)N3—C9—C10—C110.2 (2)
Cl1—C5—C4—O23.8 (2)N3—C9—C10—H10180 (4)
Cl1—C5—C4—C3174.30 (19)N3—C13—C12—C111.5 (3)
Cl2—C6—C5—C4179.2 (2)N3—C13—C12—H12179 (4)
Cl2—C6—C1—O14.2 (2)C9—N3—C13—C120.6 (3)
Cl2—C6—C1—C2174.42 (19)C9—N3—C13—H13180 (4)
C15—C11—C10—C9177.3 (3)C9—N3—C14—H14C118 (6)
C15—C11—C10—H103 (3)C9—N3—C14—H14B122 (3)
C15—C11—C12—C13176.5 (3)C9—N3—C14—H14A2 (4)
C15—C11—C12—H123 (4)C9—C10—C11—C120.7 (3)
O1—C1—C6—C5176.4 (2)H9—C9—N3—C13180 (5)
O1—C1—C2—C75.3 (2)H9—C9—N3—C142 (5)
O1—C1—C2—C3177.1 (2)H9—C9—C10—C11180 (5)
O2—C4—C5—C6176.6 (2)H9—C9—C10—H100 (6)
O2—C4—C3—C84.4 (2)C10—C9—N3—C130.2 (3)
O2—C4—C3—C2175.9 (2)C10—C9—N3—C14178.1 (3)
C1—C6—C5—C40.1 (2)C10—C11—C12—C131.5 (3)
C1—C2—C3—C41.2 (2)C10—C11—C12—H12179 (4)
C1—C2—C3—C8178.4 (2)H10—C10—C11—C12179 (5)
C2—C1—C6—C55.0 (3)C11—C12—C13—H13179 (3)
C2—C3—C4—C56.0 (2)C12—C13—N3—C14179.0 (3)
C3—C4—C5—C65.3 (3)H12—C12—C13—H131 (6)
C3—C2—C1—C64.3 (2)C13—N3—C14—H14C60 (6)
C4—C3—C2—C7178.7 (2)C13—N3—C14—H14B60 (4)
C5—C4—C3—C8173.7 (2)C13—N3—C14—H14A180 (4)
C6—C1—C2—C7173.4 (2)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.08 (17)2.41 (15)3.471 (2)166 (2)
C14—H14C···O11.08 (8)2.43 (8)3.441 (3)156 (1)
C10—H10···O1i1.08 (17)2.41 (15)3.2037 (19)129 (9)
C12—H12···N1ii1.08 (14)2.63 (16)3.463 (2)133 (9)
C10—H10···O2iii1.08 (17)2.41 (10)3.329 (2)141 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z; (iii) x+1/2, y+3/2, z+1/2.
(340K) top
Crystal data top
C15H7Cl2N4O2β = 94.713 (9)°
Mr = 346.13V = 1440.8 (2) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.9337 (8) ÅDx = 1.596 Mg m3
b = 10.1217 (7) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.599 (2) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
2324 independent reflectionsk = 012
2324 reflections with > 2.0σ(I)l = 024
θmax = 25.0°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.042Secondary atom site location: difference Fourier map
wR(F2) = 0.028Hydrogen site location: difference Fourier map
S = 0.41Only H-atom coordinates refined
2324 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20348 (13)0.11422 (3)0.007076 (17)0.04368 (12)
Cl20.11603 (13)0.28151 (3)0.116754 (14)0.04351 (12)
O10.1371 (3)0.56618 (10)0.09418 (4)0.0405 (3)
O20.2896 (4)0.27888 (9)0.11725 (4)0.0462 (4)
N10.3000 (4)0.81082 (12)0.00657 (6)0.0517 (4)
N20.4153 (4)0.59751 (12)0.16610 (5)0.0521 (5)
C10.1818 (4)0.5003 (2)0.04681 (8)0.0317 (4)
C20.2474 (4)0.55884 (12)0.01108 (6)0.0287 (4)
C30.2886 (4)0.4869 (2)0.06492 (9)0.0290 (4)
C40.2637 (4)0.34388 (13)0.06795 (5)0.0317 (4)
C50.2121 (4)0.28383 (19)0.00690 (9)0.0289 (4)
C60.1753 (4)0.35588 (13)0.04621 (6)0.0315 (4)
C70.2760 (5)0.6978 (2)0.00913 (9)0.0358 (4)
C80.3578 (4)0.54788 (13)0.12052 (6)0.0346 (4)
N30.3222 (4)0.95325 (14)0.18336 (7)0.0445 (4)
N40.9834 (5)1.2008 (2)0.24756 (10)0.0648 (6)
C90.3533 (5)0.9987 (2)0.24430 (7)0.0453 (5)
H90.247 (2)0.9823 (19)0.279 (4)0.05431
C100.5219 (5)1.06737 (17)0.26267 (8)0.0417 (5)
H100.548 (6)1.1045 (15)0.312 (4)0.05009
C110.6551 (5)1.08703 (16)0.21680 (7)0.0385 (5)
C120.6201 (5)1.04065 (19)0.15468 (7)0.0490 (6)
H120.722 (2)1.057 (2)0.118 (4)0.05877
C130.4490 (6)0.97181 (18)0.13896 (9)0.0508 (6)
H130.420 (6)0.9327 (16)0.090 (4)0.06096
C140.1455 (7)0.8768 (3)0.16461 (11)0.0765 (7)
H14A0.063 (4)0.866 (3)0.206 (4)0.11474
H14B0.184 (7)0.781 (4)0.1476 (12)0.11474
H14C0.060 (5)0.928 (3)0.126 (4)0.11474
C150.8353 (5)1.1522 (2)0.23493 (11)0.0492 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0589 (5)0.02590 (16)0.04673 (19)0.0015 (4)0.0075 (4)0.00038 (16)
Cl20.0559 (5)0.04296 (18)0.03240 (15)0.0035 (4)0.0081 (4)0.00677 (12)
O10.0537 (13)0.0388 (6)0.0300 (5)0.0008 (11)0.0094 (11)0.0077 (4)
O20.0712 (16)0.0353 (5)0.0337 (4)0.0073 (12)0.0132 (11)0.0050 (4)
N10.0569 (18)0.0279 (7)0.0706 (9)0.0069 (15)0.0062 (16)0.0065 (7)
N20.0609 (19)0.0552 (7)0.0416 (6)0.0071 (16)0.0130 (15)0.0105 (5)
C10.0355 (16)0.0320 (10)0.0276 (9)0.0015 (14)0.0033 (13)0.0043 (8)
C20.0313 (16)0.0218 (5)0.0327 (6)0.0028 (13)0.0009 (14)0.0007 (5)
C30.0335 (16)0.0267 (10)0.0270 (9)0.0019 (13)0.0036 (13)0.0006 (7)
C40.0417 (16)0.0270 (7)0.0268 (6)0.0063 (14)0.0038 (14)0.0008 (5)
C50.0352 (16)0.0181 (8)0.0337 (8)0.0029 (13)0.0040 (14)0.0008 (7)
C60.0355 (16)0.0311 (7)0.0284 (6)0.0018 (14)0.0049 (14)0.0029 (6)
C70.0341 (16)0.0271 (10)0.0461 (11)0.0013 (15)0.0035 (15)0.0013 (8)
C80.0385 (16)0.0359 (7)0.0298 (6)0.0000 (15)0.0063 (14)0.0033 (5)
N30.0511 (17)0.0364 (8)0.0442 (8)0.0042 (14)0.0066 (14)0.0001 (7)
N40.065 (2)0.0750 (14)0.0550 (9)0.021 (2)0.0084 (18)0.0076 (9)
C90.0447 (19)0.0532 (10)0.0376 (9)0.0022 (18)0.0022 (16)0.0003 (9)
H90.053690.063840.045160.002660.002580.00036
C100.0471 (19)0.0489 (10)0.0291 (9)0.0011 (18)0.0026 (16)0.0024 (7)
H100.056540.058740.034860.001370.003070.00286
C110.0453 (19)0.0374 (9)0.0331 (9)0.0024 (16)0.0047 (16)0.0016 (7)
C120.064 (2)0.0543 (10)0.0296 (9)0.001 (2)0.0087 (17)0.0049 (8)
H120.076680.065110.035470.001080.010420.00587
C130.071 (2)0.0445 (11)0.0358 (10)0.007 (2)0.0040 (19)0.0090 (9)
H130.084830.053390.043010.008890.004750.01081
C140.067 (3)0.0684 (14)0.0895 (15)0.018 (3)0.019 (2)0.0052 (14)
H14A0.101110.102540.134250.026590.028470.00784
H14B0.101110.102540.134250.026590.028470.00784
H14C0.101110.102540.134250.026590.028470.00784
C150.047 (2)0.0533 (15)0.0469 (12)0.0091 (19)0.0031 (19)0.0076 (11)
Geometric parameters (Å, º) top
Cl1—C51.718 (2)N3—C91.338 (2)
Cl2—C61.7162 (15)N3—C141.473 (5)
O1—C11.242 (2)N4—C151.149 (4)
O2—C41.2355 (16)C9—C101.386 (4)
N1—C71.156 (3)C9—H91.08 (6)
N2—C81.164 (2)C10—C111.389 (4)
C1—C61.463 (2)C10—H101.08 (7)
C1—C21.438 (3)C11—C151.435 (4)
C2—C71.421 (3)C11—C121.366 (2)
C2—C31.376 (2)C12—C131.391 (5)
C3—C41.458 (2)C12—H121.08 (6)
C3—C81.419 (3)C13—H131.08 (7)
C4—C51.467 (2)C14—H14A1.08 (7)
C5—C61.356 (2)C14—H14C1.08 (6)
N3—C131.333 (4)C14—H14B1.08 (4)
O1—C1—C6122.26 (15)N3—C9—C10119.7 (2)
O1—C1—C2123.15 (15)N3—C9—H9120 (4)
C6—C1—C2114.58 (15)C10—C9—H9120 (1)
C1—C2—C7115.92 (15)C9—C10—C11118.6 (2)
C1—C2—C3123.42 (15)C9—C10—H10120 (2)
C7—C2—C3120.61 (15)C11—C10—H10121 (3)
C4—C3—C8116.35 (15)C15—C11—C12119.0 (2)
C4—C3—C2121.89 (14)C15—C11—C10120.1 (2)
C8—C3—C2121.76 (15)C12—C11—C10120.8 (2)
O2—C4—C5123.09 (12)C13—C12—C11118.2 (2)
O2—C4—C3122.62 (12)C13—C12—H12121 (1)
C5—C4—C3114.25 (14)C11—C12—H12121 (4)
Cl1—C5—C6122.02 (12)N3—C13—C12120.6 (3)
Cl1—C5—C4115.03 (12)N3—C13—H13120 (4)
C6—C5—C4122.94 (14)C12—C13—H13119 (2)
Cl2—C6—C5121.40 (12)N3—C14—H14A109 (2)
Cl2—C6—C1116.14 (11)N3—C14—H14C110 (2)
C5—C6—C1122.46 (13)N3—C14—H14B110 (2)
N1—C7—C2178.998 (14)H14A—C14—H14C109 (5)
N2—C8—C3179.654 (7)H14A—C14—H14B109 (3)
C13—N3—C9122.07 (19)H14C—C14—H14B109 (3)
C13—N3—C14118.4 (3)N4—C15—C11176.97 (5)
C9—N3—C14119.5 (2)
Cl1—C5—C6—Cl20.4 (7)N3—C9—C10—H10180 (5)
Cl1—C5—C6—C1179.8 (8)C9—N3—C13—C120.3 (8)
Cl1—C5—C4—O23.6 (9)C9—N3—C13—H13179 (6)
Cl1—C5—C4—C3174.4 (8)C9—N3—C14—H14A1 (5)
Cl2—C6—C5—C4179.8 (9)C9—N3—C14—H14C119 (5)
Cl2—C6—C1—O13.7 (9)C9—N3—C14—H14B121 (7)
Cl2—C6—C1—C2175.1 (8)C9—C10—C11—C15177.1 (8)
O1—C1—C6—C5176 (1)C9—C10—C11—C120.5 (8)
O1—C1—C2—C75.6 (9)H9—C9—N3—C13180 (6)
O1—C1—C2—C3177 (1)H9—C9—N3—C142 (6)
O2—C4—C5—C6177 (1)H9—C9—C10—C11180 (6)
O2—C4—C3—C84 (1)H9—C9—C10—H100 (8)
O2—C4—C3—C2176 (1)C10—C9—N3—C130.1 (8)
C1—C6—C5—C40.8 (10)C10—C9—N3—C14178.1 (8)
C1—C2—C3—C42 (1)C10—C11—C12—C130.8 (8)
C1—C2—C3—C8178 (1)C10—C11—C12—H12179 (5)
C2—C1—C6—C55 (1)H10—C10—C11—C153 (7)
C2—C3—C4—C56 (1)H10—C10—C11—C12180 (7)
C3—C4—C5—C65 (1)C11—C12—C13—H13179 (5)
C3—C2—C1—C64.3 (10)C12—C13—N3—C14178.5 (9)
C4—C3—C2—C7179.0 (10)H12—C12—C13—H131 (8)
C5—C4—C3—C8174 (1)H12—C12—C11—C154 (6)
C6—C1—C2—C7173.2 (9)C13—N3—C14—H14A177 (6)
C7—C2—C3—C81 (1)C13—N3—C14—H14C63 (5)
N3—C13—C12—C110.7 (7)C13—N3—C14—H14B57 (7)
N3—C13—C12—H12179 (5)C13—C12—C11—C15176.8 (9)
N3—C9—C10—C110.0 (7)H13—C13—N3—C141 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.08 (7)2.43 (7)3.493 (2)166 (1)
C14—H14B···O11.08 (4)2.44 (4)3.461 (3)157 (2)
C12—H12···N1i1.08 (6)2.66 (7)3.486 (2)133 (4)
Symmetry code: (i) x+1, y+2, z.
(370K) top
Crystal data top
C15H7Cl2N4O2β = 94.7000°
Mr = 346.13V = 1448.86 (19) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.9626 (1) ÅDx = 1.587 Mg m3
b = 10.1312 (9) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.609 (2) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
2387 independent reflectionsk = 012
2387 reflections with > 2.0σ(I)l = 024
θmax = 26.4°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.057Secondary atom site location: difference Fourier map
wR(F2) = 0.054Hydrogen site location: difference Fourier map
S = 1.33Only H-atom coordinates refined
2387 reflectionsWeighting scheme based on measured s.u.'s
229 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20323 (9)0.11457 (6)0.00709 (3)0.05052 (11)
Cl20.11645 (9)0.28187 (6)0.11672 (3)0.04990 (11)
O10.1379 (2)0.56592 (15)0.09479 (7)0.0480 (3)
O20.2902 (3)0.27953 (16)0.11703 (7)0.0553 (3)
N10.2995 (3)0.8115 (2)0.00643 (11)0.0592 (4)
N20.4157 (3)0.5980 (2)0.16549 (11)0.0584 (4)
C10.1818 (3)0.5002 (2)0.04707 (11)0.0348 (4)
C20.2480 (3)0.5596 (2)0.01074 (11)0.0335 (4)
C30.2897 (3)0.4870 (2)0.06500 (10)0.0336 (3)
C40.2645 (3)0.3445 (2)0.06768 (11)0.0370 (4)
C50.2125 (3)0.2838 (2)0.00734 (10)0.0359 (3)
C60.1744 (3)0.3549 (2)0.04615 (11)0.0349 (4)
C70.2764 (3)0.6987 (2)0.00873 (11)0.0411 (4)
C80.3579 (3)0.5491 (2)0.12019 (11)0.0403 (4)
N30.3220 (3)0.9528 (2)0.18335 (10)0.0513 (4)
N40.9833 (4)1.2007 (3)0.24715 (11)0.0740 (5)
C90.3536 (4)0.9997 (3)0.24435 (13)0.0515 (5)
H90.248 (3)0.984 (3)0.279 (14)0.06180
C100.5222 (4)1.0674 (2)0.26279 (11)0.0459 (4)
H100.549 (4)1.104 (3)0.312 (14)0.05513
C110.6547 (4)1.0872 (2)0.21730 (12)0.0444 (4)
C120.6200 (4)1.0401 (3)0.15470 (13)0.0595 (6)
H120.723 (3)1.055 (3)0.119 (14)0.07141
C130.4491 (5)0.9716 (3)0.13878 (12)0.0589 (6)
H130.419 (4)0.933 (3)0.090 (14)0.07066
C140.1440 (5)0.8761 (4)0.1650 (2)0.0861 (7)
H14A0.060 (5)0.867 (5)0.206 (14)0.12911
H14B0.183 (6)0.779 (14)0.149 (2)0.12911
H14C0.060 (5)0.926 (4)0.126 (14)0.12911
C150.8341 (4)1.1526 (3)0.23482 (13)0.0571 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0729 (5)0.0274 (3)0.0521 (4)0.0022 (3)0.0097 (3)0.0011 (3)
Cl20.0668 (4)0.0471 (4)0.0366 (3)0.0034 (3)0.0093 (3)0.0079 (3)
O10.0682 (12)0.0399 (10)0.0372 (9)0.0008 (9)0.0116 (8)0.0083 (8)
O20.0901 (13)0.0376 (10)0.0402 (10)0.0094 (9)0.0176 (9)0.0050 (8)
N10.0742 (16)0.0300 (13)0.0730 (16)0.0060 (12)0.0043 (12)0.0048 (12)
N20.0721 (15)0.0592 (15)0.0457 (13)0.0101 (12)0.0164 (12)0.0089 (12)
C10.0422 (14)0.0332 (13)0.0295 (13)0.0035 (11)0.0066 (11)0.0023 (11)
C20.0388 (14)0.0267 (11)0.0347 (13)0.0008 (10)0.0023 (11)0.0019 (10)
C30.0390 (13)0.0312 (12)0.0312 (12)0.0028 (10)0.0070 (10)0.0005 (10)
C40.0511 (15)0.0296 (12)0.0310 (13)0.0082 (11)0.0080 (11)0.0015 (10)
C50.0454 (14)0.0288 (11)0.0336 (13)0.0036 (11)0.0043 (11)0.0009 (11)
C60.0414 (14)0.0328 (13)0.0306 (13)0.0025 (10)0.0038 (10)0.0004 (10)
C70.0476 (15)0.0289 (14)0.0467 (14)0.0005 (12)0.0032 (11)0.0020 (12)
C80.0487 (15)0.0400 (14)0.0331 (13)0.0000 (11)0.0097 (12)0.0059 (12)
N30.0619 (15)0.0417 (12)0.0486 (14)0.0044 (11)0.0055 (12)0.0022 (11)
N40.0780 (19)0.0815 (18)0.0628 (16)0.0245 (16)0.0070 (14)0.0112 (14)
C90.0530 (18)0.0566 (16)0.0448 (17)0.0017 (15)0.0035 (13)0.0035 (14)
H90.063600.067980.053720.002100.004250.00417
C100.0540 (17)0.0543 (15)0.0297 (14)0.0018 (14)0.0043 (13)0.0027 (12)
H100.064800.065150.035600.002210.005120.00325
C110.0591 (17)0.0377 (14)0.0363 (14)0.0017 (12)0.0033 (13)0.0016 (11)
C120.076 (2)0.0645 (19)0.0390 (17)0.0044 (16)0.0115 (15)0.0054 (15)
H120.091330.077420.046810.005330.013810.00654
C130.082 (2)0.0573 (18)0.0362 (16)0.0101 (16)0.0047 (16)0.0123 (14)
H130.097800.068800.043490.012180.005590.01471
C140.078 (3)0.073 (2)0.103 (3)0.017 (2)0.018 (2)0.008 (2)
H14A0.117300.109380.154310.026130.027270.01160
H14B0.117300.109380.154310.026130.027270.01160
H14C0.117300.109380.154310.026130.027270.01160
C150.060 (2)0.0595 (18)0.0518 (17)0.0121 (16)0.0059 (15)0.0052 (14)
Geometric parameters (Å, º) top
Cl1—C51.715 (2)N3—C91.345 (3)
Cl2—C61.709 (2)N3—C141.485 (4)
O1—C11.246 (2)N4—C151.157 (3)
O2—C41.237 (2)C9—C101.385 (4)
N1—C71.155 (3)C9—H91.1 (2)
N2—C81.158 (3)C10—C111.383 (3)
C1—C61.473 (3)C10—H101.1 (3)
C1—C21.444 (3)C11—C151.433 (3)
C2—C71.423 (3)C11—C121.378 (3)
C2—C31.389 (3)C12—C131.393 (4)
C3—C41.454 (3)C12—H121.1 (2)
C3—C81.416 (3)C13—H131.1 (3)
C4—C51.459 (3)C14—H14B1.08 (13)
C5—C61.361 (3)C14—H14C1.1 (2)
N3—C131.340 (3)C14—H14A1.1 (2)
O1—C1—C6122.25 (18)N3—C9—C10120.1 (2)
O1—C1—C2122.93 (17)N3—C9—H9120 (14)
C6—C1—C2114.80 (18)C10—C9—H9120 (3)
C1—C2—C7116.24 (18)C9—C10—C11118.9 (2)
C1—C2—C3123.03 (17)C9—C10—H10120 (3)
C7—C2—C3120.69 (18)C11—C10—H10121 (11)
C4—C3—C8117.27 (18)C15—C11—C12118.6 (2)
C4—C3—C2121.60 (18)C15—C11—C10120.8 (2)
C8—C3—C2121.13 (18)C12—C11—C10120.6 (2)
O2—C4—C5122.61 (18)C13—C12—C11118.3 (2)
O2—C4—C3122.31 (18)C13—C12—H12120 (3)
C5—C4—C3115.06 (18)C11—C12—H12121 (14)
Cl1—C5—C6121.10 (15)N3—C13—C12120.6 (2)
Cl1—C5—C4115.85 (14)N3—C13—H13120 (11)
C6—C5—C4123.05 (18)C12—C13—H13120 (3)
Cl2—C6—C5122.38 (15)N3—C14—H14B109 (4)
Cl2—C6—C1115.59 (15)N3—C14—H14C109 (4)
C5—C6—C1122.03 (18)N3—C14—H14A110 (3)
N1—C7—C2179.320 (13)H14B—C14—H14C110 (7)
N2—C8—C3178.74 (2)H14B—C14—H14A109 (6)
C13—N3—C9121.6 (2)H14C—C14—H14A109 (16)
C13—N3—C14118.9 (2)N4—C15—C11176.58 (7)
C9—N3—C14119.5 (2)
Cl1—C5—C6—Cl20.34 (16)N3—C9—C10—H10179 (4)
Cl1—C5—C6—C1179.93 (18)C9—N3—C13—C120.4 (3)
Cl1—C5—C4—O23.8 (2)C9—N3—C13—H13180 (4)
Cl1—C5—C4—C3174.37 (18)C9—N3—C14—H14B121 (6)
Cl2—C6—C5—C4179.2 (2)C9—N3—C14—H14C119 (4)
Cl2—C6—C1—O14.0 (2)C9—N3—C14—H14A1 (4)
Cl2—C6—C1—C2174.60 (18)C9—C10—C11—C15177.8 (3)
O1—C1—C6—C5176.4 (2)C9—C10—C11—C120.2 (3)
O1—C1—C2—C75.0 (2)H9—C9—N3—C13179 (5)
O1—C1—C2—C3177.4 (2)H9—C9—N3—C142 (5)
O2—C4—C5—C6176.6 (2)H9—C9—C10—C11180 (5)
O2—C4—C3—C84.0 (2)H9—C9—C10—H101 (6)
O2—C4—C3—C2175.7 (2)C10—C9—N3—C131.1 (3)
C1—C6—C5—C40.3 (2)C10—C9—N3—C14177.7 (3)
C1—C2—C3—C41.6 (2)C10—C11—C12—C130.4 (3)
C1—C2—C3—C8178.8 (2)C10—C11—C12—H12180 (4)
C2—C1—C6—C55.0 (2)H10—C10—C11—C152 (5)
C2—C3—C4—C56.1 (2)H10—C10—C11—C12180 (5)
C3—C4—C5—C65.2 (2)C11—C12—C13—H13180 (4)
C3—C2—C1—C64.1 (2)C12—C13—N3—C14178.4 (3)
C4—C3—C2—C7179.1 (2)H12—C12—C13—H130 (6)
C5—C4—C3—C8174.2 (2)H12—C12—C11—C152 (5)
C6—C1—C2—C7173.5 (2)C13—N3—C14—H14B58 (6)
C7—C2—C3—C81.3 (2)C13—N3—C14—H14C62 (4)
N3—C13—C12—C110.3 (3)C13—N3—C14—H14A178 (4)
N3—C13—C12—H12180 (4)C13—C12—C11—C15177.2 (3)
N3—C9—C10—C111.0 (2)H13—C13—N3—C142 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (3)2.4 (2)3.487 (3)166 (3)
C14—H14B···O11.08 (13)2.44 (12)3.458 (4)157 (2)
C12—H12···N1i1.1 (2)2.7 (2)3.492 (4)132 (14)
Symmetry code: (i) x+1, y+2, z.
(0.25GPa) top
Crystal data top
C15H7Cl2N4O2β = 94.635 (6)°
Mr = 346.13V = 1409.12 (8) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.8312 (4) ÅDx = 1.632 Mg m3
b = 10.0839 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.5232 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 99
1702 independent reflectionsk = 08
1702 reflections with > 2.0σ(I)l = 024
θmax = 28.3°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.130Secondary atom site location: difference Fourier map
wR(F2) = 0.080Hydrogen site location: difference Fourier map
S = 0.73Only H-atom coordinates refined
1702 reflectionsWeighting scheme based on measured s.u.'s
227 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20485 (18)0.1131 (2)0.00723 (6)0.038 (2)
Cl20.11722 (18)0.2811 (2)0.11705 (6)0.037 (2)
O10.1360 (4)0.5670 (5)0.09424 (17)0.035 (2)
O20.2913 (5)0.2781 (6)0.11789 (17)0.041 (2)
N10.2982 (11)0.8122 (9)0.0067 (3)0.050 (3)
N20.4176 (6)0.5981 (7)0.1669 (2)0.047 (3)
N30.3189 (6)0.9539 (7)0.1826 (2)0.038 (3)
N40.9903 (6)1.2035 (7)0.2481 (2)0.060 (3)
C10.1811 (8)0.5009 (10)0.0467 (3)0.032 (3)
C20.2474 (8)0.5577 (9)0.0117 (3)0.025 (3)
C30.2905 (8)0.4889 (9)0.0654 (3)0.028 (3)
C40.2650 (8)0.3439 (10)0.0680 (3)0.032 (3)
C50.2139 (7)0.2848 (9)0.0075 (3)0.027 (8)*
C60.1743 (8)0.3530 (9)0.0456 (2)0.029 (3)
C70.2752 (11)0.6976 (12)0.0096 (3)0.036 (3)
C80.3578 (7)0.5478 (8)0.1212 (3)0.028 (3)
C90.3527 (8)1.0001 (8)0.2445 (3)0.037 (3)
H90.245 (6)0.984 (8)0.280 (9)0.04449
C100.5205 (8)1.0682 (8)0.2629 (2)0.032 (3)
H100.547 (7)1.103 (7)0.313 (9)0.03878
C110.6552 (8)1.0881 (8)0.2176 (3)0.033 (3)
C120.6209 (8)1.0429 (8)0.1545 (3)0.042 (3)
H120.725 (7)1.060 (8)0.118 (9)0.05007
C130.4511 (9)0.9726 (8)0.1384 (3)0.044 (3)
H130.423 (8)0.933 (7)0.089 (9)0.05300
C140.1412 (11)0.8748 (12)0.1643 (4)0.062 (3)
H14A0.053 (9)0.869 (11)0.205 (9)0.09299
H14B0.059 (9)0.923 (9)0.124 (9)0.09299
H14C0.181 (13)0.776 (9)0.150 (5)0.09299
C150.8383 (9)1.1544 (9)0.2354 (3)0.044 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.052 (8)0.023 (9)0.039 (8)0.0004 (11)0.0079 (10)0.0015 (8)
Cl20.049 (8)0.034 (9)0.028 (8)0.0029 (10)0.0093 (9)0.0072 (7)
O10.051 (8)0.026 (10)0.028 (9)0.001 (3)0.0077 (19)0.007 (2)
O20.067 (9)0.032 (11)0.026 (9)0.011 (3)0.011 (2)0.003 (2)
N10.054 (9)0.045 (14)0.052 (10)0.000 (6)0.007 (3)0.011 (4)
N20.052 (9)0.052 (12)0.038 (9)0.001 (4)0.013 (3)0.006 (3)
N30.050 (9)0.025 (12)0.037 (9)0.001 (3)0.001 (3)0.002 (3)
N40.052 (9)0.087 (13)0.041 (9)0.023 (4)0.006 (3)0.006 (3)
C10.032 (9)0.045 (14)0.020 (9)0.010 (5)0.003 (3)0.003 (3)
C20.032 (9)0.010 (14)0.033 (10)0.003 (4)0.009 (3)0.001 (3)
C30.032 (9)0.027 (14)0.026 (9)0.003 (4)0.011 (3)0.003 (3)
C40.037 (9)0.033 (14)0.025 (9)0.011 (5)0.004 (3)0.000 (3)
C60.031 (9)0.030 (13)0.026 (9)0.004 (4)0.007 (3)0.001 (3)
C70.035 (9)0.034 (17)0.039 (9)0.008 (7)0.001 (3)0.009 (5)
C80.035 (9)0.025 (12)0.024 (9)0.005 (4)0.010 (3)0.005 (3)
C90.040 (9)0.034 (13)0.038 (10)0.001 (4)0.014 (3)0.000 (3)
H90.048490.041010.046090.000940.016830.00060
C100.036 (9)0.039 (13)0.023 (9)0.003 (4)0.003 (3)0.001 (3)
H100.043250.046220.027060.003790.003880.00079
C110.043 (9)0.030 (13)0.026 (9)0.006 (4)0.006 (3)0.003 (3)
C120.052 (9)0.043 (14)0.031 (10)0.008 (4)0.010 (3)0.008 (3)
H120.062570.051780.037180.009230.012100.00950
C130.057 (10)0.051 (13)0.025 (9)0.010 (5)0.002 (3)0.007 (4)
H130.068070.061000.029620.011820.002110.00880
C140.060 (10)0.044 (15)0.080 (11)0.017 (6)0.010 (4)0.012 (6)
H14A0.089550.065430.120110.026040.015330.01851
H14B0.089550.065430.120110.026040.015330.01851
H14C0.089550.065430.120110.026040.015330.01851
C150.049 (9)0.050 (13)0.036 (9)0.004 (5)0.007 (3)0.009 (3)
Geometric parameters (Å, º) top
Cl1—C51.733 (9)C3—C81.401 (8)
Cl2—C61.709 (6)C4—C51.445 (8)
O1—C11.241 (7)C5—C61.335 (8)
O2—C41.245 (7)C9—C101.363 (8)
N1—C71.167 (12)C9—H91.08 (13)
N2—C81.167 (6)C10—C111.374 (7)
N3—C131.343 (7)C10—H101.08 (17)
N3—C91.355 (7)C11—C151.439 (8)
N3—C141.475 (10)C11—C121.376 (8)
N4—C151.161 (7)C12—C131.377 (9)
C1—C61.492 (11)C12—H121.08 (14)
C1—C21.433 (8)C13—H131.08 (17)
C2—C71.424 (12)C14—H14C1.08 (9)
C2—C31.355 (8)C14—H14A1.08 (16)
C3—C41.473 (11)C14—H14B1.08 (14)
C13—N3—C9120.7 (4)N3—C9—C10120.6 (5)
C13—N3—C14119.2 (5)N3—C9—H9120 (9)
C9—N3—C14119.9 (5)C10—C9—H9120 (3)
O1—C1—C6122.6 (6)C9—C10—C11118.6 (5)
O1—C1—C2123.9 (5)C9—C10—H10120 (4)
C6—C1—C2113.5 (6)C11—C10—H10121 (7)
C1—C2—C7114.9 (7)C15—C11—C10120.7 (5)
C1—C2—C3125.4 (5)C15—C11—C12118.1 (5)
C7—C2—C3119.7 (7)C10—C11—C12121.1 (5)
C4—C3—C8115.9 (6)C13—C12—C11118.2 (5)
C4—C3—C2120.4 (7)C13—C12—H12120 (3)
C8—C3—C2123.7 (5)C11—C12—H12122 (9)
O2—C4—C5123.2 (5)N3—C13—C12120.7 (5)
O2—C4—C3122.3 (6)N3—C13—H13120 (7)
C5—C4—C3114.4 (6)C12—C13—H13120 (4)
Cl1—C5—C6120.2 (6)N3—C14—H14C110 (5)
Cl1—C5—C4115.2 (6)N3—C14—H14A109 (4)
C6—C5—C4124.6 (5)N3—C14—H14B109 (5)
Cl2—C6—C5123.9 (4)H14C—C14—H14A110 (8)
Cl2—C6—C1114.9 (4)H14C—C14—H14B109 (8)
C5—C6—C1121.3 (7)H14A—C14—H14B109 (11)
N1—C7—C2178.84 (6)N4—C15—C11176.85 (16)
N2—C8—C3178.45 (8)
Cl1—C5—C6—Cl21.2 (5)C7—C2—C3—C82 (1)
Cl1—C5—C6—C1180.0 (6)C9—N3—C13—C122 (1)
Cl1—C5—C4—O23.5 (6)C9—N3—C13—H13179 (6)
Cl1—C5—C4—C3174.4 (6)C9—N3—C14—H14C117 (7)
Cl2—C6—C5—C4179.1 (7)C9—N3—C14—H14A3 (8)
Cl2—C6—C1—O14.6 (7)C9—N3—C14—H14B123 (6)
Cl2—C6—C1—C2174.4 (7)C9—C10—C11—C15177 (1)
O1—C1—C6—C5176.5 (8)C9—C10—C11—C121 (1)
O1—C1—C2—C75.3 (8)H9—C9—N3—C13180 (9)
O1—C1—C2—C3177.3 (8)H9—C9—N3—C144 (9)
O2—C4—C5—C6176.2 (8)H9—C9—C10—C11180 (9)
O2—C4—C3—C83.7 (8)H9—C9—C10—H102 (11)
O2—C4—C3—C2175.5 (8)C10—C9—N3—C131 (1)
N3—C13—C12—C113 (1)C10—C9—N3—C14177 (1)
N3—C13—C12—H12178 (7)C10—C11—C12—C132 (1)
N3—C9—C10—C111 (1)C10—C11—C12—H12179 (7)
N3—C9—C10—H10179 (7)H10—C10—C11—C151 (8)
C1—C6—C5—C40.4 (7)H10—C10—C11—C12180 (8)
C1—C2—C3—C41.9 (9)C11—C12—C13—H13178 (6)
C1—C2—C3—C8179.0 (9)C12—C13—N3—C14178 (1)
C2—C1—C6—C54.5 (9)H12—C12—C13—H131 (11)
C2—C3—C4—C56.6 (9)H12—C12—C11—C152 (8)
C3—C4—C5—C65.9 (8)C13—N3—C14—H14C59 (6)
C3—C2—C1—C63.7 (8)C13—N3—C14—H14A179 (8)
C4—C3—C2—C7179.2 (8)C13—N3—C14—H14B61 (6)
C5—C4—C3—C8174.3 (9)C13—C12—C11—C15176 (1)
C6—C1—C2—C7173.7 (7)H13—C13—N3—C143 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.08 (17)2.42 (15)3.475 (9)166 (2)
C14—H14C···O11.08 (9)2.41 (9)3.420 (11)156 (3)
C10—H10···O1i1.08 (17)2.40 (16)3.201 (6)130 (9)
C13—H13···Cl1ii1.08 (17)3.00 (12)3.600 (6)116 (7)
C12—H12···N1iii1.08 (14)2.62 (16)3.451 (9)133 (9)
C10—H10···O2iv1.08 (17)2.42 (11)3.328 (7)141 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1/2, y+3/2, z+1/2.
(0.49GPa) top
Crystal data top
C15H7Cl2N4O2β = 94.589 (4)°
Mr = 346.13V = 1381.77 (6) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.7445 (3) ÅDx = 1.664 Mg m3
b = 10.0486 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.4539 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
1716 independent reflectionsk = 08
1716 reflections with > 2.0σ(I)l = 025
θmax = 28.2°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.131Secondary atom site location: difference Fourier map
wR(F2) = 0.096Hydrogen site location: difference Fourier map
S = 1.80Only H-atom coordinates refined
1716 reflectionsWeighting scheme based on measured s.u.'s
93 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20657 (18)0.1121 (2)0.00740 (6)0.03628
Cl20.11952 (18)0.2805 (2)0.11755 (6)0.03485
O10.1369 (4)0.5668 (5)0.09428 (15)0.03201
O20.2914 (5)0.2764 (5)0.11883 (16)0.03561
N10.2970 (6)0.8162 (7)0.0075 (2)0.04287
N20.4184 (5)0.5990 (6)0.1685 (2)0.03860
N30.3167 (5)0.9536 (6)0.1826 (2)0.03480
N40.9948 (6)1.2075 (7)0.2490 (2)0.04994
C10.1831 (6)0.4991 (8)0.0475 (2)0.02614
C20.2475 (6)0.5593 (8)0.0117 (2)0.02527
C30.2892 (6)0.4879 (8)0.0654 (2)0.02423
C40.2681 (7)0.3437 (8)0.0683 (3)0.02953
C50.2141 (6)0.2821 (8)0.0084 (2)0.02873
C60.1757 (6)0.3522 (8)0.0461 (2)0.02451
C70.2771 (7)0.6994 (8)0.0097 (2)0.02381
C80.3593 (6)0.5476 (7)0.1221 (2)0.02552
C90.3496 (7)1.0007 (7)0.2442 (2)0.02693
H90.240 (5)0.983 (7)0.279 (16)0.03232
C100.5210 (7)1.0705 (8)0.2626 (2)0.03425
H100.546 (7)1.107 (7)0.312 (16)0.04110
C110.6584 (7)1.0892 (8)0.2178 (2)0.03269
C120.6220 (7)1.0455 (8)0.1542 (3)0.03901
H120.729 (6)1.061 (7)0.118 (16)0.04682
C130.4518 (8)0.9763 (8)0.1385 (2)0.03989
H130.422 (7)0.939 (6)0.089 (16)0.04787
C140.1342 (10)0.8721 (12)0.1619 (4)0.05967
H14A0.134 (9)0.845 (9)0.111 (16)0.08951
H14B0.136 (11)0.783 (5)0.191 (16)0.08951
H14C0.002 (16)0.929 (7)0.169 (3)0.08951
C150.8418 (8)1.1548 (8)0.2364 (2)0.03708
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.048000.024600.0368000.006800.00120
Cl20.047200.031500.026900.002100.009400.00590
O10.041900.029000.026000.001800.008200.00620
O20.055700.024000.028000.006000.008700.00470
N10.046000.034000.049000.009000.006200.00300
N20.046000.031000.040000.004000.010800
N30.038000.031000.034000.003000.005800.00180
N40.053000.059000.039000.013000.011000.00500
C10.022000.035000.021000.001000.000900.00100
C20.023000.025000.028000.005000.003300.00200
C30.022000.026000.025000.005000.003800.00100
C40.028000.030000.031000.004000.004900.00200
C50.025600.030000.031000.004000.004900.00200
C60.027000.022000.025000.005000.005000.00300
C70.024900.022000.025000.005000.005000.00300
C80.030000.020000.0270000.005000.00200
C90.034200.020000.0270000.005000.00200
H90.041040.024000.0324000.006000.00240
C100.039000.046000.018000.005000.003900.00100
H100.046800.055200.021600.006000.004680.00120
C110.037000.034000.027000.002000.002100.00500
C120.043000.042000.033000.003000.009000
H120.051600.050400.039600.003600.010800
C130.053000.041000.025000.008000.001000.00100
H130.063600.049200.030000.009600.001200.00120
C140.052000.058000.066000.012000.014000.00100
H14A0.078000.087000.099000.018000.021000.00150
H14B0.078000.087000.099000.018000.021000.00150
H14C0.078000.087000.099000.018000.021000.00150
C150.050000.035000.028000.008000.014000.00400
Geometric parameters (Å, º) top
Cl1—C51.709 (8)C3—C81.420 (7)
Cl2—C61.698 (5)C4—C51.445 (7)
O1—C11.234 (6)C5—C61.362 (8)
O2—C41.255 (6)C9—C101.378 (7)
N1—C71.181 (9)C9—H91.1 (2)
N2—C81.178 (6)C10—C111.368 (6)
N3—C91.347 (6)C10—H101.1 (3)
N3—C131.352 (6)C11—C151.426 (7)
N3—C141.511 (9)C11—C121.375 (7)
N4—C151.170 (6)C12—C131.358 (8)
C1—C61.477 (9)C12—H121.1 (2)
C1—C21.451 (7)C13—H131.1 (3)
C2—C71.422 (9)C14—H14A1.1 (3)
C2—C31.360 (8)C14—H14C1.08 (10)
C3—C41.457 (9)C14—H14B1.08 (19)
C9—N3—C13119.7 (4)N3—C9—C10120.4 (4)
C9—N3—C14121.4 (5)N3—C9—H9119 (16)
C13—N3—C14118.8 (5)C10—C9—H9120 (4)
O1—C1—C6123.7 (5)C9—C10—C11119.1 (4)
O1—C1—C2121.9 (4)C9—C10—H10120 (4)
C6—C1—C2114.4 (5)C11—C10—H10121 (13)
C1—C2—C7116.1 (5)C15—C11—C10120.3 (4)
C1—C2—C3123.3 (5)C15—C11—C12119.1 (5)
C7—C2—C3120.5 (6)C10—C11—C12120.7 (4)
C4—C3—C8115.1 (5)C13—C12—C11118.1 (5)
C4—C3—C2122.1 (6)C13—C12—H12121 (4)
C8—C3—C2122.7 (4)C11—C12—H12121 (16)
O2—C4—C5121.6 (5)N3—C13—C12122.0 (5)
O2—C4—C3123.4 (6)N3—C13—H13119 (13)
C5—C4—C3114.9 (5)C12—C13—H13119 (4)
Cl1—C5—C6120.0 (5)N3—C14—H14A110 (5)
Cl1—C5—C4116.6 (5)N3—C14—H14C110 (5)
C6—C5—C4123.4 (5)N3—C14—H14B109 (5)
Cl2—C6—C5123.7 (4)H14A—C14—H14C109 (6)
Cl2—C6—C1114.7 (4)H14A—C14—H14B110 (20)
C5—C6—C1121.6 (6)H14C—C14—H14B109 (7)
N1—C7—C2178.27 (7)N4—C15—C11177.04 (11)
N2—C8—C3178.88 (6)
Cl1—C5—C6—Cl20.2 (3)C7—C2—C3—C81.4 (3)
Cl1—C5—C6—C1179.3 (3)C9—N3—C13—C120.3 (6)
Cl1—C5—C4—O25.9 (3)C9—N3—C13—H13179 (4)
Cl1—C5—C4—C3175.1 (3)C9—N3—C14—H14A179 (5)
Cl2—C6—C5—C4177.9 (3)C9—N3—C14—H14C59 (3)
Cl2—C6—C1—O15.7 (3)C9—N3—C14—H14B61 (4)
Cl2—C6—C1—C2175.0 (3)C9—C10—C11—C15176.6 (6)
O1—C1—C6—C5175.1 (3)C9—C10—C11—C123.4 (6)
O1—C1—C2—C77.3 (3)H9—C9—N3—C13179 (6)
O1—C1—C2—C3176.4 (3)H9—C9—N3—C142 (6)
O2—C4—C5—C6175.9 (4)H9—C9—C10—C11179 (6)
O2—C4—C3—C86.4 (3)H9—C9—C10—H101 (7)
O2—C4—C3—C2174.6 (4)C10—C9—N3—C130.8 (6)
N3—C9—C10—C111.0 (6)C10—C9—N3—C14177.5 (6)
N3—C9—C10—H10179 (4)C10—C11—C12—C133.9 (7)
N3—C13—C12—C112.1 (6)C10—C11—C12—H12179 (5)
N3—C13—C12—H12179 (5)H10—C10—C11—C152 (6)
C1—C6—C5—C41.1 (3)H10—C10—C11—C12178 (6)
C1—C2—C3—C41.4 (4)C11—C12—C13—H13179 (4)
C1—C2—C3—C8177.5 (4)C12—C13—N3—C14178.1 (7)
C2—C1—C6—C54.1 (4)H12—C12—C13—H132 (7)
C2—C3—C4—C54.4 (4)H12—C12—C11—C151 (6)
C3—C4—C5—C63.1 (4)C13—N3—C14—H14A2 (5)
C3—C2—C1—C62.9 (3)C13—N3—C14—H14C123 (3)
C4—C3—C2—C7177.6 (3)C13—N3—C14—H14B117 (4)
C5—C4—C3—C8174.6 (4)C13—C12—C11—C15176.1 (6)
C6—C1—C2—C7173.5 (3)H13—C13—N3—C142 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···C10i1.08 (19)2.60 (14)3.595 (12)154 (4)
C13—H13···N11.1 (3)2.4 (3)3.477 (8)165 (3)
C10—H10···O1ii1.1 (3)2.4 (3)3.195 (6)130 (16)
C13—H13···Cl1iii1.1 (3)2.9 (2)3.565 (6)118 (13)
C12—H12···N1iv1.1 (2)2.6 (3)3.391 (7)132 (16)
C10—H10···O2v1.1 (3)2.39 (18)3.297 (7)140 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x+1/2, y+3/2, z+1/2.
(0.86GPa) top
Crystal data top
C15H7Cl2N4O2β = 94.609 (5)°
Mr = 346.13V = 1344.51 (8) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.6277 (4) ÅDx = 1.711 Mg m3
b = 10.0050 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.3418 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
1673 independent reflectionsk = 08
1673 reflections with > 2.0σ(I)l = 024
θmax = 28.0°, θmin = 2.0°
Refinement top
Refinement on F232 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.123Secondary atom site location: difference Fourier map
wR(F2) = 0.072Hydrogen site location: difference Fourier map
S = 1.27Only H-atom coordinates refined
1673 reflectionsWeighting scheme based on measured s.u.'s
223 parameters(Δ/σ)max = 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20925 (17)0.1107 (2)0.00711 (6)0.0326 (7)
Cl20.12082 (17)0.28036 (19)0.11824 (6)0.0315 (7)
O10.1397 (4)0.5684 (5)0.09458 (15)0.0299 (9)
O20.2959 (5)0.2754 (5)0.11885 (15)0.0361 (10)
N10.2969 (6)0.8166 (7)0.00777 (18)0.0399 (13)
N20.4172 (5)0.6001 (6)0.17054 (19)0.0375 (10)
N30.3143 (5)0.9555 (6)0.18160 (19)0.0328 (9)
N41.0009 (5)1.2098 (6)0.25023 (19)0.0450 (11)
C10.1851 (6)0.5005 (8)0.0473 (2)0.0219 (10)
C20.2481 (6)0.5571 (8)0.0125 (2)0.0257 (10)
C30.2906 (7)0.4873 (8)0.0670 (2)0.0239 (10)
C40.2696 (7)0.3432 (8)0.0695 (2)0.0245 (11)
C50.2184 (6)0.2825 (8)0.0074 (2)0.022 (2)*
C60.1776 (6)0.3524 (7)0.0463 (2)0.0214 (10)
C70.2766 (8)0.6985 (9)0.0108 (2)0.024 (3)*
C80.3590 (6)0.5493 (8)0.1235 (2)0.0303 (10)
C90.3460 (7)0.9998 (7)0.2437 (2)0.032 (3)*
H90.235 (5)0.980 (7)0.279 (14)0.03834*
C100.5197 (7)1.0718 (7)0.2631 (2)0.0290 (12)
H100.544 (7)1.109 (7)0.313 (14)0.03480*
C110.6587 (7)1.0924 (7)0.2176 (2)0.0294 (10)
C120.6248 (7)1.0476 (8)0.1539 (2)0.0357 (11)
H120.734 (6)1.063 (7)0.118 (14)0.04279*
C130.4494 (8)0.9781 (7)0.1370 (2)0.0337 (10)
H130.419 (7)0.942 (6)0.087 (14)0.04044*
C140.1339 (10)0.8744 (12)0.1619 (3)0.0530 (12)
H14A0.135 (9)0.848 (8)0.111 (14)0.07955*
H14B0.134 (11)0.785 (5)0.191 (14)0.07955*
H14C0.000 (14)0.932 (7)0.169 (3)0.07955*
C150.8456 (7)1.1594 (7)0.2371 (2)0.0335 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.041 (2)0.026 (3)0.031 (2)0.0008 (10)0.0059 (6)0.0006 (7)
Cl20.042 (2)0.030 (3)0.023 (2)0.0007 (9)0.0070 (6)0.0054 (7)
O10.038 (3)0.033 (4)0.020 (3)0.002 (2)0.0067 (14)0.0047 (18)
O20.055 (3)0.032 (5)0.022 (3)0.007 (2)0.0092 (16)0.0018 (19)
N10.043 (3)0.038 (9)0.039 (4)0.001 (4)0.007 (2)0.005 (3)
N20.043 (3)0.041 (5)0.029 (3)0.005 (3)0.0118 (19)0.003 (2)
N30.037 (3)0.032 (5)0.028 (3)0.001 (2)0.0019 (19)0.001 (2)
N40.045 (3)0.051 (5)0.039 (4)0.011 (3)0.005 (2)0.006 (2)
C10.028 (3)0.023 (4)0.015 (3)0.0014 (19)0.0061 (17)0.0003 (17)
C20.028 (3)0.028 (4)0.022 (3)0.001 (2)0.0054 (17)0.003 (2)
C30.027 (3)0.027 (4)0.019 (3)0.002 (2)0.0071 (17)0.0003 (18)
C40.033 (3)0.025 (5)0.016 (4)0.004 (2)0.0066 (19)0.0018 (19)
C60.026 (3)0.018 (5)0.021 (3)0.0034 (19)0.0036 (16)0.0013 (17)
C80.030 (3)0.040 (5)0.021 (4)0.004 (3)0.0076 (19)0.005 (3)
C100.029 (3)0.030 (8)0.028 (4)0.001 (3)0.008 (3)0.001 (2)
C110.032 (3)0.028 (5)0.029 (3)0.003 (3)0.0067 (17)0.000 (2)
C120.045 (3)0.038 (5)0.025 (4)0.002 (3)0.0062 (18)0.005 (2)
C130.042 (3)0.028 (5)0.031 (4)0.003 (3)0.000 (2)0.000 (2)
C140.045 (4)0.051 (6)0.060 (5)0.023 (4)0.017 (3)0.005 (4)
C150.033 (3)0.036 (5)0.032 (4)0.006 (3)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
Cl1—C51.721 (8)C3—C81.411 (7)
Cl2—C61.700 (5)C4—C51.467 (7)
O1—C11.235 (6)C5—C61.343 (7)
O2—C41.235 (6)C9—C101.388 (7)
N1—C71.191 (9)C9—H91.1 (2)
N2—C81.176 (6)C10—C111.373 (6)
N3—C91.340 (6)C10—H101.1 (3)
N3—C131.344 (6)C11—C151.436 (7)
N3—C141.474 (9)C11—C121.372 (7)
N4—C151.158 (6)C12—C131.374 (8)
C1—C61.482 (9)C12—H121.1 (2)
C1—C21.433 (7)C13—H131.1 (3)
C2—C71.427 (9)C14—H14C1.08 (9)
C2—C31.360 (7)C14—H14A1.1 (3)
C3—C41.449 (10)C14—H14B1.08 (16)
C9—N3—C13121.2 (4)N3—C9—C10120.2 (4)
C9—N3—C14120.1 (5)N3—C9—H9120 (14)
C13—N3—C14118.6 (4)C10—C9—H9120 (4)
O1—C1—C6123.4 (5)C9—C10—C11118.3 (4)
O1—C1—C2123.3 (4)C9—C10—H10120 (4)
C6—C1—C2113.3 (5)C11—C10—H10122 (11)
C1—C2—C7114.7 (5)C15—C11—C12119.0 (4)
C1—C2—C3125.6 (4)C15—C11—C10119.7 (4)
C7—C2—C3119.6 (6)C12—C11—C10121.3 (4)
C4—C3—C8116.4 (5)C13—C12—C11118.2 (5)
C4—C3—C2120.9 (6)C13—C12—H12120 (4)
C8—C3—C2122.6 (4)C11—C12—H12121 (14)
O2—C4—C5122.0 (4)N3—C13—C12120.8 (4)
O2—C4—C3123.8 (6)N3—C13—H13120 (11)
C5—C4—C3114.2 (5)C12—C13—H13119 (4)
Cl1—C5—C6120.6 (5)N3—C14—H14C109 (4)
Cl1—C5—C4115.3 (5)N3—C14—H14A109 (5)
C6—C5—C4124.2 (4)N3—C14—H14B110 (5)
Cl2—C6—C5123.5 (4)H14C—C14—H14A109 (6)
Cl2—C6—C1115.0 (4)H14C—C14—H14B110 (6)
C5—C6—C1121.5 (6)H14A—C14—H14B109 (17)
N1—C7—C2178.02 (8)N4—C15—C11176.41 (14)
N2—C8—C3179.41 (3)
Cl1—C5—C6—Cl21.6 (3)C7—C2—C3—C81.3 (4)
Cl1—C5—C6—C1179.8 (3)C9—N3—C13—C120.0 (7)
Cl1—C5—C4—O22.8 (4)C9—N3—C13—H13180 (4)
Cl1—C5—C4—C3175.8 (3)C9—N3—C14—H14C61 (4)
Cl2—C6—C5—C4179.4 (4)C9—N3—C14—H14A180 (5)
Cl2—C6—C1—O15.1 (4)C9—N3—C14—H14B60 (4)
Cl2—C6—C1—C2175.6 (3)C9—C10—C11—C15176.2 (7)
O1—C1—C6—C5176.6 (4)C9—C10—C11—C122.3 (7)
O1—C1—C2—C76.7 (4)H9—C9—N3—C13179 (6)
O1—C1—C2—C3176.8 (4)H9—C9—N3—C143 (6)
O2—C4—C5—C6176.2 (4)H9—C9—C10—C11178 (6)
O2—C4—C3—C84.6 (4)H9—C9—C10—H101 (7)
O2—C4—C3—C2176.1 (4)C10—C9—N3—C130.8 (7)
N3—C9—C10—C111.9 (7)C10—C9—N3—C14177.5 (7)
N3—C9—C10—H10179 (4)C10—C11—C12—C131.6 (7)
N3—C13—C12—C110.4 (7)C10—C11—C12—H12180 (5)
N3—C13—C12—H12179 (5)H10—C10—C11—C153 (6)
C1—C6—C5—C41.2 (4)H10—C10—C11—C12179 (6)
C1—C2—C3—C41.6 (4)C11—C12—C13—H13180 (4)
C1—C2—C3—C8177.7 (4)C12—C13—N3—C14176.8 (7)
C2—C1—C6—C52.7 (5)H12—C12—C13—H132 (8)
C2—C3—C4—C55.3 (4)H12—C12—C11—C151 (6)
C3—C4—C5—C65.2 (4)C13—N3—C14—H14C123 (3)
C3—C2—C1—C62.5 (4)C13—N3—C14—H14A3 (5)
C4—C3—C2—C7178.0 (4)C13—N3—C14—H14B117 (4)
C5—C4—C3—C8174.0 (5)C13—C12—C11—C15176.9 (7)
C6—C1—C2—C7174.0 (4)H13—C13—N3—C144 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···C10i1.08 (16)2.57 (12)3.575 (11)155 (3)
C13—H13···N11.1 (3)2.4 (2)3.439 (7)164 (3)
C9—H9···Cl2ii1.1 (2)2.99 (19)3.557 (6)113 (11)
C10—H10···O1ii1.1 (3)2.4 (2)3.161 (5)130 (14)
C13—H13···Cl1iii1.1 (3)2.83 (18)3.484 (5)119 (11)
C9—H9···N2iv1.1 (2)2.55 (14)3.594 (6)162 (5)
C12—H12···N1v1.1 (2)2.5 (2)3.347 (7)131 (14)
C10—H10···O2vi1.1 (3)2.38 (15)3.279 (6)139 (10)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1/2; (v) x+1, y+2, z; (vi) x+1/2, y+3/2, z+1/2.
(1.42GPa) top
Crystal data top
C15H7Cl2N4O2β = 94.662 (4)°
Mr = 346.13V = 1306.38 (6) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.5155 (3) ÅDx = 1.761 Mg m3
b = 9.9444 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.2293 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
1632 independent reflectionsk = 08
1632 reflections with > 2.0σ(I)l = 024
θmax = 27.9°, θmin = 2.0°
Refinement top
Refinement on F240 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.112Secondary atom site location: difference Fourier map
wR(F2) = 0.072Hydrogen site location: difference Fourier map
S = 1.37Only H-atom coordinates refined
1632 reflectionsWeighting scheme based on measured s.u.'s
233 parameters(Δ/σ)max = 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21163 (16)0.10951 (19)0.00689 (6)0.0289 (7)
Cl20.12324 (16)0.28000 (19)0.11910 (5)0.0287 (7)
O10.1417 (4)0.5697 (4)0.09511 (14)0.0286 (9)
O20.2992 (4)0.2737 (5)0.11935 (14)0.0327 (9)
N10.2932 (6)0.8189 (7)0.00807 (19)0.0347 (13)
N20.4158 (5)0.6012 (6)0.17224 (18)0.0301 (10)
N30.3132 (5)0.9565 (6)0.18063 (18)0.0289 (9)
N41.0089 (5)1.2130 (6)0.25161 (18)0.0376 (10)
C10.1875 (6)0.5006 (7)0.0474 (2)0.0182 (9)
C20.2501 (6)0.5590 (8)0.0129 (2)0.0242 (10)
C30.2938 (6)0.4874 (7)0.0673 (2)0.0197 (9)
C40.2725 (7)0.3432 (8)0.0698 (2)0.0231 (10)
C50.2191 (6)0.2824 (8)0.0073 (2)0.022 (2)*
C60.1812 (6)0.3525 (7)0.0465 (2)0.0191 (10)
C70.2765 (7)0.7010 (9)0.0113 (2)0.0220 (14)
C80.3597 (6)0.5506 (7)0.1247 (2)0.0248 (10)
C90.3437 (7)1.0009 (7)0.2434 (2)0.0269 (10)
H90.229 (5)0.982 (7)0.278 (14)0.03228*
C100.5193 (6)1.0729 (7)0.2635 (2)0.0240 (9)
H100.544 (7)1.109 (6)0.314 (14)0.02881*
C110.6606 (6)1.0949 (7)0.2178 (2)0.0238 (9)
C120.6294 (7)1.0510 (7)0.1537 (2)0.0310 (11)
H120.741 (5)1.069 (7)0.118 (14)0.03716*
C130.4507 (7)0.9787 (7)0.1362 (2)0.0287 (10)
H130.422 (7)0.941 (6)0.086 (14)0.03448*
C140.1303 (9)0.8756 (11)0.1597 (3)0.0468 (11)
H14A0.133 (8)0.849 (8)0.108 (14)0.07018*
H14B0.131 (10)0.785 (5)0.189 (14)0.07018*
H14C0.007 (14)0.933 (6)0.167 (3)0.07018*
C150.8512 (7)1.1619 (7)0.2380 (2)0.0291 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.036 (2)0.023 (3)0.029 (2)0.0002 (9)0.0047 (6)0.0004 (7)
Cl20.036 (2)0.029 (3)0.022 (2)0.0011 (8)0.0060 (5)0.0049 (6)
O10.035 (3)0.032 (4)0.020 (3)0.001 (2)0.0082 (14)0.0064 (18)
O20.051 (3)0.029 (5)0.019 (3)0.009 (2)0.0068 (15)0.0004 (18)
N10.036 (3)0.028 (8)0.040 (4)0.002 (2)0.0023 (19)0.002 (2)
N20.034 (3)0.030 (5)0.027 (3)0.005 (3)0.0089 (17)0.004 (2)
N30.035 (3)0.026 (4)0.025 (3)0.002 (2)0.0007 (16)0.0014 (18)
N40.036 (3)0.042 (5)0.034 (3)0.010 (3)0.0051 (18)0.002 (2)
C10.022 (3)0.020 (4)0.013 (3)0.0020 (18)0.0052 (16)0.0004 (16)
C20.024 (3)0.025 (4)0.024 (3)0.0005 (19)0.0033 (17)0.0005 (18)
C30.020 (3)0.019 (4)0.020 (3)0.0021 (19)0.0039 (16)0.0005 (18)
C40.028 (3)0.025 (5)0.016 (3)0.0042 (19)0.0056 (19)0.0030 (19)
C60.024 (3)0.018 (5)0.015 (3)0.0045 (19)0.0040 (15)0.0012 (17)
C70.022 (3)0.008 (10)0.036 (4)0.002 (2)0.003 (2)0.0015 (19)
C80.021 (3)0.032 (5)0.021 (3)0.003 (3)0.0048 (18)0.006 (2)
C90.029 (3)0.024 (5)0.028 (3)0.002 (3)0.0047 (16)0.000 (2)
C100.027 (3)0.018 (5)0.027 (3)0.001 (3)0.003 (2)0.001 (2)
C110.027 (3)0.020 (5)0.025 (3)0.002 (2)0.0048 (16)0.0031 (19)
C120.043 (3)0.034 (5)0.016 (3)0.005 (3)0.0065 (16)0.004 (2)
C130.039 (3)0.019 (5)0.029 (3)0.004 (3)0.004 (2)0.002 (2)
C140.038 (3)0.051 (6)0.048 (5)0.031 (4)0.017 (3)0.002 (3)
C150.028 (3)0.023 (5)0.037 (4)0.001 (3)0.0028 (19)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C51.720 (8)C3—C81.418 (7)
Cl2—C61.705 (5)C4—C51.468 (7)
O1—C11.240 (6)C5—C61.334 (7)
O2—C41.242 (6)C9—C101.383 (7)
N1—C71.179 (9)C9—H91.1 (2)
N2—C81.170 (5)C10—C111.374 (5)
N3—C131.338 (5)C10—H101.1 (3)
N3—C91.343 (6)C11—C151.439 (7)
N3—C141.471 (8)C11—C121.367 (6)
N4—C151.160 (6)C12—C131.390 (7)
C1—C61.473 (9)C12—H121.1 (2)
C1—C21.440 (7)C13—H131.1 (3)
C2—C71.423 (9)C14—H14C1.08 (9)
C2—C31.359 (7)C14—H14A1.1 (3)
C3—C41.441 (9)C14—H14B1.08 (16)
C13—N3—C9121.7 (4)N3—C9—C10120.2 (4)
C13—N3—C14117.9 (4)N3—C9—H9120 (14)
C9—N3—C14120.4 (4)C10—C9—H9120 (4)
O1—C1—C6123.7 (5)C9—C10—C11117.9 (4)
O1—C1—C2122.6 (4)C9—C10—H10120 (4)
C6—C1—C2113.7 (5)C11—C10—H10122 (11)
C1—C2—C7115.0 (5)C15—C11—C12118.4 (4)
C1—C2—C3124.5 (4)C15—C11—C10119.5 (4)
C7—C2—C3120.4 (6)C12—C11—C10122.0 (4)
C4—C3—C8116.5 (5)C13—C12—C11117.6 (4)
C4—C3—C2121.6 (6)C13—C12—H12121 (4)
C8—C3—C2121.9 (4)C11—C12—H12122 (14)
O2—C4—C5121.6 (4)N3—C13—C12120.5 (4)
O2—C4—C3124.3 (5)N3—C13—H13120 (11)
C5—C4—C3114.1 (5)C12—C13—H13119 (4)
Cl1—C5—C6120.8 (5)N3—C14—H14C110 (4)
Cl1—C5—C4115.2 (5)N3—C14—H14A110 (5)
C6—C5—C4124.1 (4)N3—C14—H14B109 (5)
Cl2—C6—C5123.4 (4)H14C—C14—H14A109 (6)
Cl2—C6—C1114.8 (4)H14C—C14—H14B110 (6)
C5—C6—C1121.7 (5)H14A—C14—H14B109 (17)
N1—C7—C2177.50 (10)N4—C15—C11176.63 (12)
N2—C8—C3179.03 (5)
Cl1—C5—C6—Cl20.0 (3)C7—C2—C3—C82.2 (4)
Cl1—C5—C6—C1179.7 (3)C9—N3—C13—C121.0 (6)
Cl1—C5—C4—O23.6 (3)C9—N3—C13—H13180 (4)
Cl1—C5—C4—C3175.3 (3)C9—N3—C14—H14C60 (3)
Cl2—C6—C5—C4179.0 (3)C9—N3—C14—H14A180 (4)
Cl2—C6—C1—O14.6 (3)C9—N3—C14—H14B60 (4)
Cl2—C6—C1—C2176.1 (3)C9—C10—C11—C15176.0 (6)
O1—C1—C6—C5175.7 (4)C9—C10—C11—C121.7 (7)
O1—C1—C2—C76.3 (3)H9—C9—N3—C13179 (6)
O1—C1—C2—C3177.3 (4)H9—C9—N3—C144 (6)
O2—C4—C5—C6177.4 (4)H9—C9—C10—C11180 (6)
O2—C4—C3—C83.3 (4)H9—C9—C10—H101 (8)
O2—C4—C3—C2175.8 (4)C10—C9—N3—C130.8 (6)
N3—C13—C12—C111.5 (6)C10—C9—N3—C14177.8 (7)
N3—C13—C12—H12180 (5)C10—C11—C12—C131.9 (7)
N3—C9—C10—C111.1 (6)C10—C11—C12—H12180 (5)
N3—C9—C10—H10180 (4)H10—C10—C11—C153 (6)
C1—C6—C5—C40.8 (4)H10—C10—C11—C12179 (6)
C1—C2—C3—C42.5 (4)C11—C12—C13—H13179 (4)
C1—C2—C3—C8178.4 (4)C12—C13—N3—C14178.1 (7)
C2—C1—C6—C53.7 (4)H12—C12—C13—H131 (7)
C2—C3—C4—C55.3 (4)H12—C12—C11—C153 (6)
C3—C4—C5—C63.7 (4)C13—N3—C14—H14C123 (3)
C3—C2—C1—C62.0 (4)C13—N3—C14—H14A3 (5)
C4—C3—C2—C7178.7 (4)C13—N3—C14—H14B117 (4)
C5—C4—C3—C8175.6 (4)C13—C12—C11—C15175.8 (6)
C6—C1—C2—C7174.3 (3)H13—C13—N3—C143 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···C10i1.08 (16)2.55 (12)3.560 (10)156 (3)
C13—H13···N11.1 (3)2.4 (2)3.407 (7)163 (3)
C9—H9···Cl2ii1.1 (2)2.99 (19)3.538 (6)111 (11)
C10—H10···O1ii1.1 (3)2.3 (2)3.127 (5)130 (14)
C13—H13···Cl1iii1.1 (3)2.79 (18)3.430 (5)117 (11)
C9—H9···N2iv1.1 (2)2.49 (14)3.534 (6)162 (5)
C14—H14B···N4v1.08 (16)2.64 (12)3.267 (8)116 (7)
C12—H12···Cl1vi1.1 (2)2.9 (2)3.598 (5)122 (13)
C12—H12···N1vii1.1 (2)2.5 (3)3.294 (7)131 (14)
C10—H10···O2viii1.1 (3)2.36 (15)3.252 (6)138 (10)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y+2, z; (viii) x+1/2, y+3/2, z+1/2.
(1.85GPa) top
Crystal data top
C15H7Cl2N4O2β = 94.729 (3)°
Mr = 346.13V = 1280.84 (4) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.4387 (2) ÅDx = 1.796 Mg m3
b = 9.9135 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 20.1349 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
1618 independent reflectionsk = 08
1618 reflections with > 2.0σ(I)l = 024
θmax = 28.0°, θmin = 2.0°
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.117Secondary atom site location: difference Fourier map
wR(F2) = 0.085Hydrogen site location: difference Fourier map
S = 1.57Only H-atom coordinates refined
1618 reflectionsWeighting scheme based on measured s.u.'s
93 parameters(Δ/σ)max = 0.002
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21328 (17)0.10825 (19)0.00684 (6)0.02687
Cl20.12518 (16)0.27985 (19)0.11985 (6)0.03051
O10.1434 (4)0.5714 (5)0.09514 (15)0.02598
O20.3024 (4)0.2737 (5)0.11985 (14)0.02417
N10.2916 (6)0.8177 (6)0.00803 (19)0.03825
N20.4141 (5)0.6002 (6)0.17356 (19)0.03281
N30.3118 (5)0.9571 (6)0.18011 (18)0.03015
N41.0147 (5)1.2145 (6)0.25269 (18)0.04651
C10.1897 (6)0.4988 (7)0.0478 (2)0.01860
C20.2510 (6)0.5615 (8)0.0134 (2)0.02986
C30.2959 (6)0.4886 (8)0.0678 (2)0.02816
C40.2747 (6)0.3458 (7)0.0701 (2)0.01512
C50.2215 (6)0.2814 (7)0.0076 (2)0.01960*
C60.1841 (6)0.3521 (7)0.0469 (2)0.01870*
C70.2757 (7)0.7004 (8)0.0117 (2)0.03886
C80.3608 (6)0.5517 (7)0.1261 (2)0.02945
C90.3435 (7)1.0029 (7)0.2435 (2)0.02882
H90.228 (5)0.982 (7)0.278 (15)0.03459*
C100.5186 (6)1.0769 (7)0.2640 (2)0.02366
H100.543 (6)1.112 (6)0.315 (15)0.02839*
C110.6631 (6)1.0970 (7)0.2175 (2)0.02982
C120.6319 (7)1.0515 (8)0.1535 (2)0.03960
H120.745 (6)1.069 (7)0.118 (15)0.04752*
C130.4537 (7)0.9796 (7)0.1362 (2)0.02929*
H130.426 (6)0.941 (6)0.086 (15)0.03515*
C140.1269 (9)0.8784 (10)0.1577 (3)0.05130
H14A0.030 (7)0.870 (8)0.199 (15)0.07695*
H14B0.041 (7)0.927 (7)0.116 (15)0.07695*
H14C0.174 (10)0.779 (15)0.143 (3)0.07695*
C150.8545 (7)1.1635 (7)0.2386 (2)0.03520
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.033360.018930.028530.001720.003870.00086
Cl20.033170.040640.018260.001940.005410.00533
O10.036860.014630.027440.003780.008630.01168
O20.046000.001970.025340.010210.007670.00194
N10.034670.043220.037260.000150.005370.00075
N20.035230.040390.023570.001230.007020.00057
N30.031060.036100.022530.002810.002400.00024
N40.032340.077780.029520.019320.003190.00252
C10.024980.015470.015370.011240.001880.01138
C20.028360.037890.023250.003100.001640.00003
C30.024590.041020.018850.005120.001610.00171
C40.024470.000680.021060.004820.006880.00462
C70.022230.066110.028900.003430.006090.00235
C80.022300.052880.013050.006580.000740.00587
C90.028540.032830.025330.010850.003610.00304
C100.024450.027370.019680.000300.005000.00297
C110.024140.046440.018990.000570.002430.00031
C120.034440.076470.008060.004160.002850.01081
C140.034640.067540.048040.025770.018690.00280
C150.029620.047190.028330.005960.000430.01017
Geometric parameters (Å, º) top
Cl1—C51.718 (7)C3—C81.424 (7)
Cl2—C61.705 (5)C4—C51.476 (6)
O1—C11.250 (6)C5—C61.341 (7)
O2—C41.256 (6)C9—C101.379 (7)
N1—C71.170 (9)C9—H91.1 (2)
N2—C81.147 (5)C10—C111.387 (5)
N3—C131.342 (5)C10—H101.1 (3)
N3—C91.354 (6)C11—C151.431 (7)
N3—C141.463 (8)C11—C121.364 (6)
N4—C151.163 (6)C12—C131.372 (7)
C1—C61.455 (8)C12—H121.1 (2)
C1—C21.462 (7)C13—H131.1 (3)
C2—C71.386 (9)C14—H14C1.08 (14)
C2—C31.363 (7)C14—H14B1.1 (2)
C3—C41.422 (9)C14—H14A1.1 (2)
C13—N3—C9120.5 (4)N3—C9—C10121.1 (4)
C13—N3—C14117.7 (4)N3—C9—H9119 (15)
C9—N3—C14121.7 (4)C10—C9—H9120 (4)
O1—C1—C6125.3 (5)C9—C10—C11116.9 (4)
O1—C1—C2119.7 (4)C9—C10—H10120 (4)
C6—C1—C2115.0 (5)C11—C10—H10123 (12)
C1—C2—C7116.1 (5)C15—C11—C12119.2 (4)
C1—C2—C3122.8 (4)C15—C11—C10118.4 (4)
C7—C2—C3121.0 (6)C12—C11—C10122.3 (4)
C4—C3—C8116.4 (5)C13—C12—C11117.8 (4)
C4—C3—C2121.8 (6)C13—C12—H12121 (4)
C8—C3—C2121.8 (4)C11—C12—H12121 (15)
O2—C4—C5119.5 (4)N3—C13—C12121.3 (4)
O2—C4—C3125.0 (5)N3—C13—H13119 (11)
C5—C4—C3115.5 (5)C12—C13—H13119 (4)
Cl1—C5—C6120.5 (5)N3—C14—H14C109 (5)
Cl1—C5—C4116.7 (4)N3—C14—H14B111 (5)
C6—C5—C4122.8 (4)N3—C14—H14A108 (5)
Cl2—C6—C5123.6 (3)H14C—C14—H14B109 (8)
Cl2—C6—C1114.6 (4)H14C—C14—H14A110 (7)
C5—C6—C1121.8 (5)H14B—C14—H14A109 (18)
N1—C7—C2177.25 (12)N4—C15—C11176.30 (14)
N2—C8—C3178.76 (6)
Cl1—C5—C6—Cl20.4 (2)C7—C2—C3—C82.9 (4)
Cl1—C5—C6—C1179.9 (3)C9—N3—C13—C121.4 (6)
Cl1—C5—C4—O23.0 (3)C9—N3—C13—H13179 (4)
Cl1—C5—C4—C3175.4 (3)C9—N3—C14—H14C117 (6)
Cl2—C6—C5—C4179.2 (3)C9—N3—C14—H14B122 (4)
Cl2—C6—C1—O14.5 (3)C9—N3—C14—H14A2 (4)
Cl2—C6—C1—C2176.9 (3)C9—C10—C11—C15174.9 (6)
O1—C1—C6—C5175.1 (4)C9—C10—C11—C122.7 (6)
O1—C1—C2—C76.9 (3)H9—C9—N3—C13179 (6)
O1—C1—C2—C3177.5 (4)H9—C9—N3—C141 (6)
O2—C4—C5—C6178.1 (4)H9—C9—C10—C11179 (6)
O2—C4—C3—C82.4 (3)H9—C9—C10—H101 (7)
O2—C4—C3—C2175.9 (4)C10—C9—N3—C131.9 (6)
N3—C13—C12—C111.5 (6)C10—C9—N3—C14179.9 (6)
N3—C13—C12—H12180 (5)C10—C11—C12—C132.2 (6)
N3—C9—C10—C112.5 (6)C10—C11—C12—H12179 (5)
N3—C9—C10—H10180 (4)H10—C10—C11—C152 (6)
C1—C6—C5—C41.3 (3)H10—C10—C11—C12180 (6)
C1—C2—C3—C43.6 (4)C11—C12—C13—H13179 (4)
C1—C2—C3—C8178.3 (4)C12—C13—N3—C14179.5 (6)
C2—C1—C6—C53.6 (4)H12—C12—C13—H131 (7)
C2—C3—C4—C55.8 (4)H12—C12—C11—C153 (6)
C3—C4—C5—C63.4 (4)C13—N3—C14—H14C61 (5)
C3—C2—C1—C61.2 (4)C13—N3—C14—H14B60 (4)
C4—C3—C2—C7179.0 (4)C13—N3—C14—H14A180 (5)
C5—C4—C3—C8176.0 (4)C13—C12—C11—C15175.3 (6)
C6—C1—C2—C7174.4 (3)H13—C13—N3—C141 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N11.1 (3)2.4 (2)3.405 (7)163 (3)
C14—H14C···O11.08 (14)2.28 (14)3.299 (10)158 (2)
C9—H9···Cl2i1.1 (2)3.0 (2)3.523 (6)112 (11)
C10—H10···O1i1.1 (3)2.3 (2)3.103 (5)130 (15)
C13—H13···Cl1ii1.1 (3)2.77 (19)3.402 (5)117 (12)
C14—H14B···Cl1iii1.1 (2)2.7 (2)3.598 (6)146 (13)
C9—H9···N2iv1.1 (2)2.45 (14)3.498 (6)162 (6)
C12—H12···Cl1v1.1 (2)2.9 (2)3.565 (5)122 (13)
C12—H12···N1vi1.1 (2)2.5 (3)3.277 (7)130 (15)
C10—H10···O2vii1.1 (3)2.33 (16)3.210 (6)137 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+2, z; (vii) x+1/2, y+3/2, z+1/2.
(3.09GPa) top
Crystal data top
C15H7Cl2N4O2β = 95.624 (4)°
Mr = 346.13V = 1218.56 (4) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.2590 (2) ÅDx = 1.887 Mg m3
b = 9.8519 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 19.8571 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 88
1528 independent reflectionsk = 08
1528 reflections with > 2.0σ(I)l = 024
θmax = 28.1°, θmin = 2.1°
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.111Secondary atom site location: difference Fourier map
wR(F2) = 0.094Hydrogen site location: difference Fourier map
S = 1.59Only H-atom coordinates refined
1528 reflectionsWeighting scheme based on measured s.u.'s
213 parameters(Δ/σ)max = 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2316 (2)0.1160 (2)0.00413 (7)0.0219 (10)
Cl20.1388 (2)0.2866 (2)0.12397 (7)0.0233 (10)
O10.1675 (5)0.5789 (5)0.10131 (18)0.0217 (12)
O20.3249 (5)0.2828 (6)0.11716 (17)0.0308 (14)
N10.2657 (8)0.8314 (8)0.0090 (2)0.0337 (18)
N20.4015 (7)0.6056 (7)0.1776 (2)0.0317 (16)
N30.3048 (6)0.9593 (7)0.1791 (2)0.0209 (12)
N41.0278 (7)1.2194 (7)0.2556 (2)0.0346 (14)
C10.2166 (8)0.5091 (9)0.0521 (3)0.0173 (13)
C20.2735 (8)0.5686 (10)0.0091 (3)0.0218 (13)
C30.3139 (8)0.4962 (9)0.0648 (3)0.0208 (14)
C40.3005 (8)0.3512 (9)0.0668 (3)0.017 (3)*
C50.2449 (7)0.2863 (9)0.0033 (3)0.016 (3)*
C60.2045 (7)0.3614 (8)0.0523 (3)0.015 (3)*
C70.2704 (8)0.7148 (11)0.0099 (3)0.022 (2)
C80.3598 (7)0.5604 (8)0.1261 (3)0.016 (3)*
C90.3362 (8)1.0067 (8)0.2425 (3)0.0230 (13)
H90.216 (6)0.988 (8)0.277 (16)0.02761*
C100.5172 (8)1.0802 (8)0.2645 (3)0.0243 (13)
H100.542 (9)1.117 (8)0.316 (16)0.02912*
C110.6671 (8)1.1011 (8)0.2189 (3)0.0184 (13)
C120.6317 (8)1.0527 (8)0.1538 (3)0.0224 (15)
H120.749 (7)1.071 (8)0.118 (16)0.02686*
C130.4507 (8)0.9811 (8)0.1352 (3)0.025 (3)*
H130.425 (8)0.940 (7)0.084 (16)0.03013*
C140.1172 (11)0.8788 (13)0.1569 (3)0.0410 (15)
H14A0.121 (11)0.851 (10)0.105 (16)0.06153*
H14B0.116 (13)0.788 (6)0.187 (16)0.06153*
H14C0.026 (7)0.937 (16)0.162 (4)0.06153*
C150.8628 (9)1.1717 (8)0.2399 (2)0.0251 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.027 (3)0.019 (4)0.020 (3)0.0007 (9)0.0031 (7)0.0008 (7)
Cl20.026 (3)0.027 (4)0.017 (3)0.0012 (9)0.0062 (6)0.0030 (7)
O10.028 (3)0.017 (5)0.022 (4)0.002 (2)0.0096 (16)0.004 (2)
O20.045 (4)0.040 (8)0.009 (4)0.006 (3)0.0075 (18)0.002 (2)
N10.035 (4)0.040 (11)0.026 (5)0.006 (2)0.005 (2)0.001 (2)
N20.038 (4)0.047 (9)0.011 (5)0.005 (3)0.006 (2)0.002 (3)
N30.024 (4)0.020 (5)0.018 (4)0.011 (3)0.0055 (17)0.001 (2)
N40.038 (4)0.037 (7)0.029 (5)0.001 (3)0.005 (2)0.002 (3)
C10.022 (4)0.016 (5)0.014 (4)0.000 (3)0.0062 (18)0.007 (2)
C20.022 (4)0.029 (6)0.014 (4)0.007 (2)0.0053 (19)0.000 (2)
C30.025 (4)0.029 (6)0.010 (4)0.009 (3)0.004 (2)0.002 (3)
C70.011 (4)0.034 (14)0.021 (5)0.006 (2)0.001 (2)0.001 (2)
C90.017 (4)0.033 (6)0.019 (4)0.007 (3)0.0020 (18)0.004 (2)
C100.021 (4)0.032 (6)0.020 (4)0.001 (3)0.003 (2)0.004 (2)
C110.023 (4)0.015 (6)0.018 (4)0.007 (3)0.0034 (18)0.001 (2)
C120.028 (4)0.017 (7)0.023 (5)0.013 (3)0.004 (2)0.001 (3)
C140.034 (4)0.053 (7)0.033 (5)0.017 (5)0.009 (3)0.007 (4)
C150.029 (4)0.028 (6)0.018 (5)0.001 (3)0.003 (2)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C51.680 (8)C3—C81.424 (8)
Cl2—C61.689 (6)C4—C51.485 (8)
O1—C11.258 (7)C5—C61.373 (8)
O2—C41.227 (7)C9—C101.379 (8)
N1—C71.149 (11)C9—H91.1 (2)
N2—C81.169 (7)C10—C111.380 (7)
N3—C91.340 (6)C10—H101.1 (3)
N3—C131.340 (6)C11—C151.434 (8)
N3—C141.449 (9)C11—C121.376 (7)
N4—C151.150 (7)C12—C131.355 (8)
C1—C61.458 (10)C12—H121.1 (2)
C1—C21.425 (8)C13—H131.1 (3)
C2—C71.440 (11)C14—H14B1.08 (19)
C2—C31.361 (8)C14—H14C1.08 (9)
C3—C41.432 (10)C14—H14A1.1 (3)
C9—N3—C13120.6 (4)N3—C9—C10121.4 (5)
C9—N3—C14121.1 (5)N3—C9—H9119 (16)
C13—N3—C14118.3 (5)C10—C9—H9119 (5)
O1—C1—C6121.8 (6)C9—C10—C11117.5 (5)
O1—C1—C2122.6 (5)C9—C10—H10121 (5)
C6—C1—C2115.5 (6)C11—C10—H10122 (12)
C1—C2—C7114.6 (6)C15—C11—C12119.7 (5)
C1—C2—C3124.0 (5)C15—C11—C10119.9 (5)
C7—C2—C3121.2 (7)C12—C11—C10120.4 (5)
C4—C3—C8115.8 (6)C13—C12—C11119.4 (5)
C4—C3—C2122.0 (7)C13—C12—H12120 (4)
C8—C3—C2122.1 (5)C11—C12—H12120 (16)
O2—C4—C5120.9 (5)N3—C13—C12120.7 (5)
O2—C4—C3124.0 (6)N3—C13—H13120 (12)
C5—C4—C3115.1 (6)C12—C13—H13120 (4)
Cl1—C5—C6122.2 (5)N3—C14—H14B109 (5)
Cl1—C5—C4115.9 (5)N3—C14—H14C109 (5)
C6—C5—C4121.9 (5)N3—C14—H14A110 (5)
Cl2—C6—C5121.5 (4)H14B—C14—H14C110 (9)
Cl2—C6—C1117.1 (4)H14B—C14—H14A109 (19)
C5—C6—C1121.4 (6)H14C—C14—H14A109 (7)
N1—C7—C2178.25 (7)N4—C15—C11174.8 (3)
N2—C8—C3176.0 (2)
Cl1—C5—C6—Cl20.1 (3)C6—C1—C2—C7176.0 (4)
Cl1—C5—C6—C1179.9 (3)C7—C2—C3—C81.5 (4)
Cl1—C5—C4—O23.2 (3)C9—N3—C13—C120.6 (7)
Cl1—C5—C4—C3179.2 (3)C9—N3—C13—H13178 (4)
Cl2—C6—C5—C4179.3 (3)C9—N3—C14—H14B60 (4)
Cl2—C6—C1—O14.3 (3)C9—N3—C14—H14C60 (6)
Cl2—C6—C1—C2179.7 (3)C9—N3—C14—H14A180 (5)
O1—C1—C6—C5175.7 (4)C9—C10—C11—C15177.3 (7)
O1—C1—C2—C70.1 (4)C9—C10—C11—C121.6 (7)
O1—C1—C2—C3175.5 (4)H9—C9—N3—C13180 (6)
O2—C4—C5—C6176.1 (4)H9—C9—N3—C143 (6)
O2—C4—C3—C80.3 (4)H9—C9—C10—C11180 (6)
O2—C4—C3—C2176.1 (4)H9—C9—C10—H102 (8)
N3—C9—C10—C111.2 (7)C10—C9—N3—C130.7 (7)
N3—C9—C10—H10179 (5)C10—C9—N3—C14178.2 (7)
N3—C13—C12—C111.1 (6)C10—C11—C12—C131.6 (7)
N3—C13—C12—H12179 (5)C10—C11—C12—H12179 (5)
N4—C15—C11—C1261 (3)H10—C10—C11—C151 (6)
N4—C15—C11—C10118 (2)H10—C10—C11—C12180 (6)
C1—C6—C5—C40.7 (4)C11—C12—C13—H13178 (4)
C1—C2—C3—C40.5 (4)C12—C13—N3—C14178.3 (7)
C1—C2—C3—C8176.8 (4)H12—C12—C13—H131 (7)
C2—C1—C6—C50.3 (4)H12—C12—C11—C152 (6)
C2—C3—C4—C51.4 (4)C13—N3—C14—H14B118 (4)
C3—C4—C5—C61.5 (4)C13—N3—C14—H14C122 (5)
C3—C2—C1—C60.4 (4)C13—N3—C14—H14A2 (5)
C4—C3—C2—C7174.8 (4)C13—C12—C11—C15177.3 (6)
C5—C4—C3—C8177.9 (4)H13—C13—N3—C141 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···C12i1.08 (9)2.42 (8)3.483 (11)169 (1)
C14—H14B···C10ii1.08 (19)2.44 (15)3.472 (12)159 (4)
C13—H13···N11.1 (3)2.3 (2)3.326 (8)161 (3)
C14—H14A···N11.1 (3)2.5 (3)3.540 (9)158 (3)
C9—H9···Cl2iii1.1 (2)2.9 (2)3.417 (7)111 (12)
C9—H9···O1iii1.1 (2)2.6 (3)3.184 (7)112 (16)
C10—H10···O1iii1.1 (3)2.2 (3)3.007 (6)127 (16)
C13—H13···Cl1iv1.1 (3)2.7 (2)3.249 (6)113 (12)
C14—H14A···Cl1v1.1 (3)2.8 (2)3.560 (7)124 (13)
C9—H9···N2vi1.1 (2)2.43 (15)3.463 (7)160 (6)
C14—H14B···N4vii1.08 (19)2.49 (14)3.109 (10)115 (9)
C12—H12···Cl1viii1.1 (2)2.9 (3)3.582 (6)119 (14)
C13—H13···Cl1viii1.1 (3)2.9 (2)3.558 (6)123 (12)
C12—H12···N1ix1.1 (2)2.4 (3)3.217 (8)134 (16)
C10—H10···O2x1.1 (3)2.33 (17)3.189 (7)135 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1, z; (vi) x1/2, y+3/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1, y+1, z; (ix) x+1, y+2, z; (x) x+1/2, y+3/2, z+1/2.
(3.95GPa) top
Crystal data top
C15H7Cl2N4O2β = 95.781 (5)°
Mr = 346.13V = 1200.12 (6) Å3
Monoclinic, Z = 4
Hall symbol: P ?F(000) = 700
a = 6.2058 (3) ÅDx = 1.916 Mg m3
b = 9.8299 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 19.7739 (1) Å
Data collection top
Radiation source: fine-focus sealed tubeh = 78
1502 independent reflectionsk = 08
1502 reflections with > 2.0σ(I)l = 024
θmax = 28.2°, θmin = 2.1°
Refinement top
Refinement on F240 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.103Secondary atom site location: difference Fourier map
wR(F2) = 0.079Hydrogen site location: difference Fourier map
S = 1.62Only H-atom coordinates refined
1502 reflectionsWeighting scheme based on measured s.u.'s
233 parameters(Δ/σ)max < 0.001
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23252 (19)0.1155 (2)0.00378 (6)0.0201 (8)
Cl20.14011 (18)0.2866 (2)0.12475 (6)0.0216 (8)
O10.1678 (5)0.5783 (5)0.10211 (16)0.0223 (11)
O20.3260 (5)0.2816 (5)0.11702 (15)0.0235 (11)
N10.2649 (7)0.8325 (7)0.0092 (2)0.0290 (15)
N20.3998 (6)0.6051 (6)0.1782 (2)0.0240 (12)
N30.3040 (6)0.9591 (6)0.17871 (19)0.0218 (11)
N41.0313 (6)1.2226 (7)0.2562 (2)0.0320 (12)
C10.2148 (7)0.5108 (8)0.0524 (2)0.0146 (11)
C20.2716 (7)0.5700 (9)0.0092 (2)0.0191 (12)
C30.3142 (7)0.4972 (8)0.0650 (2)0.0170 (12)
C40.3000 (7)0.3506 (8)0.0661 (2)0.0131 (12)
C50.2457 (7)0.2886 (8)0.0029 (2)0.014 (3)*
C60.2080 (7)0.3597 (7)0.0525 (2)0.0133 (12)
C70.2706 (8)0.7140 (10)0.0104 (2)0.0264 (18)
C80.3581 (7)0.5587 (8)0.1264 (3)0.0188 (12)
C90.3337 (7)1.0082 (8)0.2424 (3)0.0274 (12)
H90.211 (6)0.991 (7)0.277 (17)0.03289*
C100.5176 (7)1.0809 (8)0.2646 (2)0.0272 (12)
H100.543 (8)1.117 (7)0.317 (17)0.03268*
C110.6680 (7)1.1035 (7)0.2188 (2)0.0207 (11)
C120.6343 (8)1.0546 (8)0.1530 (3)0.0260 (12)
H120.751 (6)1.073 (8)0.117 (17)0.03122*
C130.4521 (8)0.9811 (7)0.1349 (2)0.0248 (12)
H130.425 (8)0.940 (7)0.084 (17)0.02976*
C140.1151 (10)0.8785 (11)0.1563 (3)0.0392 (13)
H14A0.121 (10)0.849 (9)0.104 (17)0.05878*
H14B0.112 (11)0.789 (5)0.187 (17)0.05878*
H14C0.029 (7)0.938 (17)0.161 (3)0.05878*
C150.8659 (7)1.1735 (7)0.2410 (2)0.0211 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.025 (2)0.013 (3)0.023 (3)0.0005 (8)0.0033 (6)0.0004 (7)
Cl20.026 (2)0.022 (3)0.019 (3)0.0024 (8)0.0065 (6)0.0024 (7)
O10.030 (3)0.022 (5)0.016 (3)0.000 (2)0.0111 (14)0.0018 (18)
O20.044 (3)0.021 (5)0.005 (3)0.005 (2)0.0041 (15)0.0016 (18)
N10.029 (3)0.025 (9)0.034 (4)0.003 (2)0.006 (2)0.007 (2)
N20.028 (3)0.029 (6)0.015 (4)0.003 (3)0.0000 (17)0.000 (2)
N30.025 (3)0.028 (5)0.011 (3)0.008 (2)0.0049 (16)0.0005 (18)
N40.028 (3)0.042 (6)0.027 (4)0.008 (3)0.0059 (19)0.001 (2)
C10.018 (3)0.019 (5)0.007 (4)0.000 (2)0.0031 (17)0.0025 (18)
C20.025 (3)0.019 (5)0.013 (4)0.003 (2)0.0047 (17)0.005 (2)
C30.018 (3)0.020 (5)0.012 (4)0.001 (2)0.0008 (16)0.0018 (19)
C40.018 (3)0.017 (6)0.004 (4)0.000 (2)0.0003 (18)0.002 (2)
C60.018 (3)0.009 (5)0.013 (3)0.000 (2)0.0053 (17)0.0010 (18)
C70.015 (4)0.051 (13)0.013 (4)0.003 (2)0.001 (2)0.005 (2)
C80.022 (3)0.023 (6)0.011 (4)0.004 (3)0.0045 (18)0.003 (3)
C90.020 (3)0.044 (5)0.018 (4)0.004 (3)0.0027 (17)0.001 (2)
C100.021 (3)0.040 (6)0.020 (4)0.003 (3)0.004 (2)0.002 (2)
C110.020 (3)0.025 (5)0.017 (4)0.001 (3)0.0008 (17)0.001 (2)
C120.027 (3)0.029 (5)0.021 (4)0.003 (3)0.0006 (17)0.001 (2)
C130.030 (3)0.028 (6)0.016 (4)0.006 (3)0.001 (2)0.002 (2)
C140.030 (3)0.043 (6)0.040 (5)0.014 (4)0.016 (3)0.004 (4)
C150.021 (3)0.029 (5)0.013 (4)0.006 (3)0.001 (2)0.008 (2)
Geometric parameters (Å, º) top
Cl1—C51.704 (7)C3—C81.407 (7)
Cl2—C61.690 (5)C4—C51.460 (7)
O1—C11.244 (6)C5—C61.340 (7)
O2—C41.237 (6)C9—C101.380 (8)
N1—C71.166 (10)C9—H91.1 (2)
N2—C81.173 (6)C10—C111.382 (6)
N3—C131.342 (6)C10—H101.1 (3)
N3—C91.345 (6)C11—C151.437 (7)
N3—C141.447 (8)C11—C121.384 (7)
N4—C151.146 (6)C12—C131.359 (8)
C1—C61.486 (9)C12—H121.1 (2)
C1—C21.426 (8)C13—H131.1 (3)
C2—C71.416 (10)C14—H14A1.1 (3)
C2—C31.364 (8)C14—H14B1.08 (19)
C3—C41.444 (9)C14—H14C1.08 (9)
C13—N3—C9120.6 (4)N3—C9—C10120.9 (4)
C13—N3—C14118.5 (4)N3—C9—H9119 (16)
C9—N3—C14120.9 (5)C10—C9—H9120 (5)
O1—C1—C6121.5 (5)C9—C10—C11117.9 (4)
O1—C1—C2123.7 (4)C9—C10—H10120 (5)
C6—C1—C2114.7 (6)C11—C10—H10122 (13)
C1—C2—C7114.9 (6)C15—C11—C10119.4 (4)
C1—C2—C3124.2 (5)C15—C11—C12119.8 (4)
C7—C2—C3120.9 (6)C10—C11—C12120.8 (4)
C4—C3—C8115.7 (5)C13—C12—C11118.4 (5)
C4—C3—C2121.3 (6)C13—C12—H12121 (4)
C8—C3—C2122.9 (5)C11—C12—H12121 (16)
O2—C4—C5121.9 (4)N3—C13—C12121.5 (4)
O2—C4—C3123.1 (5)N3—C13—H13119 (13)
C5—C4—C3115.0 (5)C12—C13—H13119 (4)
Cl1—C5—C6121.1 (5)N3—C14—H14A110 (5)
Cl1—C5—C4115.1 (5)N3—C14—H14B109 (5)
C6—C5—C4123.9 (4)N3—C14—H14C109 (5)
Cl2—C6—C5123.3 (4)H14A—C14—H14B109 (20)
Cl2—C6—C1115.8 (4)H14A—C14—H14C109 (6)
C5—C6—C1120.8 (6)H14B—C14—H14C110 (9)
N1—C7—C2177.32 (11)N4—C15—C11175.15 (19)
N2—C8—C3177.09 (15)
Cl1—C5—C6—Cl21.3 (3)C7—C2—C3—C80.3 (4)
Cl1—C5—C6—C1178.6 (3)C9—N3—C13—C120.9 (6)
Cl1—C5—C4—O22.7 (3)C9—N3—C13—H13179 (4)
Cl1—C5—C4—C3179.2 (3)C9—N3—C14—H14A180 (4)
Cl2—C6—C5—C4178.7 (3)C9—N3—C14—H14B60 (4)
Cl2—C6—C1—O11.7 (3)C9—N3—C14—H14C60 (5)
Cl2—C6—C1—C2179.7 (3)C9—C10—C11—C15177.2 (6)
O1—C1—C6—C5175.7 (3)C9—C10—C11—C120.0 (6)
O1—C1—C2—C70.2 (3)H9—C9—N3—C13179 (6)
O1—C1—C2—C3177.0 (3)H9—C9—N3—C143 (6)
O2—C4—C5—C6177.3 (4)H9—C9—C10—C11178 (6)
O2—C4—C3—C80.5 (3)H9—C9—C10—H103 (8)
O2—C4—C3—C2176.0 (3)C10—C9—N3—C130.7 (6)
N3—C13—C12—C112.0 (6)C10—C9—N3—C14177.6 (6)
N3—C13—C12—H12179 (5)C10—C11—C12—C131.5 (6)
N3—C9—C10—C111.1 (6)C10—C11—C12—H12179 (5)
N3—C9—C10—H10178 (5)H10—C10—C11—C151 (5)
C1—C6—C5—C41.4 (3)H10—C10—C11—C12179 (5)
C1—C2—C3—C41.3 (4)C11—C12—C13—H13178 (4)
C1—C2—C3—C8176.4 (4)C12—C13—N3—C14179.2 (6)
C2—C1—C6—C52.3 (4)H12—C12—C13—H131 (7)
C2—C3—C4—C52.2 (4)H12—C12—C11—C153 (6)
C3—C4—C5—C60.8 (3)C13—N3—C14—H14A2 (5)
C3—C2—C1—C61.0 (3)C13—N3—C14—H14B118 (4)
C4—C3—C2—C7175.4 (3)C13—N3—C14—H14C122 (5)
C5—C4—C3—C8177.6 (4)C13—C12—C11—C15175.7 (6)
C6—C1—C2—C7177.8 (3)H13—C13—N3—C141 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···C12i1.08 (9)2.38 (9)3.445 (10)171 (1)
C14—H14B···C10ii1.08 (19)2.42 (15)3.456 (11)160 (4)
C13—H13···N11.1 (3)2.3 (3)3.307 (7)161 (4)
C14—H14A···N11.1 (3)2.5 (3)3.520 (8)158 (2)
C9—H9···Cl2iii1.1 (2)2.9 (2)3.403 (7)109 (12)
C9—H9···O1iii1.1 (2)2.6 (3)3.151 (6)112 (17)
C10—H10···O1iii1.1 (3)2.2 (3)2.981 (6)127 (16)
C13—H13···Cl1iv1.1 (3)2.6 (2)3.221 (5)112 (13)
C14—H14A···Cl1v1.1 (3)2.8 (2)3.528 (6)123 (13)
C9—H9···N2vi1.1 (2)2.40 (15)3.436 (6)160 (6)
C14—H14B···N4vii1.08 (19)2.46 (14)3.065 (9)114 (9)
C12—H12···Cl1viii1.1 (2)2.9 (3)3.560 (6)118 (15)
C13—H13···Cl1viii1.1 (3)2.8 (2)3.533 (5)123 (13)
C12—H12···N1ix1.1 (2)2.3 (3)3.173 (8)135 (17)
C10—H10···O2x1.1 (3)2.31 (17)3.173 (6)135 (12)
C10—H10···C8x1.1 (3)2.76 (13)3.175 (7)102 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1, z; (vi) x1/2, y+3/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1, y+1, z; (ix) x+1, y+2, z; (x) x+1/2, y+3/2, z+1/2.
 

Funding information

NEB, BAZ, EVB acknowledge support by the Ministry of Science and Higher Education of Russia; the work was carried out jointly by the Boreskov Institute of Catalysis (project No. AAAA-A21-121011390011-4) and Novosibirsk State University using the instruments of REC-MDEST; PL-Grid Infrastructure (grant No. plgrhopolar1d); Hrvatska Zaklada za Znanost (grant No. HRZZ-IP-2019-04-4674).

References

First citationAllen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAngel, R. & Gonzalez-Platas, J. (2013). J. Appl. Cryst. 46, 252–254.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBader, R. F. W. (1990). Atoms in Molecules: a Quantum Theory. Oxford University Press.  Google Scholar
First citationBąk, J. M., Domagała, S., Hübschle, C., Jelsch, C., Dittrich, B. & Dominiak, P. M. (2011). Acta Cryst. A67, 141–153.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBoehler, R. (2006). Rev. Sci. Instrum. 77, 2004–2007.  Web of Science CrossRef Google Scholar
First citationBogdanov, N. E., Milašinović, V., Zakharov, B., Boldyreva, E. V. & Molčanov, K. (2020). Acta Cryst. B76, 285–291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47, 789–797.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCasati, N., Genoni, A., Meyer, B., Krawczuk, A. & Macchi, P. (2017b). Acta Cryst. B73, 584–597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasati, N., Kleppe, A., Jephcoat, A. P. & Macchi, P. (2017a). Nat. Commun. 7, 10901.  Web of Science CSD CrossRef Google Scholar
First citationChang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences, 3rd ed. Sausalito: University Science Books.  Google Scholar
First citationDittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91–104.  CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, B., Koritsánszky, T. & Luger, P. (2004). Angew. Chem. Int. Ed. 43, 2718–2721.  Web of Science CSD CrossRef CAS Google Scholar
First citationDomagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337–351.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDomagała, S. & Haynes, D. A. (2016). CrystEngComm, 18, 7116–7125.  Google Scholar
First citationDomagała, S., Kosc, K., Robinson, S. W., Haynes, D. A. & Woźniak, K. (2014). Cryst. Growth Des. 14, 4834–4848.  Google Scholar
First citationDovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565–565.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForman, R. A., Piermarini, G. J., Barnett, J. D. & Block, S. (1972). Science, 176, 284–285.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, M., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision C. 01, Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGajda, K., Daszkiewicz, Z., Kozubek, E., Ejsmont, K. & Zarychta, B. (2014). Cryst. Growth Des. 14, 5737–5748.  Web of Science CSD CrossRef CAS Google Scholar
First citationGajda, R., Stachowicz, M., Makal, A., Sutuła, S., Parafiniuk, J., Fertey, P. & Woźniak, K. (2020). IUCrJ, 7, 383–392.  Web of Science CrossRef ICSD CAS PubMed IUCr Journals Google Scholar
First citationGatti, C. & Casassa, S. (2017). TOPOND14 User Manual. CNR-ISTM of Milan, Milan, Spain.  Google Scholar
First citationGenoni, A., Bučinský, L., Claiser, N., Contreras-García, J., Dittrich, B., Dominiak, P. M., Espinosa, E., Gatti, C., Giannozzi, P., Gillet, J.-M., Jayatilaka, D., Macchi, P., Madsen, A. Ø., Massa, L., Matta, C. F., Merz, K. M., Nakashima, P. N. H., Ott, H., Ryde, U., Schwarz, K., Sierka, M. & Grabowsky, S. (2018b). Chem. Eur. J. 24, 10881–10905.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGenoni, A., Dos Santos, L. H. R., Meyer, B. & Macchi, P. (2017). IUCrJ, 4, 136–146.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationGenoni, A., Franchini, D., Pieraccini, S. & Sironi, M. (2018a). Chem. Eur. J. 24, 15507–15511.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGenoni, A. & Macchi, P. (2020). Crystals, 10, 473.  Web of Science CrossRef Google Scholar
First citationGrabowsky, S., Genoni, A. & Bürgi, H.-B. (2017). Chem. Sci. 8, 4159–4176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGrimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104–19.  Web of Science CrossRef PubMed Google Scholar
First citationGuillot, B. (2012). Acta Cryst. A68, s204.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJarzembska, K. N. & Dominiak, P. M. (2012). Acta Cryst. A68, 139–147.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38–54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKertesz, M. (2019). Chem. Eur. J. 25, 400–416.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKoritsanszky, T., Volkov, A. & Coppens, P. (2002). Acta Cryst. A58, 464–472.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583–1628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorlyukov, A. A. & Nelyubina, Y. V. (2019). Russ. Chem. Rev. 88, 677–716.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Niepötter, B., Schürmann, C. J., Stalke, D. & Herbst-Irmer, R. (2017). IUCrJ, 4, 420–430.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationLecomte, C., Souhassou, M. & Pillet, S. (2003). J. Mol. Struct. 647, 53–64.  Web of Science CrossRef Google Scholar
First citationMacchi, P. (2013). Crystallogr. Rev. 19, 58–101.  Web of Science CrossRef CAS Google Scholar
First citationMacchi, P. (2021). Quantum Crystallography: Fundamentals and Applications, Bern: De Gruyter.  Google Scholar
First citationMacchi, P., Gillet, J.-M., Taulelle, F., Campo, J., Claiser, N. & Lecomte, C. (2015). IUCrJ, 2, 441–451.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeindl, K. & Henn, J. (2008). Acta Cryst. A64, 404–418.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMilašinović, V., Krawczuk, A., Molčanov, K. & Kojić-Prodić, B. (2020). Cryst. Growth Des. 20, 5435–5443.  Google Scholar
First citationMolčanov, K., Jelsch, C., Landeros, B., Hernández-Trujillo, J., Wenger, E., Stilinović, V., Kojić-Prodić, B. & Escudero-Adán, E. (2019b). Cryst. Growth Des. 19, 391–402.  Google Scholar
First citationMolčanov, K. & Kojić-Prodić, B. (2019). IUCrJ, 6, 156–166.  Web of Science CrossRef PubMed IUCr Journals Google Scholar
First citationMolčanov, K., Milašinović, V. & Kojić-Prodić, B. (2019a). Cryst. Growth Des. 19, 5967–5980.  Google Scholar
First citationMolčanov, K., Mou, Z., Kertesz, M., Kojić-Prodić, B., Stalke, D., Demeshko, S., Šantić, A. & Stilinović, V. (2018b). Chem. Eur. J. 24, 8292–8297.  Web of Science PubMed Google Scholar
First citationMolčanov, K., Stalke, D., Šantić, A., Demeshko, S., Stilinović, V., Mou, Z., Kertesz, M. & Kojić-Prodić, B. (2018a). CrystEngComm, 20, 1862–1873.  Google Scholar
First citationMolčanov, K., Stolić, I., Kovačević, G., Kojić-Prodić, B. & Bajić, M. (2011). J. Mol. Struct. 987, 174–179.  Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2005). Crystallogr. Rev. 11, 199–241.  CrossRef CAS Google Scholar
First citationNassour, A., Domagala, S., Guillot, B., Leduc, T., Lecomte, C. & Jelsch, C. (2017). Acta Cryst. B73, 610–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNovoa, J. J. & Miller, J. S. (2007). Acc. Chem. Res. 40, 189–196.  Web of Science PubMed Google Scholar
First citationPichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem. 99, 6242–6250.  CrossRef CAS Web of Science Google Scholar
First citationPiermarini, G. J., Block, S. & Barnett, J. D. (1973). J. Appl. Phys. 44, 5377–5382.  CrossRef CAS Web of Science Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationPreuss, K. E. (2014). Polyhedron, 79, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2018). CrysAlisPRO, version: 1.171.39.46, Rigaku Corporation, Oxford, UK.  Google Scholar
First citationStalke, C. (2011). Chem. Eur. J. 17, 9264–9278.  Web of Science CAS PubMed Google Scholar
First citationStalke, D. (2015). Charge Density and Chemical Bonding, pp. 199. Springer International Publishing.  Google Scholar
First citationStilinović, V. & Kaitner, B. (2010). Acta Cryst. A66, 441–445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTse, J. S. (2020). Natl. Sci. Rev. 7, 146–169.  Web of Science CrossRef Google Scholar
First citationVilela Oliveira, D., Laun, J., Peintinger, M. F. & Bredow, T. (2019). J. Comput. Chem. 40, 2364–2376.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWenger, E. (2015). PhD thesis, Université de Lorraine, Nancy, France.  Google Scholar
First citationYanai, T., Tew, D. P. & Handy, N. C. (2004). Chem. Phys. Lett. 393, 51–57.  Web of Science CrossRef CAS Google Scholar
First citationYoo, C.-S. (2020). Matter Radiat. Extremes, 5, 018202.  Web of Science CrossRef Google Scholar
First citationZakharov, B. A. & Achkasov, A. F. (2013). J. Appl. Cryst. 46, 267–269.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarychta, B., Pichon-Pesme, V., Guillot, B., Lecomte, C. & Jelsch, C. (2007). Acta Cryst. A63, 108–125.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarychta, B., Zaleski, J., Kyzioł, J., Daszkiewicz, Z. & Jelsch, C. (2011). Acta Cryst. B67, 250–262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 8| Part 4| July 2021| Pages 644-654
ISSN: 2052-2525